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Antipsychotic treatment resistance in schizophrenia remains a major issue in psychiatry. 
Nearly 30% of patients with schizophrenia do not respond to antipsychotic treatment, 
yet the underlying neurobiological causes are unknown. All effective antipsychotic 
medications are thought to achieve their efficacy by targeting the dopaminergic system. 
Here we review early literature describing the fundamental mechanisms of antipsychotic 
drug efficacy, highlighting mechanistic concepts that have persisted over time. We then 
reconsider the original framework for understanding antipsychotic efficacy in light of recent 
advances in our scientific understanding of the dopaminergic effects of antipsychotics. 
Based on these new insights, we describe a role for the dopamine transporter in the 
genesis of both antipsychotic therapeutic response and primary resistance. We believe 
that this discussion will help delineate the dopaminergic nature of antipsychotic treatment-
resistant schizophrenia.

Keywords: schizophrenia, drug addiction, antipsychotic efficacy, antipsychotic-resistant schizophrenia, dopamine 
transporter, dopamine synthesis, dopamine release

INTRODUCTION

Schizophrenia is a psychiatric condition often involving a complex genetic predisposition (1–3) 
as well as vulnerability to certain environmental factors (4), eventually culminating in symptoms 
clinically defined as positive (emergent symptoms, including hallucinations and delusions) or 
negative (characterized by loss of a particular function, including apathy and lack of motivation) 
(5–7). Additionally, a proportion of patients with schizophrenia are impaired on standard 
neurocognitive tasks (8), and this is considered an important correlate of disease severity (9–12). 
The fundamental neurobiological maladaptations underlying the symptoms of schizophrenia are not 
completely understood. Regardless, sub-chronic blockade of a proportion (60–80%) of dopamine D2/3 
receptors (which we will refer to as “D2”) is considered to underlie treatment efficacy in schizophrenia 
(13). Previous and recent literature supports the effectiveness of D2 antagonism compared to any 
alternative pharmacological intervention (14–17). However, blocking dopamine receptors is not 
an effective therapeutic mechanism for all individuals with schizophrenia (18–24). For example, 
some patients with first-episode psychosis do not respond to antipsychotic treatment (25). Lack of 
response to antipsychotic treatment can also be “acquired” and can develop over time with long-term 
treatment regimens (23, 26) or can develop after a period of treatment abstinence, such as that which 
occurs during medication nonadherence (27–30). In many of these cases, patients unresponsive to 
first-line antipsychotic treatments are instead responsive to clozapine (18, 31, 32). Furthermore, there 
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exists an additional group of patients with schizophrenia who will 
not respond to clozapine or to any other antipsychotic drug. This 
category of patients is defined as “ultra-resistant” (18, 33).

Whether all instances of antipsychotic resistance share a 
common neurobiological mechanism is not clear (10, 24, 34–39), 
nor is there a precise behavioral signature indicating its clinical 
manifestation, since criteria to define resistance to antipsychotic 
treatment were standardized only recently (40). It is not within 
the scope of this review to contribute to the behavioral definition 
of treatment resistance in schizophrenia. Rather the focus here 
is narrowed onto the putative role of dopamine clearance in the 
expression of primary antipsychotic-resistant schizophrenia (i.e., 
patients with first episode psychosis who never responded to 
treatment). We do not exclude the possibility that alterations in 
other neurotransmitter systems might also be involved, nor do 
we exclude that the dopaminergic mechanisms described here 
will also apply to other forms of antipsychotic resistance. Simply, 
we focus on dopamine, because clinical observations emphasize 
the importance of this neurotransmitter in the pathophysiology 
of psychosis (41–43) and its treatment (44). Our attention on 
dopamine clearance is motivated by recent data from ex vivo 
and in vivo studies with animal models demonstrating that 
antipsychotic failure is accompanied by tolerance to antipsychotic-
induced increases in basal dopamine and dopamine turnover, and 
that the dopamine transporter (DAT) is a key moderator of both 
extracellular dopamine and antipsychotic response (35, 38, 45). 
The link between preserved, or slightly elevated, dopaminergic 
tone and antipsychotic responsiveness has also been observed in 
humans with schizophrenia (46). Recent interpretations of these 
data suggest that a preserved extracellular dopaminergic tone 
might have an important pharmacological role in the therapeutic 
efficacy of antipsychotics (24). These observations have been 
directly and indirectly supported by independent studies (38, 
47–50). Due to space limitations, we will only briefly outline 
dopaminergic biomarkers described in the literature that appear 
relevant to understanding antipsychotic responsiveness. We will 
then conclude with the suggestion that DAT could be a more 
powerful moderator of antipsychotic efficacy and failure than 
currently recognized. Changes in DAT expression and/or function 
alone can alter the expected response to antipsychotic medications, 
making DAT a highly relevant protein when considering the 
dopaminergic nature of antipsychotic-resistant schizophrenia.

DOPAMINERGIC DYSREGULATION  
IN SCHIZOPHRENIA

Before discussing dopaminergic mechanisms of antipsychotic 
efficacy, it is important to describe the dopaminergic signaling 
abnormalities in schizophrenia that are targeted by antipsychotic 
drugs. As described in the Introduction, the underlying etiology 
and neuropathology of schizophrenia symptoms are still unclear. 
Genetic studies point to associations with genes regulating 
neurodevelopment, the immune system, and dopaminergic and 
glutamatergic transmission (2, 51), while other studies demonstrate 
a potential role for disruption of multiple intracellular signaling 
pathways in schizophrenia (52). Furthermore, environmental 

factors linked to schizophrenia such as migration or obstetric 
infection can change dopamine neurotransmission (4), in addition 
to other neurobiological systems (53–58). Despite the many factors 
that appear to contribute to schizophrenia, treatment has focused 
on correcting a dysregulated dopaminergic system by inhibiting 
dopaminergic transmission. However, it should be noted that the 
efficacy of pharmacologically targeting the dopaminergic system 
in schizophrenia does not definitively prove a dopaminergic 
dysregulation. Dopamine has a powerful neuromodulatory role in 
the brain and in the basal ganglia in particular and it can regulate 
motor activity as well as motivation and cognition. Since all of these 
functions are impacted in schizophrenia, it should not be surprising 
that many antidopaminergic drugs are effective (or deleterious) for 
schizophrenia symptoms, even though the observable symptoms 
may have some other underlying cause(s). Thus, the dopaminergic 
system should be seen as a treatment pathway capable of affecting 
behavioral features that appear to be disrupted in schizophrenia, but 
that may be caused by alterations in other neurotransmitter systems.

MECHANISMS OF ANTIPSYCHOTIC 
RESPONSIVENESS

Brain dopamine receptor blockade has been embraced as a 
mechanism for the therapeutic efficacy of antipsychotic drugs for 
over 60 years (9, 59). Thus, very frequently, researchers have focused 
on the interactions between molecule(s) and receptor(s) to describe 
antipsychotic mechanisms. Although this approach is correct in 
principle, practically it may be too simplistic. Receptors do not act 
in isolation. Receptors on neurons are connected via synapses and 
organized into networks within neuronal circuitries. Receptors are 
also functionally linked with intracellular molecular networks that 
control membrane excitability, as well as neurotransmitter synthesis, 
release, and metabolism, and by these mechanisms, neurons can 
regulate their own activity. Due to the nature of neural signaling, 
changes in the inactivation or activation of neural receptors with 
antipsychotic drugs, or with any other compound, which cause local 
intracellular changes, will affect other cell populations through signal 
propagation along neural pathways. Thus, antipsychotic medications 
can impact neurotransmitter synthesis, release, and metabolism not 
only in neurons that directly interact with antipsychotics but also in 
those neurons that are part of the same neural circuitry. Therefore, a 
proper understanding of the mechanisms underlying antipsychotic 
responsiveness should not simply describe the chemical interactions 
between antipsychotic drugs and their target receptors, but should 
consider modifications induced by antipsychotics at the cellular and 
circuit levels. We will focus on neuroadaptations occurring at the 
cellular level that link receptors to synthesis, release, and uptake of 
extracellular dopamine.

STRIATAL D2 RECEPTOR BLOCKADE 
IN TREATMENT-RESPONSIVE 
SCHIZOPHRENIA

Striatal D2 receptor blockade is considered the most effective 
mechanism to reduce psychotic symptoms in schizophrenia 
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(60, 61). Extra-striatal mechanisms of antipsychotics have 
been debated previously (62) and will not be discussed here. 
The general theory of the therapeutic efficacy of antipsychotics 
builds on two main observations. First, clinical potency of 
antipsychotics, including clozapine, is directly related to their 
affinity for the dopamine D2 receptor in vitro (14, 15). This is 
substantiated by evidence that therapeutic concentrations of 
antipsychotics in the plasma or in the spinal fluid accurately 
match the antipsychotic dissociation constant (Kd) at D2 receptors 
(63). Secondly, therapeutic concentrations of all antipsychotics 
(typical and atypical) produce a similar D2 receptor occupancy 
(13, 59, 64). Although this observation does not strictly apply 
for clozapine (21) or quetiapine (65), it has been shown that D2 
receptor occupancy in the human brain ranges between 70% 
and 80% within 2 h of treatment and remains elevated for over 
24 h for both typical and atypical antipsychotics (21, 66, 67). D2 
receptor occupancy with clozapine (20) and quetiapine (68, 69), 
on the other hand, decreases significantly within 24 h. Based 
on these findings, Seeman and Tallerico (63) suggested that the 
main difference between typical and atypical antipsychotics is the 
temporal decay of antipsychotic binding to the D2 receptor when 
challenged by endogenous dopamine. In fact, antipsychotics 
compete with endogenous dopamine within the synaptic space 
and the presence of dopamine would theoretically affect the 
concentration of antipsychotic required to reach a particular 
range of D2 receptor occupancy. Subsequently, it was observed 
that the dissociation rate constant, koff (rather than association 
rate constant, kon), largely accounts for the difference in binding 
affinity when comparing typical and atypical antipsychotics (70). 
This also implies that measurements of D2 receptor occupancy 
with antipsychotics can be affected by the chemistry of the 
radioligands used (i.e., lipid-soluble spiperone, nemonapride 
versus water-soluble dopamine, raclopride) (71–73). D2 receptor 
occupancy by atypical antipsychotics such as clozapine and 
quetiapine will be reduced by (11C)raclopride less so than if lipid-
soluble radioligands such as (11C)methylspiperone were used 
(63, 73, 74). Therefore, differences in D2 receptor occupancy 
between clozapine, quetiapine, and other antipsychotics could be 
influenced by the chemistry of the radioligands used (75). This 
intriguing interpretation, developed using in vitro assays, has not 
been confirmed functionally. Typical and atypical antipsychotics 
dissociate with similar temporal kinetics in electrophysiological 
evaluations, suggesting that the reversal of D2 receptor antagonism 
by typical and atypical antipsychotics does not differ markedly 
(76, 77). These contradictory results point to the possibility that 
mechanisms other than receptor occupancy may also be involved 
in the outcomes of these assays, although we cannot dismiss the 
relevance of ligand binding kinetics at D2 receptors for achieving 
antipsychotic efficacy (24, 38).

STRIATAL D2 RECEPTOR DENSITY AND 
BLOCKADE IN TREATMENT-RESISTANT 
SCHIZOPHRENIA

As already mentioned above, the blockade (or occupancy) 
of a proportion of D2 receptors is not a working antipsychotic 

mechanism for a significant number of patients with schizophrenia 
(31). In fact, roughly one-third of individuals with schizophrenia 
are resistant to treatment with first-line antipsychotics despite 
sufficient D2 receptor occupancy (19). Clozapine, which works 
at a relatively low (~40%) striatal D2 receptor occupancy (20, 
21, 78, 79), is the most effective antipsychotic in the majority 
of patients refractory to other antipsychotic medications (18, 
32, 80). If we hypothetically accept the suggestion that this 
outcome is not attributable to D2 receptor binding kinetics (77), 
we begin to consider other dopaminergic mechanism that may 
account for this apparent discrepancy. A growing literature 
supports the idea that additional dopaminergic mechanisms 
may underlie therapeutic efficacy of antipsychotic drugs (24, 
38). Some patients who respond to first-line antipsychotic 
treatment experience diminished treatment efficacy over time 
(23), which can lead to treatment non-compliance and relapse 
(81). Diminished antipsychotic efficacy may also occur despite 
stable D2 receptor occupancy (82). These dynamics are depicted 
in Figure 1. The opposite has also been observed with long-term 
antipsychotic efficacy occurring despite decreasing D2 receptor 
occupancy (89–85).

Acquired resistance to antipsychotics (tolerance) could involve 
antipsychotic-induced dopamine receptor supersensitivity, 
potentially resulting from D2 receptor upregulation, consequent 
to chronic D2 receptor blockade (34, 86, 87). In patients with 
schizophrenia, antipsychotic-induced dopamine supersensitivity 
is thought to impair treatment efficacy, promote relapse to 
psychosis, and also worsen psychotic symptoms (88–90). 
In laboratory animals, antipsychotic-induced dopamine 
supersensitivity produces loss of antipsychotic efficacy (35, 91, 
92) and an exaggerated behavioral response to dopamine agonists 
(35, 93–95). However, the link to antipsychotic-induced striatal 
D2 upregulation is complex. Changes in levels of dopamine 
receptor expression in patients have not been replicated reliably 
by independent research groups (96, 97). Recent studies using 
animal models also show tolerance to antipsychotics despite 

FIGURE 1 | Representation of the neurochemical factors affecting 
antipsychotic response in humans and animal models. Antipsychotic 
response is optimal in concert with elevated extracellular dopamine levels. D2 

receptor occupancy is less dynamic and appears stable during time periods 
characterized by both therapeutic efficacy and antipsychotic failure.

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Dopamine Uptake in Treatment-Resistant SchizophreniaAmato et al.

4 May 2019 | Volume 10 | Article 314Frontiers in Psychiatry | www.frontiersin.org

clinically representative levels of striatal D2 receptor blockade, as 
measured either with in vivo imaging (38) or ex vivo receptor 
autoradiography (35, 91). Antipsychotic-induced dopamine 
supersensitivity and tolerance to antipsychotics can also be 
dissociable from changes in striatal D2 receptor density (35). 
Thus, changes in striatal D2 receptor expression are not always 
predictive of either changes in antipsychotic efficacy or the 
emergence of antipsychotic-induced dopamine supersensitivity 
(24, 35, 38, 98, 99), although high doses of antipsychotics may 
upregulate striatal D2 receptors (100).

Beyond changes in striatal D2 receptor density, chronic 
antipsychotic treatment can also increase D2 receptor function, 
and this has been linked to dopamine supersensitivity and 
acquired antipsychotic tolerance. When D2 receptors are coupled 
to Gi/o proteins, they are in a functional, high affinity state for 
dopamine (referred to as D2

HIGH). When D2 receptors are 
uncoupled to Gi/o proteins, they are in a functionally inert, low 
affinity state for dopamine (D2

LOW). As such, the proportion of 
D2

HIGH can modulate dopamine signaling via D2 receptors. The 
link between antipsychotic tolerance and changes in striatal 
D2

HIGH sites comes largely from work in animal models showing 
that chronic antipsychotic treatment increases striatal D2

HIGH 
levels (35, 91, 101). Antipsychotic treatment regimens that 
promote behavioral dopamine supersensitivity and antipsychotic 
treatment tolerance produce an even greater increase in D2

HIGH 
sites (91). D2

HIGH receptor elevation and antipsychotic-induced 
dopamine supersensitivity also follow a similar time course 
(35). However, D2

HIGH sites can increase early in antipsychotic 
treatment, before any behavioral evidence of dopamine 
supersensitivity or treatment tolerance (35). In addition, 
antipsychotic dosing regimens that do not produce dopamine 
supersensitivity can still increase striatal D2

HIGH sites (91, 101). 
Furthermore, there is no conclusive evidence of elevated D2

HIGH 
receptors in patients with schizophrenia [see (102)]. Thus, there 
is likely a link between changes in D2

HIGH sites and acquired 
antipsychotic treatment tolerance, but this requires further study.

DOPAMINE D2 RECEPTOR ISOFORMS 
AND SCHIZOPHRENIA

The majority of the cells expressing D2 receptors in the 
striatum are neurons with medium-sized cell bodies and spiny 
dendrites (medium spiny neurons, MSNs, about 95% of all 
cells in this region), which are postsynaptic to dopaminergic 
terminals projecting from the midbrain, among other regions 
for an overview, see Refs. (24, 103). The striatum also contains 
presynaptic D2 receptors expressed on dopaminergic axon 
terminals, which represent only a small percentage of the total 
D2 receptor pool found in the striatum and may have a different 
molecular structure (104). Accordingly, there are two isoforms 
of dopamine D2 receptors deriving from alternative splicing of 
exon 6 to produce the long (D2L) and the short (D2S) forms of 
the protein (105–107) (Figure 2A–C). Both isoforms appear to 
regulate dopaminergic firing (108), but only D2S controls Ca2+-
mediated autoinhibition (109, 110). Furthermore, post-synaptic 
D2S, but not D2L, controls MSN excitability in rodents (111) and 
likely in humans (112), despite its pre-dominant presynaptic 
localization. These effects are likely a consequence of the distinct 
molecular mechanisms linked to D2 receptor isoforms (113–116) 
(Figure 2C).

The expression of D2 isoforms in the mammalian brain is 
distributed unevenly (Figure 2A). Genomic studies of human 
and rodent D2 mRNA, which share ~95–99% homology (117), 
report that while D2L and D2S mRNA are widely expressed in 
the brain, D2L mRNA is highly expressed in the striatum (i.e., 
caudate nucleus and putamen) relative to D2S mRNA (117–120). 
Investigation of D2 protein expression in primates shows that 
D2L is highly expressed in the striatum and found specifically 
on MSNs and cholinergic interneurons, while D2S is instead 
expressed on dopaminergic axons (121). In the cortex and 
midbrain, D2L is mostly expressed on neuronal somata, while 
D2S is found on somata, dendrites, and axon terminals (121). 
Interestingly, high potency antipsychotics (with high affinity 

FIGURE 2 | (A) Uneven expression of dopamine D2 receptor isoforms (short, D2S and long, D2L) in the human midbrain (substantia nigra, SN) and striatum 
(caudate nucleus and putamen). D2L is predominant in the striatum, while D2S is prevalently expressed in the midbrain. This unbalanced D2L/D2S ratio is observed 
across species. (B) Schematic of a synaptic contact between a dopaminergic terminal projecting from SN and a somatodendritic spine in the striatum shows 
the unbalanced D2L/D2S ratio on midbrain and striatal neurons. (C) Distinct physiological effects are mediated by the two D2 receptor isoforms. Both D2S and D2L 

receptors inhibit adenylyl cyclase, though D2L-mediated inhibition is weaker, via Giα1and Giα2, respectively. D2S stimulation leads to phosphorylation of tyrosine 
hydroxylase (TH) at serine 40 in nigrostriatal dopaminergic neurons, whereas D2L stimulation leads to phosphorylation of dopamine and cAMP-regulated 
phosphoprotein of 32 kDa (DARPP-32) at threonine 34, in medium spiny neurons. D2S, but not D2L, activates G protein-gated inwardly rectifying potassium (GIRK) 
conductance, which is Ca2+ sensitive. D2S, but not D2L, inhibits excitation in response to glutamate (Glu) currents.
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for the D2 receptor) appear to selectively bind those receptors 
expressed in the striatum (a structure with high D2L/D2S ratio) 
(122, 123), supporting the notion that antipsychotics could 
bind both D2 isoforms, but that effective antipsychotic doses 
would bind largely D2L and only a small proportion of total D2S 
receptors in the brain. Although this possibility is not completely 
supported from binding studies using cloned D2 receptors in 
cultured cells (124–127), saturation binding studies and in vivo 
studies with ED50 antipsychotics using transgenic mice (i.e., 
D2L receptor knockout mice) appear to confirm an antipsychotic 
selectivity for D2L (128–131). Consistent with these observations, 
humans studies have shown that more effective antipsychotics 
have higher D2 receptor occupancy in the striatum than in the 
midbrain (SN) (132, 133).

Postmortem studies using brain tissue from patients with 
schizophrenia that received antipsychotic treatment prior to 
death demonstrate a significant increase in D2L mRNA in the 
caudate nucleus (134), arguing in favor of specific adaptations of 
D2L in response to chronic blockade with antipsychotics. Studies 
have reported that D2 receptor mRNA adaptations with chronic 
D2 blockade might (135, 136) or might not (137) associate with 
membrane receptor expression suggesting that post-transcriptional 
mechanisms might more robustly control D2 receptor trafficking 
(138). Other studies instead demonstrate direct links between 
gene transcription and D2 receptor expression selectively in the 
striato-pallidal pathway (139). Currently, the precise action of 
antipsychotics on the D2 receptor isoforms is still inconclusive 
despite strong evidence from these studies with transgenic rodents.

DOPAMINE SYNTHESIS, RELEASE,  
AND UPTAKE

Dopamine levels in schizophrenia are thought to be higher 
than in healthy individuals especially during psychotic episodes 
(140) and antipsychotics are intended to reduce this increased 
dopamine signaling (13). But it is unclear how this could 
occur when narrowly considering only D2 receptor occupancy 
(24). D2 receptors are expressed in the dendrites, somata, and 
terminals of dopaminergic neurons (autoreceptors) and in 
postsynaptic neurons (heteroreceptors). Dopamine stimulation 
of D2 autoreceptors at terminals decreases synaptic dopamine 
release, while stimulation of somatic D2 autoreceptors instead 
decreases the firing activity of these cells (141). Acute application 
of antipsychotics with high affinity for the D2 receptor has been 
found to increase dopamine release in projection areas (142), 
and this increase in dopamine is only minimally driven by 
increased dopamine neuron firing (143, 144), since application 
of antipsychotics directly onto somatic autoreceptors of midbrain 
dopamine neurons causes only modest dopamine release (145). 
Also, postsynaptic D2 heteroreceptors can moderately regulate 
extracellular dopamine in the striatum via GABA transmission, 
especially if autoreceptors are hypofunctional (131). Altogether, 
these seminal studies suggest that antipsychotics most effectively 
control dopamine transmission by targeting receptors in 
terminals found in the striatum. Interestingly, since most of 
the striatal receptors are heteroreceptors and only modestly 

control dopamine release, increases or decreases in extracellular 
dopamine levels (35, 45) are likely mediated by other mechanisms 
impacted by antipsychotics (38). These regulatory mechanisms 
include modifications to dopamine synthesis, release, and uptake.

Synthesis: Early studies demonstrated that acute antipsychotic 
treatment increased dopamine synthesis in in vitro (146, 147) and ex 
vivo preparations (148) as well as in vivo in rodents (149, 150). This 
was thought to be mediated by direct modification of the enzyme 
tyrosine hydroxylase (TH) (151, 152). However, later studies 
could not find changes in dopamine synthesis in vivo in human 
striatum, while comparable doses of antipsychotics appeared to 
increase dopamine synthesis in animals (153), thus only partially 
confirming previous work (149). While this discrepancy between 
rodents and human data was not clarified, a different enzymatic 
pathway for the synthesis of dopamine (TH vs. aromatic amino 
acid decarboxylase, AAAD) in rats and humans seemed a plausible 
explanation (153, 154). The regulation of extracellular dopamine 
through an autoreceptor-based mechanism of dopamine synthesis 
using antipsychotics is complex. In fact, studies have shown that 
decreasing dopamine synthesis has no therapeutic antipsychotic 
efficacy (155), and though antipsychotic treatment can either 
increase or decrease dopamine synthesis capacity (DSC, DOPA 
decarboxylase mediated L-DOPA conversion to dopamine) 
independently from D2 receptor blockade (156), both effects are 
associated with an improvement of symptomatology (157–159). 
These contrasting findings may result in part from the very 
complex molecular machinery that co-regulates DAT, TH, and 
D2 autoreceptors (160–163), making it unlikely that antipsychotic 
medications will affect this machinery in a predictable manner.

We previously found that TH expression was not changed 
by effective doses of typical and atypical antipsychotics in 
animal models (38). However, TH expression increased when 
antipsychotics were no longer effective, and this was positively 
correlated with increased DAT expression (38). Interestingly, 
although TH expression did not change during antipsychotic 
efficacy, extracellular dopamine increased and vesicular release of 
dopamine decreased, suggesting that antipsychotics contributed 
to modulation of extracellular dopamine via reduced uptake 
rather than modified synthesis. Thus, changes in extracellular 
dopamine levels can be independent from the synthesis rate and 
may rely more on autoinhibition and uptake (38, 164), and/or a 
compensatory activity of TH (160).

Release: The idea that antipsychotics control dopamine 
release primarily by D2 autoreceptor blockade first emerged 
with the results of early molecular pharmacology experiments 
(146, 147, 165–167) showing that antipsychotics revert the 
inhibitory effects of apomorphine. Subsequent microdialysis 
(142) and electrophysiological (144) studies supported these 
early molecular findings. However, most of the results from 
these early studies have been obtained with limited experimental 
preparations such as synaptosomes (146, 165, 167) or have 
involved the use of neurotoxins to destroy post-synaptic neurons 
in freely moving microdialysis (142), which incurs severe brain 
lesions. Thus, the significant interaction of antipsychotics with D2 
autoreceptors found in these early studies should be considered in 
light of the fact that these manipulations can disrupt the natural 
organization of structures within the brain. Therefore, whether 
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therapeutic doses of antipsychotics in vivo control dopamine 
release uniquely through D2 autoreceptors is not completely 
clear (141). Contemporary researchers working when these early 
studies were conducted acknowledged that this mechanism was 
only partially plausible (146, 147, 165). Furthermore, the fact that 
clozapine, which has moderate binding affinity for D2 receptors 
relative to other antipsychotics (78), is as effective as high potency 
antipsychotics at increasing depolarization by D2 autoreceptor 
blockade (144) likely suggests that mechanisms other than D2 
autoreceptor antagonism may be involved in the regulation of 
dopamine output by antipsychotics. One mechanistic possibility 
is that, at least for atypical antipsychotics, dopamine release is 
modified by serotonergic mechanisms. But this is unlikely to fully 
account for antipsychotic-induced dopamine release, since both 
typical and atypical antipsychotics evoke release of dopamine 
(38), but typical antipsychotics have much lower affinities at 
5-HT receptors compared to second-generation therapeutics [for 
an overview, see Refs. (168, 169)].

Another possibility as to how antipsychotics regulate striatal 
dopamine output is through their direct impact on the vesicular 
exocytosis at active zones linked with Ca2+ channels (170, 171). We 
previously reported that typical and atypical antipsychotics can 
accumulate in synaptic vesicles of cultured hippocampal neurons 
through an acidic trapping mechanism and inhibit Na+ channels 
upon release. The inhibition of Na+ channels leads to feedback 
inhibition of Ca2+ influx and reduced vesicular dopamine release 
(171). We tested this mechanism using antipsychotic treatment 
regimens reflecting clinically relevant outcomes of antipsychotic 
efficacy and resistance and found that exocytosis-mediated 
dopamine release was regulated in distinct ways at different points 
during haloperidol treatment (38). Specifically, haloperidol 
inhibited dopamine exocytosis in sub-chronic regimens, i.e., ≤6 
days and during treatment efficacy, while dopamine exocytosis 
was enhanced during chronic antipsychotic treatment associated 
with loss of behavioral efficacy (38). This distinct regulation of 
vesicular release of dopamine during sub-chronic versus chronic 
haloperidol might reflect the involvement of two different 
mechanisms in which K+ channels mediate the inhibition of 
vesicular release, while Na+ channels counteract this inhibition 
(38). Antipsychotics can regulate dopamine release by  directly 
binding the open state of K+ channels (i.e. Kv4.3) during 
depolarization and accelerating the decay rate of inactivation 
(172–174). This mechanism of action can regulate dopamine 
release over time independent of depolarization blockade by 
modifying the intrinsic excitability of dopaminergic neurons 
(175). Further, changes in K+ conductance can shunt the effects 
of innervating signals onto dopaminergic neurons, preventing 
changes in dopamine release. One additional mechanism 
through which antipsychotics may impact dopamine release 
involves elevation in extracellular dopamine as a consequence of 
antipsychotic-induced DAT blockade (38), which may activate 
GIRK currents at axon terminals through an interaction between 
D2 autoreceptors (24, 38) and Kv1 channels (176). We found 
that K+-mediated release of dopamine is differentially affected 
during antipsychotic efficacy and failure in freely moving mice 
undergoing treatment, although it is not yet known if this is due 
to a direct action of antipsychotics on K+ channels or is instead 

mediated indirectly by elevated endogenous dopamine. Thus, 
multiple lines of evidence point to the capacity of antipsychotics 
to impact dopamine release, even though they may not necessarily 
impact dopamine synthesis.

Uptake: In order to appreciate the core mechanism of 
antipsychotics, it is essential to understand how antipsychotics 
influence the temporal dynamics of dopamine signaling in the 
extracellular space within the striatum, the locus of psychosis (9). 
Data from early studies described above provided copious evidence 
that antipsychotics block D2 receptors and that this is sufficient to 
restore dysregulated dopamine signaling in many human patients, 
at least for some period of time. However, these early studies 
did not distinguish appropriately between antipsychotic action 
on pre- and post-synaptic D2 receptors (141), and it is therefore 
unclear which D2 receptor type accounts for the clinical outcomes 
generated by antipsychotics (24). Likewise, it is not clear what 
happens to dopamine released into the extracellular space when 
antipsychotic drugs prevent its binding to D2 receptors (24, 38, 
169). Under normal physiological conditions, most extracellular 
dopamine is recycled by means of re-uptake by DAT and remaining 
transmitter diffuses away (177). Dopamine re-uptake terminates 
dopaminergic signaling and prevents toxic consequences of 
excessive dopamine (178). Accordingly, extracellular dopamine 
concentration and DAT availability are directly correlated (179). 
In the absence of DAT-mediated dopamine re-uptake, no other 
mechanism can maintain homeostatic control of presynaptic 
function (180), although dopamine spillover also appears to 
play crucial role in deactivation of dopamine signaling (181). 
Once dopamine is collected into presynaptic terminals, most of 
it is recycled and packaged into vesicles (182). The remainder is 
metabolized enzymatically within the cytosol (180, 183). Therefore, 
extracellular dopamine concentration is the outcome of dopamine 
release and clearance (184, 185), and it is of therapeutic relevance 
to understand how antipsychotics modify this balance (38).

ANTIPSYCHOTIC ACTION ON DAT

Previous meta-analytical studies have found no consistent evidence 
for DAT changes in schizophrenia (186), and autoradiographic 
studies found no antipsychotic-induced changes in DAT density 
labeled with [I25I]RTI-121 ([125I]2 beta-carboxylic acid isopropyl 
ester-3 beta-(4-iodophenyl)tropane) (187, 188). However, other 
investigations discussed above report that direct blockade of 
dopamine uptake contributed to the elevated extracellular 
dopamine in response to acute antipsychotics (146, 147, 165, 189), 
although the technology at the time did not allow for a clear 
distinction between release and uptake kinetics. More recent studies 
using fast scan voltammetry demonstrated that antipsychotics 
with high affinity for D2 receptors enhanced dopamine half-life 
by nearly 50% via direct DAT blockade and antagonism of D2 
autoreceptors (190–192). Accordingly, a delayed dopamine half-
life results from direct inhibition of DAT, since the decay phase of 
stimulated dopamine overflow entirely depends on uptake (193). In 
support of this, striatal slice recordings showed that antipsychotics 
do not enhance dopamine release after the first stimulation 
(192), contradicting the idea that D2 autoreceptor antagonism by 
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antipsychotics blocks autoinhibition in slices. The direct inhibition 
of DAT with antipsychotics occurs at low affinity and antipsychotics 
are less potent than more selective DAT blockers like nomifensine 
(194–196). This helps us interpret the apparent lack of association 
between antipsychotics and DAT changes reported by previous 
studies with low sensitivity methods (187, 188). Since uptake is 
the main route of elimination of extracellular dopamine (180, 197) 
and the kinetics of diffusion are independent from release and 
uptake (177), then DAT blockade by antipsychotics could explain 
the increase in dopamine and dopamine metabolites observed in 
previous microdialysis studies (198–202) as well as the prolonged 
half-life of dopamine stimulated by K+ (189).

Additional findings from ex vivo studies support a direct 
interaction between antipsychotics and the DAT. Under normal 
physiological conditions, increased dopamine release rapidly 
upregulates DAT membrane expression (203, 204). Effective 
doses of antipsychotics given sub-chronically (i.e., 2–6 days) 
inhibits the production of DAT mRNA, but does not alter striatal 
DAT membrane expression (38). These effects are reversed 
(i.e., upregulation of DAT mRNA and protein) during chronic 
antipsychotic treatments associated with loss of behavioral efficacy 
(38). We and others (205) have found similar DAT adaptations in 
vivo (38). MicroPET imaging using [18F]FP-CMT ([18F] N-3-
fluoropropyl-2-beta-carbomethoxy-3-beta-(4’ methylphenyl))  
nortropane, with superior properties for imaging the DAT in the 
living brain (38, 206), was applied to rats at baseline and follow-up 
(i.e., during loss of antipsychotic efficacy). Rats show an increase 
in DAT availability (binding potential; BPND) during antipsychotic 
failure, suggesting the putative relevance of dopamine clearance 
for achieving antipsychotic therapeutic response, at least in 
animal models. Interestingly, changes affecting DAT expression 
and corresponding behavioral responses to antipsychotics are 
accompanied by a stable and clinically relevant D2 receptor blockade 
(69%) and by increased or decreased extracellular dopamine in 
the striatum, during the expression of antipsychotic efficacy and 
failure, respectively (35, 45). Furthermore, the importance of DAT 
function in antipsychotic efficacy is supported by genetic studies 
showing an association between clozapine efficacy and DAT gene 
polymorphism (207). Regarding the question of where dopamine 
goes when both presynaptic and postsynaptic D2 receptors are 
blocked, these studies suggest that it might be captured by DAT, 
which is upregulated by clinical doses of antipsychotics (38). 
However, contrary to the obvious theoretical expectation that 
reduced dopamine would optimize antipsychotic therapeutic 
response, we found that it coincided with loss of antipsychotic 
efficacy. This counterintuitive result has been elaborated elsewhere 
(24, 38), but it will be briefly recapitulated in the next section and 
discussed in the context of antipsychotic-resistant schizophrenia.

DOPAMINE AUTOINHIBITION AS 
A FEATURE OF ANTIPSYCHOTIC 
RESPONSIVENESS

We have previously proposed a model of antipsychotic efficacy, 
based on the potential therapeutic properties of endogenous 
dopamine, by taking into account a number of factors encountered 

in the clinic and in experimental studies with humans and animals 
(24, 38). We suggested that antipsychotic efficacy, as observed in 
animals treated with continuous doses of antipsychotics reaching 
clinically relevant D2 receptor blockade, is driven by dynamic 
interactions between endogenous dopamine and presynaptic D2 
receptors. This suggestion is justified by independent but related 
findings showing that antipsychotic efficacy occurs in conjunction 
with high striatal extracellular dopamine in humans and animals 
(35, 38, 45, 46), while only a proportion of the total striatal D2 
receptors are blocked with antipsychotics in human patients 
(13, 62) and animals (35, 38). On the other hand, antipsychotic 
treatment failure is observed when extracellular dopamine (35, 38, 
45), but not D2 receptor blockade (38), is decreased (Figure 1). This 
fluctuation in extracellular dopamine and antipsychotic response 
over continuous treatment regimens characterized by stable 
D2 receptor blockade led us to hypothesize that antipsychotics 
impact the interaction between endogenous dopamine and 
the D2 receptor pool available for binding. Under physiological 
conditions, spontaneous release of dopamine stimulates a greater 
proportion of D2 than D1 receptors (208, 209) and antipsychotics 
can bind to all dopamine receptors (24, 210). Therefore, when 
therapeutic doses of antipsychotics reach the brain, about 70% of 
D2 receptors will be blocked along with a modest proportion of D1 
receptors. As a consequence, endogenous dopamine will interact 
with spare dopamine receptors and particularly with D2 receptors, 
since this type, relative to D1 receptors, is stimulated by low levels 
of dopamine (209). The resulting neuronal response will be 
dictated by the molecular characteristics of the D2 receptors (i.e., 
Gi/o inhibitory coupled protein). During phasic dopamine release 
(i.e., that which would be expected to induce a psychotic episode 
in schizophrenia), dopamine reaches presynaptic autoreceptors, 
producing antipsychotic-dependent dopamine-mediated 
autoinhibition and a corresponding antipsychotic efficacy (24, 38).

This autoinhibition might be mediated by the D2S isoform 
since the two splice variants have distinct functions and are 
unevenly distributed within the striatonigral dopaminergic 
circuitry (Figure 2A, C). Furthermore, antipsychotics appear 
to preferentially bind dopamine receptors in the striatum 
(123), a brain structure with predominant expression of 
D2L as discussed above, and dopamine exhibits higher 
binding affinity for D2S in transgenic mice (130) and in cell 
culture (113). Together these data suggest that therapeutic 
doses of antipsychotics in the brain cause a functional 
segregation of D2S and D2L, which based on the data available 
until now could overlap with a functional  segregation 
of pre- and post-synaptic D2 receptors (Figure 2A, C).  
It should be noted that both isoforms are expressed in pre- 
and post-synaptic neurons and the functional segregation 
might also occur within the same cells (Figure 2B). In support 
of this theory are studies with human schizophrenia patients 
demonstrating selective reduction in expression of D2S mRNA 
(211), potentially indicative of a desensitization of the short 
isoform in response to increased dopamine activity on this 
receptor. On the other hand, postmortem studies also show 
that D2L mRNA is upregulated in patients with schizophrenia 
(212), which may indicate an adaptive response to chronic 
blockade (119).
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Since phasic discharge leads to large extracellular increases 
in dopamine (213) and is thought to underlie psychotic 
experiences (9, 41, 46, 140, 214–217), we propose that a 
therapeutic antipsychotic response is obtained by antipsychotic 
drugs when an adequate proportion of D2 receptors is blocked 
and extracellular dopamine levels are sufficiently elevated to 
trigger autoinhibition. This crucial combination of effects is 
achieved by the direct blockade of DAT by antipsychotics (38, 
146, 147, 165, 189), which allows for an accumulation of synaptic 
dopamine that reduces the threshold at which phasic dopamine 
activates homeostatic autoinhibition. The antipsychotic-induced 
facilitation of dopamine autoinhibition, mediated by DAT 
blockade and D2 autoreceptor stimulation, which may serve as 
an antipsychotic mechanism is depicted in Figure 3. Although 
we have arrived at this hypothesis by analyzing multiple 
experimental observations, which sometimes lack corresponding 
human studies, our functional predictions on the association 
between extracellular dopamine and antipsychotic therapeutic 
responsiveness in humans and animals have been observed by 
a number of independent groups (35, 38, 45–48, 49, 218). In 
the following section, we will provide naturalistic examples of 
the potential importance of functional DAT to understanding 
antipsychotic-resistant schizophrenia.

THE ROLE OF DAT IN ANTIPSYCHOTIC-
RESISTANT SCHIZOPHRENIA: LESSONS 
FROM AGING AND DRUG ADDICTION

If extracellular dopamine levels contribute to the generation 
of a therapeutic antipsychotic response and DAT is the main 
physiological regulator of extracellular dopamine levels, then 
DAT should have a role in the expression of antipsychotic-resistant 
schizophrenia. Furthermore, if DAT activity quickly adapts to 
changes in extracellular dopamine, then it would be surprising if 
DAT was unaltered in schizophrenia, a disorder with symptoms 
attributed to dysregulated dopamine neurotransmission. We have 
described above how blockade of DAT may be a critical factor in 
antipsychotic efficacy, since DAT blockade allows accumulation 
of extracellular dopamine and consequently dopamine-mediated 
autoinhibition upon phasic transmitter release. We have also 
described research showing that antipsychotics given to rodents 
at therapeutic doses induce DAT upregulation during loss of 
behavioral efficacy (38). The loss of efficacy in this scenario 
coincides with a reduction in extracellular dopamine, which 
we predict reduces the capacity of dopaminergic terminals 
to undergo autoinhibition upon phasic release. On the other 
hand, we introduce below an additional scenario in which 
reduced expression of DAT may also prove deleterious in terms 
of antipsychotic therapeutic efficacy. Although theoretically 
low DAT expression would allow accumulation of extracellular 
dopamine, which we hypothesize is essential for therapeutic 
efficacy (Figure 3), proteins regulating extracellular dopamine 
levels including DAT, D2 autoreceptors, ion channels, and 
dopamine synthesis machinery appear to be co-regulated (131, 
160–163, 172). Thus, DAT downregulation at the expression  
level may also negatively impact the capacity of dopaminergic 
terminals to undergo autoinhibition. We predict that 
downregulation of proteins regulating physiological dopamine 
neurotransmission at baseline (i.e., tonic neurotransmission) 
could be the underlying neurobiology of primary antipsychotic 
treatment-resistant schizophrenia. Figure 4 depicts a scenario 
in which the absence of autoinhibition due to ablated DAT 
expression and autoreceptor co-regulation allows for an enduring 
stimulation of free unbound post-synaptic receptors, leading 
to psychosis despite a reduction in dopamine release overall. 
We can characterize this condition as a form of dopamine 
supersensitivity driven entirely by presynaptic adaptations. 
Although DAT expression has been found to change in animal 
models of antipsychotic responsivity, it cannot be assumed that 
the same mechanism applies in humans with schizophrenia. 
Indeed, data may differ across species as already shown with D2 
receptor binding (219) and dopamine synthesis (153). Therefore, 
why should this principle of species incompatibility not also 
apply for dopamine uptake? We can gain a better understanding 
of this issue only after testing it in human patients.

Aging
Meta-analytical studies report that DAT levels in schizophrenia 
are mostly decreased, unchanged, and sometimes increased 
(186). These data were obtained mostly with untreated patients 

FIGURE 3 | Representation of the hypothesized pharmacological mechanism 
underlying a therapeutic response in schizophrenia based on human and 
animal studies. Therapeutic doses of antipsychotic drugs (APDs) block about 
70% of striatal D2 receptors. APDs mostly block heteroreceptors, which are 
more often D2L than D2S, as well as a smaller proportion of autoreceptors 
(which are more often D2S than D2L). APDs also block the dopamine 
transporter (DAT). The combined blockade of D2L heteroreceptors and DAT 
causes synaptic accumulation of dopamine that allows stimulation of spare 
D2S receptors. Phasic release of dopamine in response to environmental 
changes will trigger an enduring autoinhibition since extracellular dopamine 
levels are already elevated. We hypothesize that the autoinhibition triggered 
by a phasic discharge of dopamine during antipsychotic treatment is the 
mechanism underlying a therapeutic antipsychotic response.
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and therefore we hypothesize (24, 38) that the variability of 
these results was consequent to genetic factors (220–222) and 
age. For example, DAT density can decrease with age (223). 
Based on our proposal, reduced DAT expression as a result of 
aging can decrease autoinhibition mediated by antipsychotics, 
due to the co-regulation of autoreceptors described above, and 
thus reduce antipsychotic response. Interestingly, many of the 
patients that participated in the aforementioned study were 
~40 years old, the age associated with a decline in DAT density 
(186). It would have been of interest to administer antipsychotics 
to these individuals and measure their responsiveness. Perhaps, 
they would have been non-responsive or less responsive than 
younger individuals and/or those with higher DAT availability. 
However, these were not the aims of those studies. In support of 
this suggestion, a previous study (19) showed that the average age 
of patients with treatment-resistant schizophrenia was 42 years 
old, while patients responsive to treatment were 25 on average. 
Interestingly, the treatment with antipsychotics yielded similar 
levels of D2 receptor occupancy (19).

Aging is an important factor underlying neuropharmacological 
responsiveness mediated by the dopaminergic system, since D2 
receptors and DAT expression decline naturally in healthy aging 
individuals (224–229). The reduction in D2 receptor and DAT 
expression is unrelated to dopamine neuron loss (229) and has 
profound consequences on the antipsychotic therapeutic dosing 
required to obtain therapeutic responsiveness in schizophrenia 
(230). Aging can also reveal genetic predisposition to suboptimal 
DAT and D2 receptor functions affecting cognitive performance 
in healthy individuals (231), and it can trigger degeneration 
of dopaminergic neurons through increased nitrative damage 
resulting from excess cytosolic dopamine due to an imbalance 
in DAT/VMAT (vesicular monoamine transporter-2) expression 
(232). This form of toxicity, deriving from an excess of 
cytosolic dopamine, has relevance to understand some of the 

extrapyramidal symptoms (232) and the loss of brain tissue in 
patients with schizophrenia (233). Although it is not clear if 
DAT changes are a main player in maladaptive functional and 
structural changes, both are often observed in schizophrenia 
and might affect antipsychotic response in elderly patients 
with schizophrenia (234, 235). While aging could explain the 
expression of antipsychotic treatment resistance in older patients, 
it is not yet clear why DAT function would affect antipsychotic 
responsiveness in younger individual with schizophrenia. 
A theoretical suggestion is provided in the following section.

Drug Addiction in Schizophrenia
Epidemiological studies report that nearly half of patients with 
schizophrenia also suffer from drug addiction (236, 237). This is 
about four times more prevalent than in the general population 
(238). If we consider that the recreational consumption of 
addictive drugs is common in the general population (i.e., 
84% for alcohol consumption), but only a small proportion of 
individuals exposed to drugs of abuse become drug addicted 
(239, 240) and that this happens about four times more often in 
patients with schizophrenia, then it is possible that many of the 
remaining ~50% of patients with schizophrenia without formal 
diagnosis for drug addiction likely consume at least some class of 
addictive drugs as well. The most commonly consumed drugs in 
patients with schizophrenia include alcohol, psychostimulants, 
cannabis, and tobacco (236–238). It has been suggested that 
patients with schizophrenia may use illicit substances to self-
medicate their symptoms (236, 238, 241) as well as the side 
effects of antipsychotic medications (242), as self-medication 
with addictive drugs is indeed common in patients with mental 
illness (243).

All addictive drugs impact the dopaminergic system in 
the midbrain and in striatal structures (244, 245), a main 

FIGURE 4 | Representation of the pharmacological mechanism underlying the absence of therapeutic response in antipsychotic-resistant schizophrenia based 
on our model. (Left) Aging and/or addictive drugs consumed before antipsychotic treatment begins (i.e., in first episode psychosis) lead to reduced expression of 
the dopamine transporter (DAT), D2 autoreceptors, and tyrosine hydroxylase (TH), as these proteins appear to be co-regulated, at least in rodents. (Right) During 
environmentally evoked phasic dopamine release, impaired capacity for autoinhibition results from low levels of DAT and D2 autoreceptors. The resulting post-
synaptic stimulation contributes to psychosis despite a significant blockade of D2 receptors by antipsychotic drugs (APDs).

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Dopamine Uptake in Treatment-Resistant SchizophreniaAmato et al.

10 May 2019 | Volume 10 | Article 314Frontiers in Psychiatry | www.frontiersin.org

component of the brain reward circuitry (246), and likely 
will also impact the DAT (221, 247–253). We theorize that 
consumption of substances of abuse to medicate pre-psychotic 
symptoms during the prodromal period is very likely to trigger 
psychotic episodes, and importantly, to weaken (or blunt) 
antipsychotic response since repeated exposure to addictive 
substances (including psychostimulants, cannabis, tobacco, 
alcohol and heroin) can decrease DAT membrane expression 
(248–253). This suggestion is based on our model describing 
the importance of functional DAT to facilitate antipsychotic 
mediated autoinhibition (Figure 3).

Although reduced DAT expression might be assumed to 
promote the effectiveness of antipsychotics, since uptake blockade 
with antipsychotics results in synaptic accumulation of dopamine 
and facilitates autoinhibition upon phasic dopamine release, 
receptor desensitization due to a corresponding downregulation 
(or phosphorylation) of autoreceptors may prevent the occurrence 
(or reduce the likelihood) of autoinhibition altogether (Figure 4). 
Not only are the DAT and D2 autoreceptors co-regulated, along 
with ion channels and the dopamine synthesis machinery  
(131, 160–163, 172), but reduced DAT, reduced D2 receptor 
expression, and reduced dopamine release can all be found in 
human psychostimulant users (254) and are linked to blunted 
striatal dopaminergic transmission in human patients with 
co-morbid schizophrenia and drug addiction (255).

It should be noted that the mechanisms described here and 
depicted in Figure 4 apply to the primary form of antipsychotic-
resistant schizophrenia and not to acquired antipsychotic 
resistance (i.e., tolerance) observed in humans (23) and in animal 
models (35, 38, 45, 91). This distinction is fundamental since DAT 
plasticity underlying the acquired resistance to antipsychotics is 
different than what is described here. In fact, based on our own 
findings from animal models, chronic antipsychotic treatment 
up-regulates DAT (38), while other studies with humans 
and animals show that repeated exposure to addictive drugs 
reduce DAT (254, 256) and both conditions can lead to lack of 
antipsychotic response [see Ref. (38) for an expanded discussion 
of acquired antipsychotic resistance and Figure 4 for a depiction 
of primary resistance]. The description of several forms of DAT 
plasticity induced by psychotropic drugs is beyond the scope of 
this paper, but it should be acknowledged that the reduction of 
DAT expression with chronic addictive drug use is not absolute 
and is sensitive to several factors including treatment regimen, 
drug class, among others, as summarized in these interesting 
studies (257–259).

Antipsychotic-Resistant Schizophrenia:  
A Hypothetical Example
A young person who may not be aware of an underlying genetic 
predisposition to psychosis who becomes exposed to substances 
of abuse at the same rate as other non-predisposed individuals 
may risk impacting his or her capacity to buffer excess 
extracellular dopamine via drug-induced downregulation of 
DAT expression. This individual may seek medical intervention 
upon first experience of psychosis, at which time he or she will 
receive antipsychotic treatment and may already face reduced 

therapeutic efficacy due to the drug-related changes in DAT 
expression. On the other hand, if patients have no history of 
addictive substance consumption before starting antipsychotic 
treatment and begin using moderate doses of addictive drugs 
thereafter, we speculate that the effects of antipsychotics and 
certain categories of addictive substances on the expression 
and function of the dopaminergic machinery (DAT, TH, D2 
receptors) may counterbalance one another (24), producing 
some therapeutic efficacy for a period of time. This might explain 
the high rate of smoking and use of illicit substances among 
patients with schizophrenia.

In summary, we propose that antipsychotic efficacy in patients 
with schizophrenia and particularly the contribution of DAT 
expression to antipsychotic response may be influenced by 
genetic factors as well as environmental factors such as age or 
history of drug use/abuse. We hypothesize that a history of drug 
use prior to onset of schizophrenia could be a potential risk factor 
to becoming antipsychotic treatment resistant, since previous 
exposure to addictive substances may decrease DAT expression 
and impair the synaptic machinery required for autoinhibition, 
which we theorize underlies antipsychotic responsiveness 
during medical intervention in schizophrenia. Antipsychotic-
resistant schizophrenia patients may still respond to clozapine 
despite reduced DAT expression, because clozapine in particular 
stimulates serotonin release [for an overview, see Refs. (168, 
169)], which suppresses dopaminergic firing (259–262) and 
thus may compensate for the absence of dopamine-mediated 
autoinhibition. Though based on a breadth of clinical and bench 
research, this theoretical suggestion is speculative and requires 
validation. A more thorough evaluation of this possibility might 
entail assessment of patient demographics, including history of 
drug use or abuse, as well as the drug classes used and frequency 
of use, along with a history of therapeutic responsiveness or 
resistance when treated with typical or atypical antipsychotics.

CONCLUSION

Although we acknowledge the genetic and neurobiological 
complexity of schizophrenia and its relevance for the efficacy 
of pharmacological treatment, we propose that sufficient DAT 
expression in the brains of patients with schizophrenia may be 
necessary for an adequate antipsychotic response in first episode 
psychosis. Particularly, we suggest that the antipsychotic-
mediated reduction in dopamine re-uptake by direct DAT 
blockade allows accumulation of dopamine in the synaptic cleft, 
which increases the efficiency by which phasically discharged 
dopamine triggers presynaptic autoinhibition. Furthermore, 
given the apparent selectivity of antipsychotics for the D2L 
isoform and the predominant presynaptic expression of D2S in 
the midbrain, phasic dopamine is likely to activate D2S, which 
specifically reduces neuronal excitability. Thus, the functional 
and spatial segregation of the D2 receptor isoforms within the 
striatum and midbrain may contribute to the generation of an 
antipsychotic response. We further propose that consumption 
of addictive drugs prior to onset of schizophrenia symptoms 
might reduce expression of both DAT and D2 autoreceptors and 
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will increase the risk of antipsychotic resistance upon treatment. 
Similarly, since DAT and D2 receptor expression decline with age, 
aging itself may serve as a risk factor for antipsychotic resistance. 
Although these hypotheses require further validation, our theory 
points to the importance of a functional level of membrane 
DAT expression in patients with schizophrenia in order to gain 
therapeutic benefit from antipsychotics.
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