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The human specific cognitive shift starts around the age of 2 years with the onset of

self-awareness, and continues with extraordinary increase in cognitive capacities during

early childhood. Diffuse changes in functional connectivity in children aged 2–6 years

indicate an increase in the capacity of cortical network. Interestingly, structural network

complexity does not increase during this time and, thus, it is likely to be induced by

selective maturation of a specific neuronal subclass. Here, we provide an overview

of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the

human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal

cortico-cortical output, while their long projections modulate inter-areal processing. In

this way, layer IIIC pyramids are the major integrative element of cortical processing,

and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC

neurons have a unique pattern of dendritic maturation. In contrast to other classes of

principal neurons, they undergo an additional phase of extensive dendritic growth during

early childhood, and show characteristic molecular changes. Taken together, circuits

associated with layer IIIC neurons have the most protracted period of developmental

plasticity. This unique feature is advanced but also provides a window of opportunity for

pathological events to disrupt normal formation of cognitive circuits involving layer IIIC

neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation

of layer IIIC neurons may lead into global cortical disconnectivity, affecting development

of complex communication and social abilities. We also propose a model that

developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical

circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other

classes of principal neurons. This “disclosure” of pre-existing functionally silent lesions

of other neuronal classes induced by development of layer IIIC associative neurons, or

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2019.00122
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2019.00122&domain=pdf&date_stamp=2019-03-14
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zdravko.petanjek@mef.hr
https://doi.org/10.3389/fpsyt.2019.00122
https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00122/full
http://loop.frontiersin.org/people/6044/overview
http://loop.frontiersin.org/people/410315/overview
http://loop.frontiersin.org/people/131663/overview
http://loop.frontiersin.org/people/131512/overview
http://loop.frontiersin.org/people/677094/overview
http://loop.frontiersin.org/people/3917/overview


Petanjek et al. Layer IIIC Pyramidal Neurons in Autism

their direct alteration, could be found in different forms of autism spectrum disorders.

Understanding the gene-environment interaction in shaping cognitive microcircuitries

may be fundamental for developing rehabilitation and prevention strategies in autism

spectrum and other cognitive disorders.

Keywords: cerebral cortex, theory of mind, cortico-cortical neurons, dendritic development, schizophrenia,

excitatory transmission, glutamate

QUANTITATIVE EXPANSION OF THE
CEREBRAL CORTEX AND
MICROCIRCUITRY CHANGES: ROLE IN
THE APPEARANCE OF COMPLEX
HUMAN-SPECIFIC COGNITION

Increase in brain size, particularly an increase in the
number of neuronal columns of the cerebral cortex, is the
prerequisite enabling humans to achieve tremendous mental
capabilities such as self-awareness, consciousness, language,
abstract thinking, cognitive flexibility, mathematical abilities, as
well as representational memory and complex social cognition
(1–6). These abilities are not only species-specific features; the
cognitive state achieved by humans represents a new qualitative
level in mental functioning (7–9). It is correct that some animal
species, in particular apes, are able to achieve a rudimentary
level of some of these mental abilities (10–12). However,
complex neuropsychiatric disorders as autism, schizophrenia or
psychopathy are not present in any other species (13–17), which
sets humans apart regarding cognitive and emotional features
and capacities.

One of themost important human-specific abilities is complex
social cognition, which includes processing, storing, and applying
information about other people and social situations (18).
Social cognition is the base for complex personal competencies,
which are altered in the above mentioned diseases. From a
neurobiological point of view, it is interesting that fundamental
cognitive shift, which sets up human-specific cognitive abilities,
the ability to understand the mental state of oneself or others
(mentalization, i.e., “theory of mind”), appears in the period
of transition from infancy to childhood (19–21). Humans and
great apes (as our closest relatives) share roughly the same
course of psychological development during the first 18 months
of life (22). Around this age in both species, the brain nearly
achieves adult neuronal composition, and even overall size (23–
25). Nevertheless, in humans, intensive and diffuse changes
in functional connectivity continue throughout the rest of
childhood (26–31), while apes do not exhibit further important
progress in cognitive capacities after the second postnatal
year (22).

How did this unmatched shift in mental functioning between
apes and humans appear without a robust quantitative increase
in overall brain structure, i.e., overall increase in complexity of
dendrites, or formation of new pathways and connections on
most of the neurons? It should be noted, that a tremendous
increase in the number of cortical neurons and connections, is
a biological prerequisite to enabling high cognitive functioning

(32–37). But at a certain point further quantitative expansion
is not enough to initiate a more complex functional outcome,
since the present pattern of organization does not allow
proper integration inside numerically expanded circuitries.
To make such an expanding system function properly, new
microcircuitries that provide novel integrative properties are
needed (31, 38–42). As such, the enhanced integration across
cortical areas, along with an increase in network processing
capacities, could come as a result of structural changes inside few
selective microcircuitries (43–48).

It is possible that such changes are focused onto specific
cortical areas. For example, the prefrontal cortex has abundant
connections to most of the remaining cortical areas (49–53).
Therefore, changes in functional properties of prefrontal cortex
output (Figure 1) change the information processing throughout
the whole brain (54). To produce considerable functional changes
to the output, structural changes within the prefrontal cortex
do not need to be “robust,” i.e., they do not need to include
dendritic growth of a wide range of neurons. Even fine changes,
e.g., growth focused on selective neuronal populations that have
rich local connectivity, may cause dramatic changes in functional
properties of the prefrontal cortex. Based on previous work by
our and other research groups, we suggest that deep located large
layer III(C) pyramidal neurons (L3N) of the human prefrontal
cortex could perform such a role.

The L3N have a unique developmental pattern during early
childhood (55, 56) that correlates with the appearance and boost
in the maturation of cognitive abilities, such as self-awareness
and complex social cognition.With a detailed overview ofmature
connectivity patterns, here we present a possible integrative role
of L3N in cortico-cortical network processing. Their selective
alteration in pathological conditions could produce immense
changes in mental capacities, due to the failure of proper
integration (57, 58). Therefore, we suggest that alterations in
mentalization and communication abilities found in the autism
spectrum and social communication disorder are a result of
disrupted development of circuitries established by L3N (59).

MOLECULAR FEATURES AND
CYTOARCHITECTURE OF HUMAN
PREFRONTAL CORTEX: THE ROLE OF
ASSOCIATIVE NEURONS IN INTER-AREAL
AND INTER-COLUMNAR CONNECTIVITY

Evolution of the human brain (Figures 2A,B) is characterized
by a sharp linear increase in the number of cortical neurons
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FIGURE 1 | Schematic representation of two main subdivisions of the

prefrontal cortex and general organization of their afferent and efferent

connections. Dorsolateral prefrontal cortex establishes rich connections with

all neocortical areas, except primary regions, whereas orbitomedial prefrontal

cortex is mainly connected with hippocampus and cortical regions processing

visceral information. Note that dorsolateral and orbitomedial prefrontal cortex

are densely interconnected. Figure is based on Groenewegen and Uylings (49).

DOP, dopamine; NA, noradrenaline; 5HT, serotonin.

(67–69), but also with an exponential increase in the number
of cortico-cortical projecting neurons (50, 67, 68). This leads
to increased thickness of upper cortical layers (Figures 2C–E)
which contain more neurons than lower layers populated
by subcortically projecting neurons (3, 4, 39, 65, 66, 70, 71).
So, the primate neocortex is characterized by a tremendous
increase in the number of columns and changes to their
internal neuronal composition (Figure 2F). Last but
not least is the increase in width inside and between
columns. The increase in width of columns is a result of
increase in dendritic complexity of principal cells (72),
i.e., more “space” between columns is a result of increased
interconnectivity (73).

These changes are present in a majority of cortical areas,
but are most prominent in several prefrontal cortex areas
and related with their important integrative function inside
cortico-cortical network (52, 53, 74, 75). The connectivity
pattern of human prefrontal cortex (Figure 1), particularly its
highly expanded dorso-lateral part, is characterized by massive

reciprocal projections to both, multimodal and unimodal-
parasensory associative areas (44, 76). This allows the prefrontal
cortex to have a major role in regulating synchronous and
coordinated activity between cortical areas. Experimental studies
in monkeys and functional studies in humans have confirmed
that the prefrontal cortex is functionally the highest associative
region of the primate brain (38, 49, 51).

In humans, some areas of the prefrontal cortex show a
specific cytoarchitecture, the magnopyramidality of layer III
(77), i.e., deep located large layer III neurons exceed the
size of large layer V pyramids. When compared to other
populations of cortico-cortical projecting neurons, the L3N
show strong acetylcholinesterase (AChE) (78–80) and SMI32
(antibody against phosphorylated protein H) reactivity (81–
83) as a result of higher metabolic rate and prominent
axonal tree. The density of SMI32/AChE reactive L3N,
as well as their size and intensity of staining, is higher
in human associative areas than in monkeys. In lower
mammals, SMI32/AChE reactivity in deep layer III was not
found (84).

The L3N are a subset of cortico-cortical neurons with
long ipsi- and contra-lateral projections (Figure 2G)
(40, 60, 61, 85). Individual L3N establish projections to
several different areas suggesting a major role in inter-areal
integration that grants them the title “associative” neurons
(86). They are characterized by an astonishing number of
intracortical axonal collaterals (Figure 2H), that extend
around the cell, having dense columnar distribution of
their terminal ramification through layers II and III (62–
64). Thus, L3N are playing the major role in intercolumnar
connectivity within a particular cortical area. In monkeys,
L3N are indeed the key element for processing working
memory and other prefrontal cortex-dependent high cognitive
functions (87–90).

Above mentioned features of connectivity, functional
properties and evolutionary expansion support the idea that L3N
underlie the highly efficient network integration throughout
the human cerebral cortex. We propose that selective structural
and molecular changes of associative L3N in the human
prefrontal cortex around the age of 2 and several upcoming
years (55, 56), change the properties of the whole prefrontal
cortex output, and have a pivotal role in cognitive maturation
characterizing the preschool period. Developmental changes
selectively related to this neuron class may be crucial for the
appearance of cognitive abilities needed for the understanding of
higher levels of inter-personal interaction, and to lay foundation
for a further increase in cognitive capacity observed later
throughout the childhood and adolescence, that ultimately
leads to socio-emotional maturity. Selective alterations of the
L3N were described in neuropathological states characterized
by intense and global changes in the efficiency of the cortical
network (91–96). We propose that selective alterations of
associative L3N have a pivotal role in the “dis-connectivity” of
prefrontal cortex found in autism spectrum disorder (97, 98),
but also in other prefrontal cortex-associated disorders,
like schizophrenia (90, 99, 100). These two disorders share
similarities in cognitive pathology, and are characterized by
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global cortical dysfunction, without concurrent structural
alterations and specific structural pathology identified so far
(16, 17).

UNDERSTANDING THE MENTAL STATES
OF ONESELF OR OTHERS: NEURONAL
DEVELOPMENT OF PREFRONTAL
CORTEX DURING EARLY CHILDHOOD
AND FOCAL DISCONNECTIVITY
IN AUTISM

The capacity to attribute mental states (mentalization) remains
one of the quintessential abilities that makes us human and is
defined as the “theory-of-mind” (ToM) (20, 21, 101, 102). This
ability appears during the second year of life and subsequently
sophisticates through childhood with cognitive spurts at specific
time points (103). Following temporal pattern at which various
levels of ToM have been achieved is important since it
reflects changes inside cortical circuitries which allow shifts in
mental capacities.

Most data marks the infant to child transition as a point
when first ToM abilities appear, i.e., during the second year of
life. Infants around 12–15 months of age display behaviors that
are prerequisites to ToM development (104–106). Nevertheless,
it is difficult to talk about internalization of mental abilities
before 18 months of age (107, 108). By the age of 2, children
are clearly aware that there is a difference between thoughts in
their mind, and things in their surroundings (109). An average
3-year-old knows that the brain has a set of mental functions,
such as dreaming, wanting, thinking, and that different persons
may want, like and feel different things. Further important
cognitive twists occur around the age of 4, when children realize
that thoughts might not be true (110). Also, a 4-year-old can
remember that their own belief has changed which is not the case
with a 3-year-old (111). By the end of early childhood (ages 5 to
6), children realize that people talk and act on the basis how they
think the world is, even when it does not reflect the reality of the
situation. They can keep secrets and understand that sometimes
a person may believe something that is not true, and that what a
person does or says, can be based on a false belief (112, 113).

The cortical areas related to ToM tasks typically activate
the frontal lobe. In particular, neuroimaging studies of ToM
showed activations in the dorsal prefrontal cortex (Brodmann
area 9). However, other frontal regions were also involved in
understanding and controlling oneself, as well as in interaction
of thoughts about oneself and others (112, 114–117). Therefore,
the prefrontal cortex can be considered as a region with a key role
in social cognition, and it is assumed that pathological substrates
in states characterized by disrupted social cognition, such as
psychopathy personality (14) and autism spectrum disorder (59,
118), must be located within.

In autism spectrum disorder (ASD) and related social
(pragmatic) communication disorders, social interactions are
affected (119) due to difficulties in the aptitude for inferring

other people’s states of mind, such as intentions, beliefs, desires
and wishes (120). When a false-belief test is applied to children
with ASD, most of them fail even at the age of 11, in contrast
to typically developed children who pass the test by the age of
4 (121). In a modified (122) and simplified (123) form of the
false belief task, typically developing children show ToM abilities
latest by the age of 2.5, while many of them show it already
at the age of 1.5 years (107, 124). These abilities are lacking in
ASD subjects, showing that deficiency in the ability to reflect
on the contents of one’s own and other’s minds (101, 125) is
a core cognitive feature of ASD. This lack is a consequence of
a disturbed cognitive development at some point during the
period of early childhood (1.5–6 years) (126–128). In search
for neurobiological correlations, it is important to recognize
that cognitive impairment in ASD is specific and different from
learning difficulties of blind or deaf people (129–131).

Neuroimaging data show that dorsolateral and medial
prefrontal cortex in ASD are hyperconnected during the second
year of life (132–137). In parallel with hyperconnectivity,
many of ASD individuals undergo brain overgrowth that is
particularly pronounced in the frontal lobes (138–141). The
hyperconnectivity later on changes to hypoconnectivity (142–
144). Therefore, it is still debated if ASD should be considered as a
disorder characterized by hyper- or hypoconnectivity (145, 146).

Nevertheless, the concept of hypo- or hyperconnectivity
seems to be oversimplified. Neuroimaging data are in line
with the view that ASD symptomatology is the result of
disconnection in areas involved in the processing of language,
executive and socioemotional reaction as well as in abstract
and conceptual thinking. Furthermore, there is a disconnection
in cortical regions that are highly evolved in humans and
involve higher-order associative processing along with the
prefrontal cortex (147–151). Alteration in ASD was also found
in many regions of the temporal lobe and in adjoining
parts of the occipital and parietal lobes, including the insula
and regions important for ToM processing (117, 125, 152,
153). However, the majority of functional and structural
connectivity studies in ASD suggest that the key disconnection
must be between the frontal lobe and other higher order
association cortices (154–160), and that the frontotemporal,
frontolimbic, frontoparietal, and interhemispheric connections
are altered. In addition, alterations in synaptic organization
related to specific deficits were found (161–166). The type and
range of cognitive pathology in ASD suggests that structural
alterations are focused, as well as delicate, but present even
among highly-functional adults with ASD (122, 167–169).
Preservation (or even enhancement) of other mental functions
(170, 171) suggests that development of certain circuitries
is spared, supporting the model of “focal disconnections”
which appear during development. Therefore, ASD should
be considered as a form of “developmental disconnection
syndrome” (172–174).

In conclusion, structural and functional data in ASD suggest
that development of specific micro-circuitries is disrupted during
the ToM acquiring stage of infant to child transition (second
year of life), or in milder ASD forms during the upcoming
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FIGURE 2 | Macroscopic and microscopic features of the adult human brain, including schematic organization of extrinsic and intrinsic cortical projections of

associative layer IIIC neurons. (A) In the adult human brain frontal granular cortex occupies 80% of the frontal lobe, and almost one third (red) of the total cortical

surface. (B) Around the age of two, the brain is very close to its adult size (23). Microphotography of Golgi Cox (C–E) and rapid Golgi (F) impregnated sections of the

associative areas in the human (C,D,F), and mice neocortex (E). (G) Large layer IIIC neurons are considered to be associative neurons, connecting several higher

order areas in the ipsi- and contralateral hemisphere, with the columnar pattern of axon ramification (60, 61). Ipsilateral collaterals are much more numerous (H), and

around 80% of synapses are established within the area of origin. Local axon branches are forming numerous terminal ramifications which have columnar distribution

through layers II and III, and extend several millimeters around the cell body (62–64). The figure is a compilation of figures published by Hladnik et al. (65) (A,B) and

Džaja et al. (66) (C–E). Scale bar 200µm (C) and 100µm (D–F).

years (118, 120, 175, 176). The role of distinct neuron classes
in the prefrontal cortex for processing ToM and complex social
cognition is not yet defined, and therefore the neuronal correlates
of ASD pathology remain unknown (177).

Based on connectivity patterns, as well as the
pattern of their development and maturation, selective

changes of associative L3N microcircuits in the
prefrontal cortex could represent one of the major
biological substrates for normal cognitive development
during early childhood. Consequently, abnormal L3N
development could be associated with appearance of
ASD symptomatology.
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FIGURE 3 | Changes in dendritic morphology of rapid-Golgi impregnated pyramidal neurons in the dorsolateral part of the prefrontal cortex during the second half of

gestation (A–D) and first postnatal month (E,F). Microphotography of rapid Golgi impregnated sections in the human fetal prospective dorsolateral prefrontal cortex at

21 (A,B), and 32 postconceptional weeks (C,D), newborn (E) and one month old infant (F). Scale bar 10µm (A,B) and 100µm (C–F). (a,b) are (A,B) shown at the

same magnification as (C–F).
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FIGURE 4 | Graphical presentation of quantitative data from the basal dendritic tree of large layer III and V pyramidal neurons in the human dorsolateral prefrontal

cortex, impregnated by a rapid Golgi method, in a period of rapid growth between 18 postconceptional weeks, and third postnatal month, compared to adult values.

An outgrowth of primary basal dendrites (A) started earlier on layer V pyramidal neurons, during the middle trimester of gestation prior to layer III, but not later on

(B). The number of basal dendritic segments (indicating frequency of bifurcation) shows a clear inside-out gradient until birth (C). A constant, slow outgrowth of new

segments is present, for both classes, during the middle trimester of gestation, followed by rapid increase in period 26–32 PCW for layer V pyramidal neurons (D). The

major outgrowth of new segments occurred for layer III pyramids during the first postnatal month. No additional segment outgrowth is observed after first postnatal

month. Despite rapid segment outgrowth up to the 32 postconceptional weeks, the increase in total length for layer V pyramids (E) was rather slow. Most of the

elongation occurred later, during the last 2 months of gestation and first postnatal month (F). At the same time, opposite to layer V, a considerable increase in length

occurred for layer III during the period of rapid segment outgrowth. At the 3rd postnatal month, layer III rapid Golgi impregnated neurons have just exceeded 50%,

whereas layer V pyramidal neurons exceed 80% of their adult length (dashed lines). Data shown here were extrapolated from the studies of Mrzljak et al. (190) and

Petanjek et al. (55).
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SEQUENTIAL DIFFERENTIATION OF
PRINCIPAL NEURONS IN THE
PREFRONTAL CORTEX AND EARLY
DEVELOPMENT OF
CORTICO-CORTICAL MICROCIRCUITRY

Mechanism of Dendritic Growth
Development of dendrites is one of the essential processes
in differentiation and maturation of neuronal circuitry (178–
182). Developmental changes in dendritic size and complexity
will define the total neuronal receptive field. Since dendritic
development occurs in parallel with rapid synaptogenesis (183)
and axon growth (184, 185), it will affect both the neuronal
functional response to the input and the neuronal output (186).
Dendritic development typically undergoes three phases:

The first phase of dendritic growth starts after the neuron
arrives to its final position within the cortical plate (37, 187, 188).
This phase is characterized by the protrusion of primary basal
dendrites and apical dendrite, which arise from the cell body,
including appearance of oblique dendrites which grow out on
the proximal site of the apical dendrite (189). No significant
outgrowth of additional branches on primary oblique and basal
dendrites occurred during this phase (Figure 3).

The second phase is characterized by extensive and rapid
growth of the dendritic tree. Initially, new segments grow
out on the, during first phase formed primary basal and
oblique dendrites (Figures 4A,B). This is followed by an increase
in the size of the dendritic tree achieved mainly through
elongation of present branches. Importantly, the appearance
of functional glutamate receptors is crucial for inducement
of rapid dendritic growth (183, 191–195). This strongly
supports the view that ingrowth of glutamatergic thalamo-
cortical and cortico-cortical afferents during the fetal and
perinatal period, triggers the rapid dendritic growth of principal
neurons (196).

The final stage of dendritic growth (once up to 20%
of total dendritic length is established) is characterized by
significant, but much slower elongation of dendrites than
during the second phase. Many connections established on
developing dendrites are functional at the beginning of
this stage, making dendritic development more sensitive to
environmental influences (“nurture”). In contrast to the second
phase, glutamatergic activity during the third phase stabilizes
the dendritic tree instead of promoting its growth (199–201). As
such, the last stage of dendritic development is the longest and is
characterized by a slighter increase in the length of the dendritic
tree (202, 203).

Intensive Perinatal Dendritic Growth of
Associative Neurons Results in Early
Functional Microcircuitries
Dendritic development and synaptic rearrangement of principal
neurons have been extensively studied in the monkey and
human prefrontal cortex (189, 190, 197, 199, 204–221). In
the human fetal prefrontal cortex, intensive dendritic growth
(second phase) of both deep layer III and V principal neurons,

starts 12–15 weeks after they arrived into the cortical plate.
However, beginning of the second phase differs between these
two subpopulations of principal neurons. For the large layer V
pyramidal neurons it coincides with the ingrowth of thalamo-
cortical fibers into the cortical plate by the end of the
middle trimester of gestation (188, 196, 222, 223). In contrast,
intensive growth of the L3N begins with ingrowth of cortico-
cortical fibers by the end of the last trimester of gestation
(224, 225). Thus, for the two main classes of large pyramidal
neurons in the human prefrontal cortex there is an inside-
out gradient of differentiation during the prenatal period, and
intensive growth seems to be induced by the arrival of specific
glutamatergic afferents.

At birth, large layer V principal neurons have already
attained their adult dendritic complexity (branching pattern),
while L3N are not well developed (190), suggesting that the
cortico-cortical network is not highly functional at that time
(226–228). Indeed, the most intensive dendritic development
of the L3N is the first postnatal month, when around
60% of basal dendritic segments appear (Figures 4C,D), and

FIGURE 5 | Golgi Cox impregnated pyramidal neurons in human Brodmann

area 9 at 7 postnatal months and changes in basal dendritic tree between 7

and 12 months. Microphotography of Golgi Cox impregnated large pyramidal

neurons in deep layer III (A) and layer V (B) at 7 postnatal months at higher

magnification. Schematic drawings (C) indicating changes in length and

complexity of dendritic tree of Golgi-Cox impregnated neurons between 7 and

12 months, showing that major dendritic growth for those two populations of

neurons, occurred during the second half of the first postnatal year. A total

number of segments is approximated on the basis of neuronal reconstructions

(197), and percentage of segments cut at a particular dendritic order (198).
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almost half of the total size is achieved (Figures 4E,F). Thus,
the L3N dendritic tree “catch-up” large layer V pyramidal
neurons in absolute values of their length and complexity
soon after birth. By the third postnatal month both classes
are equal in total dendritic tree length, and have achieved
not only adult complexity, but also, adult-like overall dendritic
three shape.

The maturity level of layer V principal cells reached
soon after birth is not surprising, as these cells are key
neuronal elements for processing early executive functions of
the prefrontal cortex (43, 229–231). However, the maturity level
of L3N reached between first and third postnatal month is
somewhat surprising (55, 56), as these cells are believed to
be the key elements involved in sophisticated, evolutionarily
recent, and human-specific cognitive functions that develop
later on (232, 233). Such an early functioning cortico-
cortical neuronal network centered on L3N may represent a
neurobiological basis for cognitive functions present already
in the first months after birth (234–238). Behavioral and
functional studies found that the perinatal period (32 week
of gestation−3 months postnatal) is characterized by rapid
transformation and disappearance of fetal patterns of behavior,
but also with concomitant appearance of certain aspects of
cognitive functions, which will intensively develop through
infancy (124, 239–246).

Sequential Development of
Microcircuitries in the Human Prefrontal
Cortex During the First Postnatal Year
Not all classes of principal neurons in the prefrontal cortex
undergo intensive dendritic growth during the prenatal and
perinatal period as observed for large pyramidal neurons
impregnated with the rapid Golgi method. Subpopulations of
pyramidal neurons impregnated by the Golgi Cox method
(197, 207) undergo a major dendritic growth after birth,
mainly during the second half of the first postnatal year
(Figure 5). Different modification of Golgi methods have a
selective affinity to stain different neuronal subpopulations,
i.e., the rapid Golgi method is more prone to impregnate
large pyramidal cells. These differences in timing of intensive
dendritic growth between different subclasses of principal
neurons (247, 248) suggest that there is a different gradient of
maturation for different subclasses of neurons, even within the
same layer.

In our recent work, by using rapid Golgi method and
encompassing broader population of the layer III impregnated
principal neurons (Figure 6), we showed significant differences
in the level of dendritic differentiation during the first
postnatal month within frontal lobe, that includes dorsolateral
part and Broca’s region as well as primary motor and
premotor cortices (249). The populations of L3N attained a
highly developed dendritic tree in all analyzed areas, whereas
dendrites of other principal neurons in layer III were less
differentiated. Such findings show an asynchronous maturation
of different microcircuitries throughout the cortico-cortical
network: some of them reach functional level soon after birth,

while others are still very immature (47, 250–252). This is
in contrast to the traditional view of hierarchical neuronal
development across the cerebral cortex, which suggests a
sequential gradient of maturation from lower to higher order
areas. We propose that there is a sequential maturation of
distinct elements, forming cortico-cortical circuitries across
all frontal areas (88). Such a pattern of development may
represent a neurobiological basis for the sequential development
of cognitive functions during the first and second postnatal
year (124, 235, 253–256). Also, rapid dendritic growth is
related with maturity of glutamatergic and GABA-ergic receptors
(257, 258), making dendritic differentiation more prone to
environmental influences. As such, for the development of
early maturing neurons, as is the case for L3N, already during
the perinatal and early postnatal period, the environment
has an important role in regulating their morphological
differentiation (259–263).

SELECTIVE MATURATION OF THE
ASSOCIATIVE LARGE LAYER IIIC
NEURONS DURING EARLY CHILDHOOD
AND PROTRACTED DEVELOPMENT OF
“COGNITIVE” MICROCIRCUITRY
THROUGH ADOLESCENCE

Unique Pattern of Dendritic Growth of
Associative Neurons in Human
Prefrontal Cortex
For most subpopulations of principal neurons in the prefrontal
(197, 207, 208, 218, 219, 221, 264, 265), and other regions of
the human cerebral cortex (266–276) major postnatal dendritic
growth occurs during the first year in parallel with massive
synaptogenesis (185, 205, 206, 226, 277–284).

An important exception from the typical temporal pattern of
dendritic growth (see previous chapter) are associative L3N in
the prefrontal cortex (Figures 7, 8). The L3N do not undergo
the typical third stage of dendritic development like large layer
V pyramidal neurons (55, 56). The layer V neurons attain
more than 80% of their adult dendritic length by the third
postnatal month. They then continue with further elongation
during the third stage of dendritic development for roughly 1
year, and reach adult values around 15months of age. In contrast,
by the third postnatal month dendritic size of the L3N has
reached only half of their adult values (Figures 7A–C, 8A,C,D).
In addition, basal and oblique dendrites of the L3N have no
significant growth (“dormant” period) until the middle of the
second year (Figures 7A,C,D, 8A,D,E). Between 16 months and
2.5 years, length of L3N basal and oblique dendrites almost
doubled, with growth rate higher than expected for the third stage
(Figures 7A,D,E, 8A,E,F). To the best of our knowledge, this
second L3N dendritic growth spurt represents an undescribed
developmental feature for any class of cortical neurons. In the
following period from 2 to 5 years, there is a further increase
in synaptic spine density (285) at L3N dendrites, accompanied
with molecular changes of this class of neurons. The L3N start to
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FIGURE 6 | Asynchronous maturation of pyramidal neurons in layer IIIC during first postnatal month. (A) Rapid Golgi impregnated deep layer III pyramidal neurons in

Brodmann area 9 of a 1-month-old infant in the prefrontal cortex show different stages of differentiation. Quantitative analysis of newborn and 1-month-old infant

reveals large differences in total length (B), and number of segments (C) in basal dendritic tree of deep layer III pyramidal neurons, across different areas of the human

frontal cortex. Each symbol represents mean values per individual neurons.

express strong AChE (78, 79) and SMI-32 (82, 265, 286) reactivity
in their bodies and proximal apical and basal dendrites. This
unique expression sets them apart from other classes of cortical
neurons (Figure 9). Additionally, by the age of 5, the L3N show
intensive Nissl staining paralleling transient somatic overgrowth
(Figure 8B) (287–290).

Thus, the L3N acquire a significant portion of their maturity
after infancy. We suggest that morphological and molecular
changes on dendrites of the L3N in the period from 2 to 6
years are related to the growth and synaptogenesis of their
own local intracortical projections, which establish very dense
innervation on all cortico-cortical projecting neurons (62–64).
Thus, changes in L3N intracortical projections will affect function
of all prefrontal cortex neurons that project to other cortical
areas. Consequently, L3N changes will be reflected on network
processing throughout the whole cerebral cortex. Intracortical
projections in experimental studies on rhesus monkey were
found to be the last maturing part of the cortical excitatory
network (209), whereas basic architecture for cortico-cortical

projections is established earlier during infancy (41, 124, 243,
291–294). This leads us to conclude that large scale functional
changes in the cerebral cortex, starting around the age of 2, are
related with maturation of excitatory intracortical connections.
Still, further maturation of cortico-cortical projections could not
be excluded (116).

Protracted and Environmentally Driven
Synaptic Pruning of
Associative Microcircuitries
Structural changes through the cortical network are not finished
by the age of 5–6 years, while the circuitry reorganization
continues throughout the rest of childhood and adolescence
(28, 33, 36, 76, 90, 205, 216, 283, 295–317). Molecular tuning of
synaptic strength during development, when synaptic numbers
exceed adult values, is proposed to be a major mechanism
for the environmental effect on circuitry reorganization. The
period of overproduction and elimination of supernumerary
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FIGURE 7 | Postnatal development of rapid Golgi impregnated large layer IIIC pyramidal neurons in the magnopyramidal area 9 of the human prefrontal cortex.

Three-dimensional reconstructions of basal and apical dendritic trees of rapid Golgi impregnated pyramidal cells in layer IIIC, projected onto the coronal plane

(A). Orientation toward the pia is indicated by the arrow. Oblique dendrites originate from the apical dendrite, and are represented by dashed lines. All layer IIIC

pyramidal cells are represented at the same magnification (scale bar 100µm) and at the following ages: newborn, 1-month-old, 2.5-months-old, 15-months-old

infants, 2.5-year-old child, and 28-year-old adult. Dendritic trees of layer IIIC pyramidal cells increased between 16 months and 2.5 years of age. Note that there are

no obvious differences between layer IIIC pyramidal cells of 2.5-month-old and 16-month-old infants (dormant stage), as well as 2.5-year-old and 28-year-old

subjects. Microphotographs showing changes in morphology of rapid Golgi impregnated layer IIIC pyramidal cells of the Brodmann area 9 between: newborn (B),

infants aged 1 (C) and 16 (D) months, 2.5-year-old child (E), 19-year-old (F), and 73-year-old (G) adults (the magnification is same for all microphotographs; scale bar

–20µm). Even in these high-power microphotographs, the increase in dendritic complexity (an outgrowth of new segments) between newborn (B), and 1-month-old

infant (C) is obvious. The figure is taken from Petanjek et al. (55) with permission.
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FIGURE 8 | Graphical and schematic presentation of quantitative morphological data from basal dendritic tree of deep layer III and layer V pyramidal neurons, in

magnopyramidal area 9 of the human dorsolateral prefrontal cortex impregnated by the Golgi method during postnatal development. Changes in terminal segment

length (A) and soma size (B), from birth until 91 years of age on layer III pyramidal neurons impregnated with rapid Golgi (full marks—red line), and Golgi Cox method

(open marks—blue line). Data about terminal segment length (A) are shown here as they participate with 90% in the total length of dendrites. Data from rapid Golgi

stained slides, regarding terminal segment length confirm, that the period between 3 and 16 months, is a dormant stage in basal dendritic growth for layer III

pyramidal neurons, and that further growth occurs between 16 months and 2.5 years (at least 1/3 of total length). Large temporal overgrowth in cell body size was

present in subjects 5 to 6 years old (B). Data shown here were extrapolated from Koenderink et al. (197) and Petanjek et al. (55) studies. Squares represent males and

circles represent females. The age is shown in postnatal years on a logarithmic scale. Puberty is marked by a shaded bar. Schematic drawings (C–F) of changes in

length and complexity of dendritic tree of deep layer III and layer V pyramidal neurons, illustrate changes occurring in the cytoarchitecture and overall neuronal

morphology. Total number of segments is estimated on neuronal reconstructions (based on real data) (55, 197) and values of missing dendrites were calculated by

formula (198). Red represents rapid-Golgi impregnated neurons, and blue Golgi Cox impregnated pyramidal neurons. Illustrations for Golgi Cox neurons at newborn

(C) and 3-months-old infant (D) stage are prediction based on dendrite growth pattern in the period 7–15 months. By the 15 months (E) most of the neurons have

achieved an adult level of dendritic size, except large layer IIIC pyramidal cells impregnated by the rapid Golgi method (F).

synaptic spines corresponds to the developmental stage when
principal neurons have the highest magnitude of plasticity
(185, 201, 260, 277, 304, 318–326). In the prefrontal cortex,
the stage of developmental plasticity is highly prolonged and

extends even up to the third decade of life (Figure 10).
Concomitantly, there is a prolonged peak in expression of genes
regulating neuronal development, including those associated
with schizophrenia (298, 307, 327, 328). The comparative
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FIGURE 9 | Neurofilament staining (SMI32) in Brodmann area 9 of child and

adult human cortex. Microphotography of SMI32 (non-phosphorylated filament

H) stained sections in Brodmann area 9 of the human prefrontal cortex at the

age of 3 (A,C) and 38 years (B,D). The deep part of layer III and layer V are

sub-laminas most densely populated with reactive neurons. There are no

differences in staining intensity of layer V neurons at both ages, however in the

adult subject layer III, the amount of intensely stained pyramidal neurons with

clearly visible dendrites has increased. Accumulation of neurofilaments in

dendrites is corresponding to the length and complexity of axon, suggesting

that pyramidal neurons located deeper in layer III continue with axon growth

after the age of 3. Scale bar at 100µm (A–D).

analysis of mRNA expression in the prefrontal cortex shows
that in the human brain, relative to non-human primates,
the dramatic changes in transcriptome profiles are delayed
(283, 304, 307, 329, 330). So, extraordinary protracted circuitry
reorganization is a specific feature of human higher-order
associative areas.

It is possible however, that distinct types of microcircuitries
may have different rates of synaptic formation and elimination.
The pruning of supernumerary dendritic spines during the
third decade of life is most pronounced and protracted on
the L3N. It starts earlier on segments that are targeted by
thalamo-cortical, rather than on those targeted by cortico-
cortical projections (285). Studies obtained in monkeys and
humans show somewhat higher synaptic overproduction

in supragranular (including L3N and cortico-cortical
projecting neurons) vs. infragranular (including layer V
and subcortical projecting neurons) layers (205, 226). Regional
differences in the number of grown and pruned spines on
the layer III neurons have been described in the monkey
and human cortex, with highest spine overproduction in the
prefrontal cortex and lowest in the primary sensory regions
(208, 221, 250, 279, 282, 331). The level and duration of
synaptic overproduction, and consequently the level and
duration of developmental plasticity (332), increases within
increasing functional hierarchy of distinct microcircuits.
Thus, microcircuits that are processing the highest cognitive
functions, such as social abilities, are subject to the highest
developmental remodeling induced by psycho-social and
emotional environment (32, 39, 250, 252, 260, 305, 333, 334).

THE DEVELOPMENT OF PREFRONTAL
CORTEX ASSOCIATIVE NEURONS IN
AUTISM: A MODEL OF SELECTIVE
NEURONAL VULNERABILITY IN GLOBAL
CORTICAL NETWORK DISCONNECTIVITY

Based on the above, we suggest that selective disruption of L3N
could cause global cortical network disconnectivity, underlying
ASD cognitive symptomatology. The protracted and biphasic
pattern of L3N dendritic growth, coupled to the intensive
molecular maturation after infancy, is not described for any other
population of principal neurons. This developmental timing
overlaps with the period when specific ASD symptomatology
becomes evident.

Thus, alteration of the specific neuronal population with
“strategic” position inside cortical circuitry, like L3N, could
lead to global cortical network dysfunction. The timing of
appearance and severity of symptoms in ASD might depend
on the affected level of structural and molecular maturation
of associative neurons during early childhood (2–6 years). For
example, if development of the L3N is affected during the
second year of life, it is most likely that the elongation of
dendrites would be altered. This possible reduction in dendritic
size would result in abnormal input on the L3N, and would
change their functional properties. Consequently, as the L3N
densely innervate all layer II/III cortico-cortical neurons, a robust
alteration in dendritic morphology and consequently possible
out-growth of intracortical projections of L3N, would lead to
disrupted inter-columnar processing (335). We would expect
such changes in subjects with a more serious form of ASD,
where cognitive pathology already emerged during the second
year of life.

In some ASD cases, specific cognitive symptoms are not
apparent during the second, and even third year of life. Those
subjects only show a subtle deflection of ToM, with no signs
of any other neurological or psychiatric comorbidity, like in
Asperger’s syndrome (122, 167, 168). We hypothesize that in
these forms of disorder the L3N alterations are not as robust.
Here, the development of the L3N is probably affected later,
after the age of 2.5 years, when further molecular maturation of
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the L3N occurs. Cognitive pathology is in such cases related to
synaptic network architecture or/and fine molecular deflection at
the level of individual synapse, without any dendritic and axonal
changes that can be defined as pathological.

However, complex cognitive processing is disturbed in most
cases of ASD at earlier stages of development (336, 337).
Neurological and cognitive pathology is frequently present
during the first year, sometimes even at birth (338, 339).
In the most serious cases, there is ASD comorbidity with
the intellectual developmental disorder (340) or/and epilepsy
(341). In cases with absent comorbidity, many parents report
a concern about socio-emotional interactions during the first
year of life (342–345). Neuroimaging further revealed network
inefficiencies during the first year of life (337, 346, 347). However,
although specific ASD symptoms are not seen before the age of
two, epidemiological and genetic studies support the idea, that
alterations of neuronal development occur during the prenatal or
perinatal time (348–355).

Thus, the “uniquely biphasic” pattern of dendritic growth
of the L3N, with delayed structural and molecular maturation
during the post-infant period (after 1.5 years), indicates that
this neuronal class is particularly vulnerable during the perinatal
period, when harmful events related to ASD are expected to
occur. Pathological alterations induced at that stage may not
be severe enough to affect functional demands of the L3N at
the early postnatal period. However, the perinatal lesion could
manifest after the second year, since the role of L3N, in now
much complex microcircuitries, becomes more demanding at
this time. In this view, the earlier “perinatal lesion” becomes
visible as notable functional impairments after the second
year (327, 356).

Most ASD cases will be diagnosed earliest by the age of 18
months (103). However, social cognition is often altered earlier,
even in infants that do not show neither neurological, nor
intellectual impairment. Retrospective studies have shown that
ASD affected children clearly have different behavior related to
social responses by 12 months, like gazing in a single direction
and the way how they respond to their name (357). On functional
magnetic resonance imaging (fMRI) altered connectivity in ASD
was found by the 6 months (127, 346) and EEG signal was
found to be altered by the 3 months (358). Above mentioned
behavioral and functional aberrations present at early stages of
infancy (337), further suggest that ASD symptoms are related
with structural alterations from the early postnatal period.
Interestingly, EEG pathology of ASD is first observed in the
left temporal electrode (T7), and the frontal lobe starts to differ
between 15 and 18 months of age, which corresponds to the
beginning of the second L3N growth spurt. The developmental
(“biphasic”) pattern of L3N, with intensive perinatal dendritic
growth (suggesting high vulnerability), and second growth spurt
around the age of 2, corresponds to the timing of alterations
in cortical functioning and appearance of symptoms in infants
with ASD. Understanding relations between L3N development
and functional changes of cortical activity is important in
early detection of ASD and might help to develop algorithms
as combination of functional imaging methods and focused
behavioral testing.

GENE-ENVIRONMENT INTERACTION
DURING POSTNATAL DEVELOPMENT
AFFECTS ASSOCIATIVE CIRCUITRY
ARCHITECTURE AND MAY CONTRIBUTE
TO AUTISTIC TRAITS

Architecture of the mature cortical network is determined
through complex gene-environment interactions during
intricate developmental steps (1, 260, 330, 359–365). Given the
unimaginable number of possible interactions between genes and
environment, there are large interindividual differences in the
size of particular areas, and even in internal cytoarchiteconics,
particularly within the prefrontal cortex (77, 366–368). Large
interindividual differences were found among the dendritic
structure of cortico-cortical projecting neurons in high
associative areas of the human brain, correlating with the level of
education (369). All mentioned interindividual differences point
to a strong environmental impact on cortical development.

The mechanism of developmental plasticity leading to
interindividual differences in cytoarchitectonics and neuron
morphology is related to synaptic overproduction. By activity-
dependent molecular tuning of synaptic spines, it is determined
which synapse will remain and which will be removed from
the network during the pruning process (370, 371). This
model is defined as selective stabilization hypothesis (318)
and proposes that through synaptic tuning the environment
is shaping the architecture of the neural network. The highest
degree and longest period of synaptic overproduction are so far
described for the L3N in the prefrontal cortex, particularly at
dendritic compartments (distal side branches of apical dendrite)
targeted by cortico-cortical and intra-cortical projections (285).
Altogether, psychological, educational, social and emotional
milieu has a predominant influence in reshaping circuitries which
are involved in processing the most complex cognitive functions
(29, 76, 226, 309, 332, 372–379).

Taken together, these findings suggest that human-specific
cognitive functions and circuitry specializations (1) have
foundation in interactions between genes (25, 380–382) and
environment (242, 363, 383, 384) during the period of synaptic
overproduction and pruning. In humans, the period of synaptic
overproduction and pruning is the period of the highest
magnitude of acquisitions of new knowledge. It might look
paradoxical that this occurs with a decrease in the number of
synapses, but the final functional outcome of pruning leads to
increased connectivity of the cortical network. Therefore, this
process allows humans to acquire the highest level of cognition,
but it also prolongs the vulnerability period, increasing the
chance for the formation of abnormal circuitry (296, 306, 327,
364, 385–387).

Such developmental reshaping could be an important factor
in the development of ASD, particularly in subjects with a
mild form of the autism spectrum phenotype. Recognition
that ToM deficit is a core psycho-pathological substrate of
ASD, has allowed better diagnosing of both patients with
mild impairment and individuals with atypical symptoms or
personality traits associated with ASD, which fall under the broad
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FIGURE 10 | Changes in dendritic synaptic spine density on rapid Golgi impregnated large layer IIIC and layer V pyramidal neurons in magnopyramidal area 9 of the

human prefrontal cortex from birth until 86 years of age. (A) Representative low magnification photographs of the rapid Golgi-impregnated layer IIIC and V pyramidal

cells in the dorsolateral prefrontal cortex of a 16-year-old subject. (B) Neurolucida reconstruction of layer IIIC pyramidal neuron of a 49-year-old subject, illustrating

dendrites selected for counting spines. (C) Representative high power magnification images of layer IIIC pyramidal neuron dendrites. (D) Graphs represent changes in

spine numbers per 50µm of dendritic length. The age is presented in postnatal years on a logarithmic scale. Puberty is marked by a shaded bar. Squares represent

males, circles females. P, puberty; B, birth (fourth postnatal day); m, months; y, years. Figure published by Petanjek et al. (285).

autism phenotype (388–390). It is possible that the “pathological”
substrate can be found only in the circuitry architecture, without
any structural or molecular impairment of neurons and their
pathways. In line with this possibility is a higher incidence of
ASD in school rather than preschool children (391), suggesting
that in some cases, “autistic” circuitry architecture is established
through late childhood, or even adolescence (103, 392, 393).
So, the broad or subthreshold autism spectrum conditions,
could be used as a model to understand trajectories of “nature-
nurture” interactions, guiding neurodevelopment toward, or
away from ASD.

We propose that in such individuals, the emotional and
psycho-social environment during infancy and childhood is
crucial for the appearance of ASD or autistic traits (387, 394,
395). Vice versa, in individuals with genetic backgrounds to
develop ASD or autistic traits, this opens a huge window of
opportunity for cognitive rehabilitation, particularly considering
the highly extended period of circuitry reorganization in the
human prefrontal cortex. At an epidemiological level, mild and
atypical cases should be far more numerous then serious cases of
ASD, and are therefore of much higher societal impact. Second,
enhanced emotional and psychological interaction in infants
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and children, have been shown to have a stimulating effect
on the development of ToM (396, 397), suggesting that those
with mild symptomatology and subtle alterations in circuitry
organization have a greater chance for a positive outcome of early
intervention (398).

OVERVIEW OF REPORTED CORTICAL
NEURONAL PATHOLOGY IN AUTISM

Despite pathological changes observed in the cerebellum,
amygdala and brainstem (399–402), imaging data and studies
on post-mortem material are implying that cerebral cortex
circuitries are the most plausible candidate to produce core
deficits of autism. However, specific cortical neuronal alterations
are yet to be described and present data are often contradictory.
Some ASD cases have reduced neuronal cell body size but
increased number of minicolumns and increased neuronal
density (403, 404). These findings suggest an increased number of
neurons in frontal, temporal and parietal regions of ASD cortices
(405, 406). In other ASD cases, neuron numbers and density were
unchanged (407), while some have a reduction in the number
of neurons (408). Cellular patches were found in prefrontal and
temporal cortices of ASD patients, while again no change in in
neuron density was described (409).

Cell body size was unaltered in the dorsolateral medial
prefrontal cortex (405), superior temporal gyrus (407), anterior
cingulate cortex (410), hippocampus (411), and amygdala (412).
Smaller cell size was found in cortical regions with identified
minicolumnar pathologies in ASD, i.e., frontal regions (403, 406,
413), as well as primary motor, sensory and visual cortices (414).
In the fusiform gyrus (415), hippocampus (416) and portions
of the anterior cingulate cortex (417, 418), smaller neuron cell
bodies of varying types have also been reported. These changes in
cell body size are considered to be present in preadolescent stages
between ASD and controls, and this effect becomes diminished
later on (400, 410). Importantly, changes in cell body size are
usually related with changes in dendritic morphology. However,
Golgi studies on ASD neocortices, showed that there is no
dendritic pathology in neocortical pyramidal and non-pyramidal
neurons (411, 419), but increased density of dendritic spines was
found in layer II of temporal, parietal and frontal region (420).
Higher spine density suggests impaired synaptic pruning, and is
correlated to decreased brain weight and lower levels of cognitive
functioning in ASD (164, 421–424).

Reduction in neuronal size and loss of neurons in ASD
suggests a bias in connectional abnormalities present in multiple
areas of the association cortex, specifically within layers that are
involved in long-range connectivity (406, 414). The alteration of
neuronal classes essential to these circuitries is expected to be
the main correlate of altered cognitive processing. In line with
that, it was suggested that the total number of a special neuronal
subtypes found only in species with highly developed social
cognition, von Economo spindle cells, is decreased in autism, but
stereological analysis in the frontal part of the insula could not
confirm that assumption (425).

Based on the level of gene expression, a reduced number
of distinct cell subtypes in layers IV and V, the calbindin and
parvalbumin neurons, was suggested (426, 427). So far the
only neuron-specific pathology documented histologically in
ASD is a decreased number of parvalbumin interneurons in
medial prefrontal cortex (428). Parvalbumin expressing cortical
neurons provide inhibitory input to cortico-cortical projecting
principal cells (429–431). The temporal pattern of change in axon
terminals of parvalbumin interneurons parallels the changes in
dendritic spine density on layer III principal cells (206, 432).
The chandelier subpopulation of parvalbumin neurons, which
is projecting to axon initial segment of principal neurons, is
found to be affected in prefrontal cortex of ASD subjects (433).
Therefore, decreased number of parvalbumin neurons in ASD
may be related to alterations of postnatal refinements in cortical
circuitry related with associative pyramidal neurons.

In conclusion, despite no direct evidence of L3N pathology in
ASD being found, already mentioned findings that in ASD there
is a higher spine density in layer II (420), could suggest an altered
synaptic pruning of projections arising from associative L3N.

DISCLOSURE OF PRE-EXISTING LESION
THROUGH LATE MATURATION OF
ASSOCIATIVE NEURONS IN AUTISM

In this manuscript we present an interesting observation
about neuron pathology of an ASD case from Zagreb’s
Neuroembryological Collection (434–436), and evaluate the
possibility that appearance of ASD symptoms is correlated
with maturation of associative L3N during early childhood, but
without disruption of their development.

We performed an in depth analysis of brain tissue from a 23-
year-old female with ASD (based on DSM-III-R criteria) (437),
with mild intellectual disability and epilepsy. We did not observe
changes in the brain’s gross morphology, cytoarchitectonic
structure, nor expression of non-phosphorylated-neurofilament
H (SMI32) which is highly expressed in L3N (Figure 11).
Unchanged intensity of neurofilament staining (81, 438)
suggests normal axonal development of associative neurons.
On rapid Golgi impregnated sections of prefrontal cortex
(Brodmann area 9), primary motor cortex (Brodmann area
4) and primary visual cortex (Brodmann area 17), we did
not observe changes in dendritic size or in spine density of
L3N or other classes of principal neurons. However, a small
fraction of neurons in the layer II and upper part of layer
III in the analyzed areas exhibited abnormalities of dendritic
morphology (Figure 12).

Alongside well developed and regularly oriented principal
neurons, a subset of neurons in layers II/IIIA had spiny
dendrites, whose morphology resembled those of immature
principal cells (Figure 13A). Such dendritic morphology with
low spine density is characteristic for developing principal
neurons at initial stages of their dendritic differentiation.
Developing neurons with similar morphology are found
in the neocortex of healthy neonates (Figure 13B), but
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FIGURE 11 | Neurofilament staining (SMI32) in neocortex of adult female with autism. Pattern of SMI32 immunostaining counterstained with Giemsa in the prefrontal

area 9 (A), primary motor area 4 (B) and primary visual area 17 (C), in a 21-year-old autistic female with a comorbidity in the form of epilepsy and intellectual disability

(according to DSMIII classification). The analyzed material is a part of Zagreb’s Neuroembryiological Collection (434–436). The distribution, density and level of

neurofilament (SMI32) expression did not differ from normative control (81, 438), and no obvious disruption of cytoarchitecture was observed (68, 266). SMI32 stained

sections were compared to normative control specimens obtained from the Zagreb Neuroembryological Collection, which includes 29 specimens, with an age span of

19 to 57 years.

not later on. Since only part of the neurons had the
immature dendritic morphology (Figures 13C,D) (204, 439,
440), we concluded that in the analyzed subject a selective
fraction of cortico-cortically projecting neurons is affected.
In particular, layer II and upper part of layer III contain
cortico-cortical neurons that have relatively short axons, and
participated in local microcircuits between neighboring areas
(44, 74, 441–445).

Thus, their abnormal development in ASD may be a result of
harmful events (including those induced genetically) occurring

during the perinatal period. In this manner, development of
microcircuitries established by short cortico-cortical neurons
would be stalled at the neonatal stage. Importantly, this
neuron class is not expected to go through distinct structural
complexification after the first year. Therefore, we hypothesed
that they will achieve adult structure by the age of 1, but
full functional capacity will be achieved through maturation
of associative neurons and related circuitries during early
childhood (2–6 years). By having subtle alterations of the
short cortico-cortical network, first symptoms, in general,
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FIGURE 12 | Reconstructions of rapid Golgi impregnated principal neurons in the neocortex of an adult female with autism. Neurons are marked in order of their

laminar position: atypical pyramid-like cells (A–C) and typical pyramidal cells in analyzed neocortices were shown: layer II (D), layer IIIA/B pyramidal cells (E), layer IIIC

pyramidal cells in prefrontal cortex (F), giant Betz pyramidal cells in layer V of motor cortex (G), small pyramidal cells of layer V (H) and large Meynert pyramidal cells of

layer V/VI in area striata (I). Atypical pyramid-like cells (A–C) were mainly located in the layer II, and some in the layer IIIA, but not in any other layers. They have oval

cell bodies with bipolar orientation of dendrites, low spine density, and axons directed toward white matter. Such cell types were not observed in Golgi sections of a

normal, adult human cerebral cortex. Golgi sections from this case were compared to 29 rapid Golgi stained specimens, with an age span of 19 to 57 years. No other

qualitative signs of dendritic, nor spine pathology and density could be found on rapid Golgi slices, and morphology, cell body size, dendritic extent, and complexity

(D–I) corresponded to pyramidal neurons of the same laminar position in an aged-matched controls.

would not appear before final maturation of local intracortical
connections which occur later during childhood. It means
that development of L3N and their projections in ASD
could take a fully regular course, but may trigger appearance
of symptoms.

Neurodevelopmental model with early structural lesions
and a delayed appearance of symptoms is already established
for schizophrenia (385, 446). Typical schizophrenia symptoms
occur predominantly during late adolescence or early adulthood.

Such timing is linked to massive synaptic pruning in the
prefrontal cortex that occurs as part of normal development.
So, in schizophrenia the appearance of symptoms is not a result
of disrupted development at that time (90, 99, 447, 448).
In fact, events occurring through the course of regular
development are a trigger which may cause an already
present, but for a long time asymptomatic impairment, to
become eminent. Direct evidence for such a hypothesis
comes from patients with metachromatic leukodystrophy,
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FIGURE 13 | Microphotography of rapid Golgi sections in the prefrontal cortex of an adult female with autism, compared to a normal 1-month-old infant. On low

power microphotography of layer II/IIIA in the prefrontal cortex of a 21-year-old autistic female, numerous bipolar—pyramid-like cells were found (A). In the prefrontal

cortex of a normal 1-month old infant (B), numerous neurons with similar morphology were found in the same position (arrows). High power microphotography shows

layer II bipolar-pyramid like cells in the analyzed subject (C). Note that dendrites had spines, but their density was low. Upper dendrites were directed to the layer I,

resembling apical dendrite morphology. On the other pole, two dendrites resembled basal dendrite morphology. An axon arose from one of those dendrites and was

directed to the white matter. In the prefrontal cortex of a newborn infant, immature pyramidal neurons with similar morphology are found (D). In the adult autistic

subject neuron morphology of spiny bipolar neurons regarding cell body shape, and dendritic complexity is similar only larger when compared to healthy neonate. The

presented material is a part of Zagreb’s Neuroembryological Collection, which also includes normative control specimens of 31 rapid Golgi specimens, lifespan from

infant to adolescent. Scale bar indicates 100µm (A,B) and 20µm (C,D).

a disorder characterized by demyelination present at birth.
The lesion remains without exacerbation up until late
adolescence, when a schizophrenia-like psychosis will emerge
(449, 450). So, a fixed “lesion” from earlier in development
has been silent for decades, and interacts with normal brain
maturational events that manifest much later in life. Despite
the causative process not being obvious, it is still present
long before the symptoms appear and any diagnosis is made
(327, 360, 451–454).

DEVELOPMENT OF ASSOCIATIVE
NEURONS DURING CHILDHOOD AND
RELATION TO ASD SYMPTOMS: ALTERED
DEVELOPMENT OR TRIGGER FOR
PRE-EXISTING LESION?

In this manuscript, we hypothesize that selective alteration of a
specific subset of principal neurons could lead to global changes
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FIGURE 14 | Proposed developmental models of cortico-cortical neuron alterations in autism: schematic representation of changes in dendritic morphology of layer III

in the human prefrontal cortex during the early postnatal period (newborn–3 months) and around the second year (16–30 months). (A) In a typically developing infant,

associative neurons undergo intensive dendritic differentiation during the first 3 postnatal months, whereas other classes of cortico-cortical projecting neurons,

undergo major dendritic growth later during their first postnatal year. A late, second growth spurt, with large dendritic elongation in the period from 18–30 months, is

so far described only in associative neurons. We propose that maturation of associative neurons during early childhood (1.5–6 years), plays a major role in global,

functional changes of the cortical network, related with tremendous cognitive development. (B) Disrupted development of associative neurons (red), around age of 2,

does not allow enhancement in inter-columnar and inter-areal connectivity, leading to cortical network impairment. Development of associative neurons does not have

to be disrupted (C,D). There might be a preexisting (perinatal) alteration, in a subset of short cortico-cortical neurons (red) that would become evident around the age

of 2, during typical maturation of intra-cortical connections established by associative neurons. (C) In the case of mild perinatal disruption of short cortico-cortical

neurons, the lesion would remain functionally silent until late differentiation of associative neurons, whereas in (D) cases where alterations are more robust,

comorbidities in form of neurological, and intellectual impairment, manifest earlier. We suggest that alteration can be present in various forms thus creating many

phenotypes of ASD.

in cortical network connectivity. We applied this model to the
ASD and social (pragmatic) communication disorders, which
include disrupted social and communication functioning, with
more or less severe global disconnectivity.

We propose that contrary to normally developing children
(Figure 14A), there might be a disrupted development of
inter-collumnar connectivity within the prefrontal cortex
of ASD patients, as these microciruitries undergo intensive
maturation in the period between 2 and 6 years when ASD
manifests. Associative L3N, which are the main source
of local excitatory cortico-cortical connections, and are
thus responsible for inter-columnar connectivity, undergo
intensive structural and molecular changes during the same
time (Figure 14B). Disrupted maturation of intracortical
connectivity may then consequently alter outputs from

the prefrontal cortex. The severity of this pathology would
depend on the extent and timing of disruption within
those microcircuitries.

Lacking evidence for structural pathology of the L3N in
ASD both in our reported case and overall in the literature,
opens the possibility that differentiation of this neuron class
takes a regular course. Thus, their developmental incorporation
into maturing circuits during childhood will reveal a pre-
existing (perinatal) lesion in other neuronal classes and
microciruitries. Despite regular development of intracortical
connections during the second year, and throughout the rest
of early childhood, the cortical network will not be able
to reach a new/higher level of information processing, as
there is a pre-existing alteration in other classes of projection
neurons, e.g., a subset of cortico-cortical neurons with short
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projections. We propose that in the case of a more subtle
disruption of neurons, which are a source of short cortico-
cortical circuitries, the lesion remains fully silent until the
age of 2 (Figure 14C), whereas in the case of more robust
alteration, neurological, and intellectual comorbidity may appear
earlier (Figure 14D).

These two proposed models are also not mutually exclusive.
Direct alteration of L3N or “disclosure” of pre-existing lesions
on other neuronal classes during differentiation of associative
neurons around the age of 2, could be present in different
phenotypes of ASD, or even act at the same time (455, 456).

The important concept in understanding the mechanism
of ASD is gene-environment interaction in shaping the
architecture of the developing neuronal network (457, 458).
The environmental factor may induce or prevent appearance of
the ASD pathological functioning, like infection, malnutrition,
toxins, or vascular insult (227, 354, 356, 459–462).

While not specifically recognized yet, structural andmolecular
alteration of mirocircuitry is clearly related with ASD, but in
the subthreshold autism phenotype there might be “autistic
architecture” of the cortical network, without evident structural
or molecular pathology. It is intriguing that in such conditions,
psychosocial ambience is exclusively related with appearance
of autistic traits, particularly taking into consideration that
associative and intracortical circuitries have the highest rate,
and most protracted period of synaptic overproduction. Finally,
the protracted period of highly plastic circuits involved in ASD
pathology opens a new potential in rehabilitation strategies,
particularly if early clinical detection approaches are applied
(348, 351, 358, 463–472).
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37. Kostović I, Judaš M. Embryonic and Fetal Development of the Human
Cerebral Cortex. In: Toga AW, editor. Brain Mapping - An Encyclopedic

Reference. London: Academic Press. (2015). p. 167–77.
38. Elston GN, Benavides-Piccione R, Elston A, Zietsch B, Defelipe J, Manger

P, et al. Specializations of the granular prefrontal cortex of primates:
implications for cognitive processing. Anat Rec A Discov Mol Cell Evol Biol.
(2006) 288:26–35. doi: 10.1002/ar.a.20278

39. Shepherd GM. The microcircuit concept applied to cortical evolution:
from three-layer to six-layer cortex. Front Neuroanat. (2011) 5:30.
doi: 10.3389/fnana.2011.00030

40. Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Lewis DA.
Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal
cortex. J Neurophysiol. (2012) 108:595–609. doi: 10.1152/jn.00859.2011

41. Buckner RL, Krienen FM. The evolution of distributed association
networks in the human brain. Trends Cogn Sci. (2013) 17:648–65.
doi: 10.1016/j.tics.2013.09.017

42. Goulas A, Bastiani M, Bezgin G, Uylings HB, Roebroeck A, Stiers P.
Comparative analysis of the macroscale structural connectivity in the
macaque and human brain. PLoS Comput Biol. (2014) 10:e1003529.
doi: 10.1371/journal.pcbi.1003529

43. Zhong JD, Rifkin-Graboi A, Ta AT, Yap KL, Chuang KH, Meaney MJ,
et al. Functional networks in parallel with cortical development associate
with executive functions in children. Cereb Cortex. (2014) 24:1937–47.
doi: 10.1093/cercor/bht051

44. Barbas H. General cortical and special prefrontal connections: principles
from structure to function. Annu Rev Neurosci. (2015) 38:269–89.
doi: 10.1146/annurev-neuro-071714-033936

45. Hage SR, Nieder A. Dual neural network model for the evolution
of speech and language. Trends Neurosci. (2016) 39:813–29.
doi: 10.1016/j.tins.2016.10.006

46. Wendelken C, Ferrer E, Whitaker KJ, Bunge SA. Fronto-parietal network
reconfiguration supports the development of reasoning ability. Cereb Cortex.
(2016) 26:2178–90. doi: 10.1093/cercor/bhv050

47. Krongold M, Cooper C, Bray S. Modular development of cortical gray
matter across childhood and adolescence. Cereb Cortex. (2017) 27:1125–36.
doi: 10.1093/cercor/bhv307

48. Guzman GEC, Sato JR, Vidal MC, Fujita A. Identification of alterations
associated with age in the clustering structure of functional brain networks.
PLoS ONE. (2018) 13:e0195906. doi: 10.1371/journal.pone.0195906

49. Groenewegen HJ, Uylings HB. The prefrontal cortex and the integration of
sensory, limbic and autonomic information. Prog Brain Res. (2000) 126:3–28.
doi: 10.1016/S0079-6123(00)26003-2

50. Schoenemann PT, Sheehan MJ, Glotzer LD. Prefrontal white matter volume
is disproportionately larger in humans than in other primates. Nat Neurosci.
(2005) 8:242–52. doi: 10.1038/nn1394

51. Teffer K, Semendeferi K. Human prefrontal cortex: Evolution, development,
and pathology. In: Hofman MA, Falk D, editors. Evolution of the Primate

Brain: From Neuron to Behavior. Oxford: Elsevier (2012). p. 191–218.
52. Barbas H, Garcia-Cabezas MA. How the prefrontal executive got its stripes.

Curr Opin Neurobiol. (2016) 40:125–34. doi: 10.1016/j.conb.2016.07.003
53. Snow PJ. The structural and functional organization of cognition. Front Hum

Neurosci. (2016) 10:501. doi: 10.3389/fnhum.2016.00501
54. Teffer K, Buxhoeveden DP, Stimpson CD, Fobbs AJ, Schapiro SJ, Baze WB,

et al. Developmental changes in the spatial organization of neurons in the
neocortex of humans and common chimpanzees. J Compar Neurol. (2013)
521:4249–59. doi: 10.1002/cne.23412

55. Petanjek Z, Judas M, Kostovic I, Uylings HB. Lifespan alterations of
basal dendritic trees of pyramidal neurons in the human prefrontal
cortex: a layer-specific pattern. Cereb Cortex. (2008) 18:915–29.
doi: 10.1093/cercor/bhm124

56. Sedmak D, Hrvoj-Mihic B, Dzaja D, Habek N, Uylings HB, Petanjek
Z. Biphasic dendritic growth of dorsolateral prefrontal cortex associative
neurons and early cognitive development. Croat Med J. (2018) 59:189–202.
doi: 10.3325/cmj.2018.59.189

57. Poggi G, Boretius S, Mobius W, Moschny N, Baudewig J, Ruhwedel T, et al.
Cortical network dysfunction caused by a subtle defect of myelination. Glia.
(2016) 64:2025–40. doi: 10.1002/glia.23039

Frontiers in Psychiatry | www.frontiersin.org 22 March 2019 | Volume 10 | Article 122

https://doi.org/10.1159/000365409
https://doi.org/10.1126/science.aap8757
https://doi.org/10.1503/jpn.170094
https://doi.org/10.1002/wcs.1232
https://doi.org/10.1016/0166-2236(95)93939-U
https://doi.org/10.3389/fpsyg.2015.01610
https://doi.org/10.1017/S0140525X16001618
https://doi.org/10.1002/dev.21125
https://doi.org/10.1136/adc.48.10.757
https://doi.org/10.1371/journal.pone.0018746
https://doi.org/10.1126/science.aar2578
https://doi.org/10.1073/pnas.1323099111
https://doi.org/10.1093/scan/nss113
https://doi.org/10.1093/cercor/bhu214
https://doi.org/10.1016/j.dcn.2016.01.005
https://doi.org/10.1093/cercor/bhw022
https://doi.org/10.1093/cercor/bhx249
https://doi.org/10.1093/cercor/bhq191
https://doi.org/10.1016/B978-0-444-53860-4.00004-0
https://doi.org/10.1073/pnas.1201894109
https://doi.org/10.1016/B978-0-444-53860-4.00011-8
https://doi.org/10.1038/nrn3372
https://doi.org/10.1002/ar.a.20278
https://doi.org/10.3389/fnana.2011.00030
https://doi.org/10.1152/jn.00859.2011
https://doi.org/10.1016/j.tics.2013.09.017
https://doi.org/10.1371/journal.pcbi.1003529
https://doi.org/10.1093/cercor/bht051
https://doi.org/10.1146/annurev-neuro-071714-033936
https://doi.org/10.1016/j.tins.2016.10.006
https://doi.org/10.1093/cercor/bhv050
https://doi.org/10.1093/cercor/bhv307
https://doi.org/10.1371/journal.pone.0195906
https://doi.org/10.1016/S0079-6123(00)26003-2
https://doi.org/10.1038/nn1394
https://doi.org/10.1016/j.conb.2016.07.003
https://doi.org/10.3389/fnhum.2016.00501
https://doi.org/10.1002/cne.23412
https://doi.org/10.1093/cercor/bhm124
https://doi.org/10.3325/cmj.2018.59.189
https://doi.org/10.1002/glia.23039
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Petanjek et al. Layer IIIC Pyramidal Neurons in Autism

58. Espinoza FA, Vergara VM, Reyes D, Anderson NE, Harenski CL, Decety
J, et al. Aberrant functional network connectivity in psychopathy from a
large (N = 985) forensic sample. Hum Brain Mapp. (2018) 39:2624–34.
doi: 10.1002/hbm.24028

59. Zikopoulos B, Garcia-Cabezas MA, Barbas H. Parallel trends in cortical gray
and white matter architecture and connections in primates allow fine study
of pathways in humans and reveal network disruptions in autism. PLoS Biol.
(2018) 16:e2004559. doi: 10.1371/journal.pbio.2004559

60. Schwartz ML, Goldman-Rakic PS. Single cortical neurones have axon
collaterals to ipsilateral and contralateral cortex in fetal and adult primates.
Nature. (1982) 299:154–5. doi: 10.1038/299154a0

61. Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL. Parallel organization
of contralateral and ipsilateral prefrontal cortical projections in the rhesus
monkey. BMC Neurosci. (2005) 6:32. doi: 10.1186/1471-2202-6-32

62. Barbas H, Pandya DN. Architecture and intrinsic connections of the
prefrontal cortex in the rhesus monkey. J Comp Neurol. (1989) 286:353–75.
doi: 10.1002/cne.902860306

63. Kritzer MF, Goldman-Rakic PS. Intrinsic circuit organization of the major
layers and sublayers of the dorsolateral prefrontal cortex in the rhesus
monkey. J Comp Neurol. (1995) 359:131–43. doi: 10.1002/cne.903590109

64. Melchitzky DS, Gonzalez-Burgos G, Barrionuevo G, Lewis DA. Synaptic
targets of the intrinsic axon collaterals of supragranular pyramidal
neurons in monkey prefrontal cortex. J Comp Neurol. (2001) 430:209–21.
doi: 10.1002/1096-9861(20010205)430:2<209::AID-CNE1026>3.0.CO;2-%23

65. Hladnik A, Dzaja D, Darmopil S, Jovanov-Milosevic N, Petanjek Z. Spatio-
temporal extension in site of origin for cortical calretinin neurons in
primates. Front Neuroanat. (2014) 8:50. doi: 10.3389/fnana.2014.00050

66. Džaja D, Hladnik A, Bicanic I, Bakovic M, Petanjek Z. Neocortical calretinin
neurons in primates: increase in proportion and microcircuitry structure.
Front Neuroanat. (2014) 8:103. doi: 10.3389/fnana.2014.00103

67. Uylings HB, Van Eden CG. Qualitative and quantitative comparison of the
prefrontal cortex in rat and in primates, including humans. Prog Brain Res.
(1990) 85:31–62. doi: 10.1016/S0079-6123(08)62675-8

68. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. The prefrontal cortex:
comparative architectonic organization in the human and the macaque
monkey brains. Cortex. (2012) 48:46–57. doi: 10.1016/j.cortex.2011.07.002

69. Hrvoj-Mihic B, Bienvenu T, Stefanacci L, Muotri AR, Semendeferi K.
Evolution, development, and plasticity of the human brain: from molecules
to bones. Front Hum Neurosci. (2013) 7:707. doi: 10.3389/fnhum.2013.00707

70. Wang GZ, Konopka G. Differential functional constraints on the evolution
of postsynaptic density proteins in neocortical laminae. PLoS ONE. (2012)
7:e39686. doi: 10.1371/journal.pone.0039686

71. Krienen FM, Yeo BTT, Ge T, Buckner RL, Sherwood CC. Transcriptional
profiles of supragranular-enriched genes associate with corticocortical
network architecture in the human brain. Proc Natl Acade Sci USA. (2016)
113:E469–78. doi: 10.1073/pnas.1510903113

72. Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, Lodder BN,
et al. Dendritic and axonal architecture of individual pyramidal neurons
across layers of adult human neocortex. Cereb Cortex. (2015) 25:4839–53.
doi: 10.1093/cercor/bhv188

73. Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE,
Anderson SM, et al. Neuropil distribution in the cerebral cortex differs
between humans and chimpanzees. J Comp Neurol. (2012) 520:2917–29.
doi: 10.1002/cne.23074

74. Fuster J. The Prefrontal Cortex. London; Burlington, NJ; San Diego:
Academic Press (2008). doi: 10.1016/B978-0-12-373644-4.00002-5

75. Donahue CJ, Glasser MF, Preuss TM, Rilling JK, Van Essen DC. Quantitative
assessment of prefrontal cortex in humans relative to nonhuman primates.
Proc Natl Acad Sci USA. (2018) 115:E5183–92. doi: 10.1073/pnas.1721653115

76. Werchan DM, Amso D. A novel ecological account of prefrontal
cortex functional development. Psychol Rev. (2017) 124:720–39.
doi: 10.1037/rev0000078

77. Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of
prefrontal areas in the normal human cortex: I. Remapping of areas
9 and 46 using quantitative criteria. Cereb Cortex. (1995) 5:307–22.
doi: 10.1093/cercor/5.4.307

78. Kostovic I, Skavic J, Strinovic D. Acetylcholinesterase in the human frontal
associative cortex during the period of cognitive development: early laminar

shifts and late innervation of pyramidal neurons. Neurosci Lett. (1988)
90:107–12. doi: 10.1016/0304-3940(88)90795-1

79. Mesulam MM, Geula C. Acetylcholinesterase-rich neurons of the human
cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution.
J Comp Neurol. (1991) 306:193–220. doi: 10.1002/cne.903060202

80. Mrzljak L, Goldman-Rakic PS. Acetylcholinesterase reactivity in the frontal
cortex of human and monkey: contribution of AChE-rich pyramidal
neurons. J Comp Neurol. (1992) 324:261–81. doi: 10.1002/cne.903240208

81. Hof PR, Nimchinsky EA, Morrison JH. Neurochemical phenotype of
corticocortical connections in the macaque monkey: quantitative analysis
of a subset of neurofilament protein-immunoreactive projection neurons
in frontal, parietal, temporal, and cingulate cortices. J Comp Neurol. (1995)
362:109–33. doi: 10.1002/cne.903620107

82. Koenderink MJT. (1996). Postnatal Neuronal Maturation of the

Human Prefrontal Cortex. [dissertation thesis]. Amsterdam, NL: Vrije
Universiteit Amsterdam.

83. Geyer S, Zilles K, Luppino G, Matelli M. Neurofilament protein distribution
in the macaque monkey dorsolateral premotor cortex. Eur J Neurosci. (2000)
12:1554–66. doi: 10.1046/j.1460-9568.2000.00042.x

84. Hof PR, Sherwood CC. Morphomolecular neuronal phenotypes in the
neocortex reflect phylogenetic relationships among certain mammalian
orders. Anat Rec A Discov Mol Cell Evol Biol. (2005) 287:1153–63.
doi: 10.1002/ar.a.20252

85. Campbell MJ, Hof PR, Morrison JH. A subpopulation of primate
corticocortical neurons is distinguished by somatodendritic
distribution of neurofilament protein. Brain Res. (1991) 539:133–6.
doi: 10.1016/0006-8993(91)90695-R

86. Goldman-Rakic PS. The “psychic” neuron of the cerebral cortex. Ann N Y

Acad Sci. (1999) 868:13–26. doi: 10.1111/j.1749-6632.1999.tb11270.x
87. Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS.

Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat
Neurosci. (2006) 9:534–42. doi: 10.1038/nn1670

88. Verduzco-Flores S, Bodner M, Ermentrout B, Fuster JM, Zhou Y.
Working memory cells’ behavior may be explained by cross-regional
networks with synaptic facilitation. PLoS ONE. (2009) 4:e6399.
doi: 10.1371/journal.pone.0006399

89. Elston GN, Benavides-Piccione R, Elston A, Manger PR, Defelipe J.
Pyramidal cells in prefrontal cortex of primates: marked differences
in neuronal structure among species. Front Neuroanat. (2011) 5:2.
doi: 10.3389/fnana.2011.00002

90. Hoftman GD, Datta D, Lewis DA. Layer 3 excitatory and inhibitory
circuitry in the prefrontal cortex: developmental trajectories and
alterations in schizophrenia. Biol Psychiat. (2017) 81:862–73.
doi: 10.1016/j.biopsych.2016.05.022

91. Hof PR, Cox K, Morrison JH. Quantitative analysis of a vulnerable
subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal
and inferior temporal cortex. J Comp Neurol. (1990) 301:44–54.
doi: 10.1002/cne.903010105

92. Belichenko PV, Hagberg B, Dahlstrom A. Morphological study of
neocortical areas in Rett syndrome. Acta Neuropathol. (1997) 93:50–61.
doi: 10.1007/s004010050582

93. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal
cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. (2000)
57:65–73. doi: 10.1001/archpsyc.57.1.65

94. Schwarcz R, Eid T, Du F. Neurons in layer III of the entorhinal cortex. A
role in epileptogenesis and epilepsy? Ann N Y Acad Sci. (2000) 911:328–42.
doi: 10.1111/j.1749-6632.2000.tb06735.x

95. Dorph-Petersen KA, Delevich KM, Marcsisin MJ, Zhang W, Sampson AR,
Gundersen HJ, et al. Pyramidal neuron number in layer 3 of primary
auditory cortex of subjects with schizophrenia. Brain Res. (2009) 1285:42–57.
doi: 10.1016/j.brainres.2009.06.019

96. Glausier JR, Lewis DA. Selective pyramidal cell reduction of GABA(A)
receptor alpha1 subunit messenger RNA expression in schizophrenia.
Neuropsychopharmacology. (2011) 36:2103–10. doi: 10.1038/npp.20
11.102

97. Kana RK, Libero LE, Moore MS. Disrupted cortical connectivity theory as
an explanatory model for autism spectrum disorders. Phys Life Rev. (2011)
8:410–37. doi: 10.1016/j.plrev.2011.10.001

Frontiers in Psychiatry | www.frontiersin.org 23 March 2019 | Volume 10 | Article 122

https://doi.org/10.1002/hbm.24028
https://doi.org/10.1371/journal.pbio.2004559
https://doi.org/10.1038/299154a0
https://doi.org/10.1186/1471-2202-6-32
https://doi.org/10.1002/cne.902860306
https://doi.org/10.1002/cne.903590109
https://doi.org/10.1002/1096-9861(20010205)430:2<209::AID-CNE1026>3.0.CO;2-%23
https://doi.org/10.3389/fnana.2014.00050
https://doi.org/10.3389/fnana.2014.00103
https://doi.org/10.1016/S0079-6123(08)62675-8
https://doi.org/10.1016/j.cortex.2011.07.002
https://doi.org/10.3389/fnhum.2013.00707
https://doi.org/10.1371/journal.pone.0039686
https://doi.org/10.1073/pnas.1510903113
https://doi.org/10.1093/cercor/bhv188
https://doi.org/10.1002/cne.23074
https://doi.org/10.1016/B978-0-12-373644-4.00002-5
https://doi.org/10.1073/pnas.1721653115
https://doi.org/10.1037/rev0000078
https://doi.org/10.1093/cercor/5.4.307
https://doi.org/10.1016/0304-3940(88)90795-1
https://doi.org/10.1002/cne.903060202
https://doi.org/10.1002/cne.903240208
https://doi.org/10.1002/cne.903620107
https://doi.org/10.1046/j.1460-9568.2000.00042.x
https://doi.org/10.1002/ar.a.20252
https://doi.org/10.1016/0006-8993(91)90695-R
https://doi.org/10.1111/j.1749-6632.1999.tb11270.x
https://doi.org/10.1038/nn1670
https://doi.org/10.1371/journal.pone.0006399
https://doi.org/10.3389/fnana.2011.00002
https://doi.org/10.1016/j.biopsych.2016.05.022
https://doi.org/10.1002/cne.903010105
https://doi.org/10.1007/s004010050582
https://doi.org/10.1001/archpsyc.57.1.65
https://doi.org/10.1111/j.1749-6632.2000.tb06735.x
https://doi.org/10.1016/j.brainres.2009.06.019
https://doi.org/10.1038/npp.2011.102
https://doi.org/10.1016/j.plrev.2011.10.001
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Petanjek et al. Layer IIIC Pyramidal Neurons in Autism

98. Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and
inhibitory cortical circuits in autism. Front Hum Neurosci. (2013) 7:609.
doi: 10.3389/fnhum.2013.00609

99. Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, et al.
Rethinking schizophrenia in the context of normal neurodevelopment. Front
Cell Neurosci. (2013) 7:60. doi: 10.3389/fncel.2013.00060

100. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia.
Neuroscience. (2013) 251:90–107. doi: 10.1016/j.neuroscience.2012.04.044

101. Mitchell P. Introduction to the Theory of Mind: Children, Autism and Apes.
New York, NY: Oxford University Press Inc (1997).

102. Frith CD, Frith U. Mechanisms of social cognition. Annu Rev Psychol. (2012)
63:287–313. doi: 10.1146/annurev-psych-120710-100449

103. Peterson CC, Wellman HM. Longitudinal Theory of Mind (ToM)
development from preschool to adolescence with and without ToM delay.
Child Dev. (2018). doi: 10.1111/cdev.13064

104. Colonnesi C, Rieffe C, Koops W, Perucchini P. Precursors of a theory
of mind: a longitudinal study. Br J Dev Psychol. (2008) 26:561–77.
doi: 10.1348/026151008X285660

105. Upshaw MB, Sommerville JA. Twelve-month-old infants anticipatorily plan
their actions according to expected object weight in a novel motor context.
Front Public Health. (2015) 3:32. doi: 10.3389/fpubh.2015.00032

106. Schieler A, Koenig M, Buttelmann D. Fourteen-month-olds selectively
search for and use information depending on the familiarity of the informant
in both laboratory and home contexts. J Exp Child Psychol. (2018) 174:112–
29. doi: 10.1016/j.jecp.2018.05.010

107. Knudsen B, Liszkowski U. Eighteen- and 24-month-old infants correct
others in anticipation of action mistakes. Dev Sci. (2012) 15:113–22.
doi: 10.1111/j.1467-7687.2011.01098.x

108. Wade M, Moore C, Astington JW, Frampton K, Jenkins JM. Cumulative
contextual risk, maternal responsivity, and social cognition at 18 months.
Dev Psychopathol. (2015) 27:189–203. doi: 10.1017/S0954579414000674

109. Eggebrecht AT, Elison JT, Feczko E, Todorov A, Wolff JJ, Kandala S, et al.
Joint attention and brain functional connectivity in infants and toddlers.
Cereb Cortex. (2017) 27:1709–20. doi: 10.1093/cercor/bhw403

110. Lillard AS, Kavanaugh RD. The contribution of symbolic skills to the
development of an explicit theory of mind. Child Dev. (2014) 85:1535–51.
doi: 10.1111/cdev.12227

111. Cvencek D, Greenwald AG, Meltzoff AN. Measuring implicit attitudes of 4-
year-olds: the preschool implicit association test. J Exp Child Psychol. (2011)
109:187–200. doi: 10.1016/j.jecp.2010.11.002

112. Bowman LC, Liu D, Meltzoff AN, Wellman HM. Neural correlates of
belief- and desire-reasoning in 7- and 8-year-old children: an event-related
potential study. Dev Sci. (2012) 15:618–32. doi: 10.1111/j.1467-7687.2012.
01158.x

113. Kushnir T, Gopnik A, Chernyak N, Seiver E, Wellman HM. Developing
intuitions about free will between ages four and six. Cognition. (2015)
138:79–101. doi: 10.1016/j.cognition.2015.01.003

114. Lieberman MD. Social cognitive neuroscience: a review
of core processes. Annu Rev Psychol. (2007) 58:259–89.
doi: 10.1146/annurev.psych.58.110405.085654

115. Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of
mind: a meta-analysis of functional brain imaging studies.Neurosci Biobehav
Rev. (2014) 42:9–34. doi: 10.1016/j.neubiorev.2014.01.009

116. Grosse Wiesmann C, Schreiber J, Singer T, Steinbeis N, Friederici AD.White
matter maturation is associated with the emergence of Theory of Mind in
early childhood. Nat Commun. (2017) 8:14692. doi: 10.1038/ncomms14692

117. Thye MD, Ammons CJ, Murdaugh DL, Kana RK. Differential recruitment of
theory of mind brain network across three tasks: an independent component
analysis. Behav Brain Res. (2018) 347:385–93. doi: 10.1016/j.bbr.2018.03.041

118. Lewis JD, Evans AC, Pruett JR, Botteron K, Zwaigenbaum L, Estes A, et al.
Network inefficiencies in autism spectrum disorder at 24 months. Transl
Psychiatry. (2014) 4:e388. doi: 10.1038/tp.2014.24

119. Mehling MH, Tasse MJ. Severity of autism spectrum disorders: current
conceptualization, and transition to DSM-5. J Autism Dev Disord. (2016)
46:2000–16. doi: 10.1007/s10803-016-2731-7

120. Colle L, Baron-Cohen S, Hill J. Do children with autism have a theory of
mind? A non-verbal test of autism vs specific language impairment. J Autism
Dev Disord. (2007) 37:716–23. doi: 10.1007/s10803-006-0198-7

121. Happe FG. The role of age and verbal ability in the theory of mind
task performance of subjects with autism. Child Dev. (1995) 66:843–55.
doi: 10.2307/1131954

122. Baron-Cohen S, Jolliffe T, Mortimore C, Robertson M. Another advanced
test of theory of mind: evidence from very high functioning adults with
autism or asperger syndrome. J Child Psychol Psychiatry. (1997) 38:813–22.
doi: 10.1111/j.1469-7610.1997.tb01599.x

123. Setoh P, Scott RM, Baillargeon R. Two-and-a-half-year-olds succeed at a
traditional false-belief task with reduced processing demands. Proc Natl Acad
Sci USA. (2016) 113:13360–5. doi: 10.1073/pnas.1609203113

124. Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional
brain development in early childhood. Nat Rev Neurosci. (2018) 19:123–37.
doi: 10.1038/nrn.2018.1

125. Kana RK, Maximo JO, Williams DL, Keller TA, Schipul SE, Cherkassky
VL, et al. Aberrant functioning of the theory-of-mind network in
children and adolescents with autism. Mol Autism. (2015) 6:59.
doi: 10.1186/s13229-015-0052-x

126. Baron-Cohen S. The development of a theory of mind in autism:
deviance and delay? Psychiatr Clin North Am. (1991) 14:33–51.
doi: 10.1016/S0193-953X(18)30323-X

127. Estes A, Zwaigenbaum L, Gu H, St John T, Paterson S, Elison JT, et al.
Behavioral, cognitive, and adaptive development in infants with autism
spectrum disorder in the first 2 years of life. J Neurodev Disord. (2015) 7:24.
doi: 10.1186/s11689-015-9117-6

128. Shen MD, Piven J. Brain and behavior development in autism from birth
through infancy. Dialogues Clin Neurosci. (2017) 19:325–33.

129. Jure R, Pogonza R, Rapin I. Autism Spectrum Disorders (ASD) in blind
children: very high prevalence, potentially better outlook. J Autism Dev

Disord. (2016) 46:749–59. doi: 10.1007/s10803-015-2612-5
130. Peterson C, Slaughter V, Moore C, Wellman HM. Peer social skills and

theory of mind in children with autism, deafness, or typical development.
Dev Psychol. (2016) 52:46–57. doi: 10.1037/a0039833

131. Denmark T, Atkinson J, Campbell R, Swettenham J. Signing with the
face: emotional expression in narrative production in deaf children with
autism spectrum disorder. J Autism Dev Disord. (2018) 49:294–306.
doi: 10.1007/s10803-018-3756-x

132. Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE,
et al. Brain hyperconnectivity in children with autism and its links to social
deficits. Cell Rep. (2013) 5:738–47. doi: 10.1016/j.celrep.2013.10.001

133. Orekhova EV, Elsabbagh M, Jones EJ, Dawson G, Charman T, Johnson MH,
et al. EEG hyper-connectivity in high-risk infants is associated with later
autism. J Neurodev Disord. (2014) 6:40. doi: 10.1186/1866-1955-6-40

134. Dajani DR, Uddin LQ. Local brain connectivity across development in
autism spectrum disorder: a cross-sectional investigation.Autism Res. (2016)
9:43–54. doi: 10.1002/aur.1494

135. Solso S, Xu R, Proudfoot J, Hagler DJJr, Campbell K, Venkatraman
V, et al. Diffusion tensor imaging provides evidence of possible axonal
overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol
Psychiatry. (2016) 79:676–84. doi: 10.1016/j.biopsych.2015.06.029

136. Conti E, Mitra J, Calderoni S, Pannek K, Shen KK, Pagnozzi A, et al.
Network over-connectivity differentiates autism spectrum disorder from
other developmental disorders in toddlers: A diffusion MRI study. Hum
Brain Mapp. (2017) 38:2333–44. doi: 10.1002/hbm.23520

137. Chen H, Wang J, Uddin LQ, Wang X, Guo X, Lu F, et al. Aberrant functional
connectivity of neural circuits associated with social and sensorimotor
deficits in young children with autism spectrum disorder. Autism Res. (2018)
11:1643–52. doi: 10.1002/aur.2029

138. Carper RA, Courchesne E. Localized enlargement of the frontal
cortex in early autism. Biol Psychiatry. (2005) 57:126–33.
doi: 10.1016/j.biopsych.2004.11.005

139. Courchesne E, Pierce K. Why the frontal cortex in autism might be talking
only to itself: local over-connectivity but long-distance disconnection. Curr
Opin Neurobiol. (2005) 15:225–30. doi: 10.1016/j.conb.2005.03.001

140. Chawarska K, Campbell D, Chen L, Shic F, Klin A, Chang J. Early generalized
overgrowth in boys with autism. Arch Gen Psychiatry. (2011) 68:1021–31.
doi: 10.1001/archgenpsychiatry.2011.106

141. Hazlett HC, Poe MD, Gerig G, Styner M, Chappell C, Smith RG, et al.
Early brain overgrowth in autism associated with an increase in cortical

Frontiers in Psychiatry | www.frontiersin.org 24 March 2019 | Volume 10 | Article 122

https://doi.org/10.3389/fnhum.2013.00609
https://doi.org/10.3389/fncel.2013.00060
https://doi.org/10.1016/j.neuroscience.2012.04.044
https://doi.org/10.1146/annurev-psych-120710-100449
https://doi.org/10.1111/cdev.13064
https://doi.org/10.1348/026151008X285660
https://doi.org/10.3389/fpubh.2015.00032
https://doi.org/10.1016/j.jecp.2018.05.010
https://doi.org/10.1111/j.1467-7687.2011.01098.x
https://doi.org/10.1017/S0954579414000674
https://doi.org/10.1093/cercor/bhw403
https://doi.org/10.1111/cdev.12227
https://doi.org/10.1016/j.jecp.2010.11.002
https://doi.org/10.1111/j.1467-7687.2012.01158.x
https://doi.org/10.1016/j.cognition.2015.01.003
https://doi.org/10.1146/annurev.psych.58.110405.085654
https://doi.org/10.1016/j.neubiorev.2014.01.009
https://doi.org/10.1038/ncomms14692
https://doi.org/10.1016/j.bbr.2018.03.041
https://doi.org/10.1038/tp.2014.24
https://doi.org/10.1007/s10803-016-2731-7
https://doi.org/10.1007/s10803-006-0198-7
https://doi.org/10.2307/1131954
https://doi.org/10.1111/j.1469-7610.1997.tb01599.x
https://doi.org/10.1073/pnas.1609203113
https://doi.org/10.1038/nrn.2018.1
https://doi.org/10.1186/s13229-015-0052-x
https://doi.org/10.1016/S0193-953X(18)30323-X
https://doi.org/10.1186/s11689-015-9117-6
https://doi.org/10.1007/s10803-015-2612-5
https://doi.org/10.1037/a0039833
https://doi.org/10.1007/s10803-018-3756-x
https://doi.org/10.1016/j.celrep.2013.10.001
https://doi.org/10.1186/1866-1955-6-40
https://doi.org/10.1002/aur.1494
https://doi.org/10.1016/j.biopsych.2015.06.029
https://doi.org/10.1002/hbm.23520
https://doi.org/10.1002/aur.2029
https://doi.org/10.1016/j.biopsych.2004.11.005
https://doi.org/10.1016/j.conb.2005.03.001
https://doi.org/10.1001/archgenpsychiatry.2011.106
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Petanjek et al. Layer IIIC Pyramidal Neurons in Autism

surface area before age 2 years. Arch Gen Psychiatry. (2011) 68:467–76.
doi: 10.1001/archgenpsychiatry.2011.39

142. Abrams DA, Lynch CJ, Cheng KM, Phillips J, Supekar K, Ryali S, et al.
Underconnectivity between voice-selective cortex and reward circuitry
in children with autism. Proc Natl Acad Sci USA. (2013) 110:12060–5.
doi: 10.1073/pnas.1302982110

143. Falahpour M, Thompson WK, Abbott AE, Jahedi A, Mulvey ME,
Datko M, et al. Underconnected, but not broken? dynamic functional
connectivity MRI shows underconnectivity in autism is linked to increased
intra-individual variability across time. Brain Connect. (2016) 6:403–14.
doi: 10.1089/brain.2015.0389

144. Chen H, Nomi JS, Uddin LQ, Duan X, Chen H. Intrinsic functional
connectivity variance and state-specific under-connectivity in autism. Hum
Brain Mapp. (2017) 38:5740–55. doi: 10.1002/hbm.23764

145. Dinstein I, Pierce K, Eyler L, Solso S,Malach R, BehrmannM, et al. Disrupted
neural synchronization in toddlers with autism. Neuron. (2011) 70:1218–25.
doi: 10.1016/j.neuron.2011.04.018

146. Uddin LQ, Supekar K, Menon V. Reconceptualizing functional brain
connectivity in autism from a developmental perspective. Front Hum

Neurosci. (2013) 7:458. doi: 10.3389/fnhum.2013.00458
147. Kana RK, Uddin LQ, Kenet T, Chugani D, Muller RA. Brain connectivity in

autism. Front Hum Neurosci. (2014) 8:349. doi: 10.3389/fnhum.2014.00349
148. Vasa RA, Mostofsky SH, Ewen JB. The disrupted connectivity

hypothesis of autism spectrum disorders: time for the next phase in
research. Biol Psychiatry Cogn Neurosci Neuroimaging. (2016) 1:245–52.
doi: 10.1016/j.bpsc.2016.02.003

149. Lombardo MV, Courchesne E, Lewis NE, Pramparo T. Hierarchical
cortical transcriptome disorganization in autism. Mol Autism. (2017) 8:29.
doi: 10.1186/s13229-017-0147-7

150. Mash LE, Reiter MA, Linke AC, Townsend J, Muller RA. Multimodal
approaches to functional connectivity in autism spectrum disorders:
An integrative perspective. Dev Neurobiol. (2018) 78:456–73.
doi: 10.1002/dneu.22570

151. Muller RA, Fishman I. Brain connectivity and neuroimaging of
social networks in autism. Trends Cogn Sci. (2018) 22:1103–16.
doi: 10.1016/j.tics.2018.09.008

152. Yang DY, Beam D, Pelphrey KA, Abdullahi S, Jou RJ. Cortical morphological
markers in children with autism: a structural magnetic resonance imaging
study of thickness, area, volume, and gyrification. Mol Autism. (2016) 7:11.
doi: 10.1186/s13229-016-0076-x

153. Fingher N, Dinstein I, Ben-Shachar M, Haar S, Dale AM, Eyler L,
et al. Toddlers later diagnosed with autism exhibit multiple structural
abnormalities in temporal corpus callosum fibers.Cortex. (2017) 97:291–305.
doi: 10.1016/j.cortex.2016.12.024

154. Griebling J, Minshew NJ, Bodner K, Libove R, Bansal R, Konasale P, et al.
Dorsolateral prefrontal cortex magnetic resonance imaging measurements
and cognitive performance in autism. J Child Neurol. (2010) 25:856–63.
doi: 10.1177/0883073809351313

155. Kumar A, Sundaram SK, Sivaswamy L, Behen ME, Makki MI, Ager J,
et al. Alterations in frontal lobe tracts and corpus callosum in young
children with autism spectrum disorder. Cereb Cortex. (2010) 20:2103–13.
doi: 10.1093/cercor/bhp278

156. Catani M, Dell’acqua F, Budisavljevic S, Howells H, Thiebaut De Schotten
M, Froudist-Walsh S, et al. Frontal networks in adults with autism spectrum
disorder. Brain. (2016) 139:616–30. doi: 10.1093/brain/awv351

157. Kana RK, Patriquin MA, Black BS, Channell MM, Wicker B. Altered medial
frontal and superior temporal response to implicit processing of emotions in
autism. Autism Res. (2016) 9:55–66. doi: 10.1002/aur.1496

158. Khundrakpam BS, Lewis JD, Kostopoulos P, Carbonell F, Evans AC.
Cortical thickness abnormalities in autism spectrum disorders through late
childhood, adolescence, and adulthood: a large-scale MRI study. Cereb
Cortex. (2017) 27:1721–31. doi: 10.1093/cercor/bhx038

159. Ameis SH, Kassee C, Corbett-Dick P, Cole L, Dadhwal S, Lai MC, et al.
Systematic review and guide to management of core and psychiatric
symptoms in youth with autism. Acta Psychiatr Scand. (2018) 138:379–400.
doi: 10.1111/acps.12918

160. Dickie EW, Ameis SH, Shahab S, Calarco N, Smith DE, Miranda D,
et al. Personalized intrinsic network topography mapping and functional

connectivity deficits in autism spectrum disorder. Biol Psychiatry. (2018)
84:278–86. doi: 10.1016/j.biopsych.2018.02.1174

161. Zoghbi HY, BearMF. Synaptic dysfunction in neurodevelopmental disorders
associated with autism and intellectual disabilities. Cold Spring Harb Perspect
Biol. (2012) 4:a009886. doi: 10.1101/cshperspect.a009886

162. Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion
of spontaneous connectivity patterns in autism spectrum disorder. Nat
Neurosci. (2015) 18:302–9. doi: 10.1038/nn.3919

163. Habela CW, Song HJ, Ming GL. Modeling synaptogenesis in schizophrenia
and autism using human iPSC derived neurons. Mol Cell Neurosci. (2016)
73:52–62. doi: 10.1016/j.mcn.2015.12.002

164. Thomas MSC, Davis R, Karmiloff-Smith A, Knowland VCP, Charman
T. The over-pruning hypothesis of autism. Dev Sci. (2016) 19:284–305.
doi: 10.1111/desc.12303

165. Romero-Garcia R, Warrier V, Bullmore ET, Baron-Cohen S, Bethlehem
RAI. Synaptic and transcriptionally downregulated genes are associated
with cortical thickness differences in autism. Mol Psychiatry. (2018).
doi: 10.1038/s41380-018-0023-7. [Epub ahead of print].

166. Schwede M, Nagpal S, Gandal MJ, Parikshak NN, Mirnics K, Geschwind
DH, et al. Strong correlation of downregulated genes related to synaptic
transmission and mitochondria in post-mortem autism cerebral cortex.
J Neurodev Disord. (2018) 10:18. doi: 10.1186/s11689-018-9237-x

167. Happe F, Ehlers S, Fletcher P, Frith U, Johansson M, Gillberg C, et al. ’Theory
of mind’ in the brain. Evidence from a PET scan study of Asperger syndrome.
Neuroreport. (1996) 8:197–201. doi: 10.1097/00001756-199612200-00040

168. Goldstein G, Allen DN, Minshew NJ, Williams DL, Volkmar F, Klin A, et al.
The structure of intelligence in children and adults with high functioning
autism.Neuropsychology. (2008) 22:301–12. doi: 10.1037/0894-4105.22.3.301

169. Eilam-Stock T, Wu T, Spagna A, Egan LJ, Fan J. Neuroanatomical alterations
in high-functioning adults with autism spectrum disorder. Front Neurosci.
(2016) 10:237. doi: 10.3389/fnins.2016.00237

170. Vissers ME, Cohen MX, Geurts HM. Brain connectivity and high
functioning autism: a promising path of research that needs refined models,
methodological convergence, and stronger behavioral links. Neurosci

Biobehav Rev. (2012) 36:604–25. doi: 10.1016/j.neubiorev.2011.09.003
171. Iuculano T, Rosenberg-Lee M, Supekar K, Lynch CJ, Khouzam A,

Phillips J, et al. Brain organization underlying superior mathematical
abilities in children with autism. Biol Psychiatry. (2014) 75:223–30.
doi: 10.1016/j.biopsych.2013.06.018

172. Geschwind N, Kaplan E. A human cerebral deconnection syndrome:
a preliminary report. 1962. Neurology. (1998) 50:1201–212.
doi: 10.1212/WNL.50.5.1201-a

173. Geschwind DH, Levitt P. Autism spectrum disorders: developmental
disconnection syndromes. Curr Opin Neurobiol. (2007) 17:103–11.
doi: 10.1016/j.conb.2007.01.009

174. Geschwind N. Disconnexion syndromes in animals and man: part, I. 1965.
Neuropsychol Rev. (2010) 20:128–57. doi: 10.1007/s11065-010-9131-0

175. Xiao Z, Qiu T, Ke X, Xiao X, Xiao T, Liang F, et al. Autism spectrum
disorder as early neurodevelopmental disorder: evidence from the brain
imaging abnormalities in 2-3 years old toddlers. J Autism Dev Disord. (2014)
44:1633–40. doi: 10.1007/s10803-014-2033-x

176. Smith E, Thurm A, Greenstein D, Farmer C, Swedo S, Giedd J, et al. Cortical
thickness change in autism during early childhood.Hum Brain Mapp. (2016)
37:2616–29. doi: 10.1002/hbm.23195

177. Herringshaw AJ, Kumar SL, Rody KN, Kana RK. Neural correlates of social
perception in children with autism: local versus global preferences.
Neuroscience. (2018) 395:49–59. doi: 10.1016/j.neuroscience.2018.
10.044

178. Uylings HB, Van Pelt J, Parnavelas JG, Ruiz-Marcos A. Geometrical
and topological characteristics in the dendritic development of cortical
pyramidal and non-pyramidal neurons. Prog Brain Res. (1994) 102:109–23.
doi: 10.1016/S0079-6123(08)60535-X

179. Emoto K. Dendrite remodeling in development and disease. Dev

Growth Diff. (2011) 53:277–86. doi: 10.1111/j.1440-169X.2010.
01242.x

180. Bicanic I, Hladnik A, Petanjek Z. A quantitative golgi study of dendritic
morphology in the mice striatal medium spiny neurons. Front Neuroanat.
(2017) 11:37. doi: 10.3389/fnana.2017.00037

Frontiers in Psychiatry | www.frontiersin.org 25 March 2019 | Volume 10 | Article 122

https://doi.org/10.1001/archgenpsychiatry.2011.39
https://doi.org/10.1073/pnas.1302982110
https://doi.org/10.1089/brain.2015.0389
https://doi.org/10.1002/hbm.23764
https://doi.org/10.1016/j.neuron.2011.04.018
https://doi.org/10.3389/fnhum.2013.00458
https://doi.org/10.3389/fnhum.2014.00349
https://doi.org/10.1016/j.bpsc.2016.02.003
https://doi.org/10.1186/s13229-017-0147-7
https://doi.org/10.1002/dneu.22570
https://doi.org/10.1016/j.tics.2018.09.008
https://doi.org/10.1186/s13229-016-0076-x
https://doi.org/10.1016/j.cortex.2016.12.024
https://doi.org/10.1177/0883073809351313
https://doi.org/10.1093/cercor/bhp278
https://doi.org/10.1093/brain/awv351
https://doi.org/10.1002/aur.1496
https://doi.org/10.1093/cercor/bhx038
https://doi.org/10.1111/acps.12918
https://doi.org/10.1016/j.biopsych.2018.02.1174
https://doi.org/10.1101/cshperspect.a009886
https://doi.org/10.1038/nn.3919
https://doi.org/10.1016/j.mcn.2015.12.002
https://doi.org/10.1111/desc.12303
https://doi.org/10.1038/s41380-018-0023-7
https://doi.org/10.1186/s11689-018-9237-x
https://doi.org/10.1097/00001756-199612200-00040
https://doi.org/10.1037/0894-4105.22.3.301
https://doi.org/10.3389/fnins.2016.00237
https://doi.org/10.1016/j.neubiorev.2011.09.003
https://doi.org/10.1016/j.biopsych.2013.06.018
https://doi.org/10.1212/WNL.50.5.1201-a
https://doi.org/10.1016/j.conb.2007.01.009
https://doi.org/10.1007/s11065-010-9131-0
https://doi.org/10.1007/s10803-014-2033-x
https://doi.org/10.1002/hbm.23195
https://doi.org/10.1016/j.neuroscience.2018.10.044
https://doi.org/10.1016/S0079-6123(08)60535-X
https://doi.org/10.1111/j.1440-169X.2010.01242.x
https://doi.org/10.3389/fnana.2017.00037
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Petanjek et al. Layer IIIC Pyramidal Neurons in Autism

181. Papoutsi A, Kastellakis G, Poirazi P. Basal tree complexity shapes functional
pathways in the prefrontal cortex. J Neurophysiol. (2017) 118:1970–83.
doi: 10.1152/jn.00099.2017

182. Jose R, Santen L, Shaebani MR. Trapping in and escape from branched
structures of neuronal dendrites. Biophys J. (2018) 115:2014–25.
doi: 10.1016/j.bpj.2018.09.029

183. Cline HT. Dendritic arbor development and synaptogenesis. Curr Opin

Neurobiol. (2001) 11:118–26. doi: 10.1016/S0959-4388(00)00182-3
184. Mcallister AK. Conserved cues for axon and dendrite

growth in the developing cortex. Neuron. (2002) 33:2–4.
doi: 10.1016/S0896-6273(01)00577-3

185. Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis,
dendritic growth, axon growth, and electrophysiology. Front Neuroanat.

(2014) 8:78. doi: 10.3389/fnana.2014.00078
186. Khazipov R, Esclapez M, Caillard O, Bernard C, Khalilov I, Tyzio R, et al.

Early development of neuronal activity in the primate hippocampus in utero.
J Neurosci. (2001) 21:9770–81. doi: 10.1523/JNEUROSCI.21-24-09770.2001

187. Bystron I, Blakemore C, Rakic P. Development of the human cerebral
cortex: boulder Committee revisited. Nat Rev Neurosci. (2008) 9:110–22.
doi: 10.1038/nrn2252
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