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Subclinical depression (SD) has been considered as the precursor to major depressive 
disorder. Accurate prediction of SD and identification of its etiological origin are urgent. 
Bursts within the lateral habenula (LHb) drive depression in rats, but whether dysfunctional 
LHb is associated with SD in human is unknown. Here we develop connectome-based 
biomarkers which predict SD and identify dysfunctional brain regions and connections. 
T1 weighted images and resting-state functional MRI (fMRI) data were collected from 34 
subjects with SD and 40 healthy controls (HCs). After the brain is parcellated into 48 brain 
regions (246 subregions) using the human Brainnetome Atlas, the functional network of 
each participant is constructed by calculating the correlation coefficient for the time series 
of fMRI signals of each pair of subregions. Initial candidates of abnormal connections 
are identified by the two-sample t-test and input into Support Vector Machine models 
as features. A total of 24 anatomical-region-based models, 231 sliding-window-based 
models, and 100 random-selection-based models are built. The performance of these 
models is estimated through leave-one-out cross-validation and evaluated by measures 
of accuracy, sensitivity, confusion matrix, receiver operating characteristic curve, and 
the area under the curve (AUC). After confirming the region with the highest accuracy, 
subregions within the thalamus and connections associated with subregions of LHb are 
compared. It is found that five prediction models using connections of the thalamus, 
posterior superior temporal sulcus, cingulate gyrus, superior parietal lobule, and superior 
frontal gyrus achieve an accuracy >0.9 and an AUC >0.93. Among 90 abnormal 
connections associated with the thalamus, the subregion of the right posterior parietal 
thalamus where LHb is located has the most connections (n = 18), the left subregion 
only has 3 connections. In SD group, 10 subregions in the thalamus have significantly 
different node degrees with those in the HC group, while 8 subregions have lower 
degrees ( p < 0.01), including the one with LHb. These results implicate abnormal brain 
connections associated with the thalamus and LHb to be associated with SD. Integration 
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of these connections by machine learning can provide connectome-based biomarkers to 
accurately diagnose SD.

Keywords: resting state functional MRI, brain network, subclinical depression, brain biomarker, functional 
connection, node degree

INTRODUCTION

On the depression severity continuum, subclinical depression 
(SD) is a mild condition considered to be the precursor to 
major depressive disorder (MDD) (1, 2). Subjects with SD are 
very vulnerable to depression and are apt to generate suicide 
ideation (3, 4). The increasingly high incidence of SD among 
both college students and the elderly (estimated as high as 
15%) clearly demonstrates the need for intensive investigation 
(5–7). Unfortunately, knowledge of neural substrates of SD is 
incomplete, making it difficult to identify reliable diagnostic 
biomarkers and take preventative treatments (8).

Some dysfunctional brain regions and connections have been 
evaluated in order to identify new biomarkers for SD. Via resting 
state fMRI (rs-fMRI), we have previously demonstrated that 
the altered spontaneous neuronal activity by measurement of 
amplitude of low-frequency fluctuations (ALFF) and disrupted 
functional connectivity (FC) are implicated in SD (9–11). We 
also found that SD presents the increased interhemispheric FC 
and cortical degree centrality, as well as decreased subcortical 
degree centrality. These measures differentiate SD subjects from 
healthy controls (HCs) (10–12). SD is characterized by changed 
FCs between subregions of the anterior cingulate cortex (ACC), 
increased FC of Hb within default model network regions, and 
decreased FC within salience network regions (8, 13). Kaiser et al. 
(14) demonstrated that there exists a high correlation between 
the neural activity of dorsal anterior cingulate cortex (dACC) 
and posterior cingulate cortex (PCC) in SD subjects, indicating 
that SD subjects are confronted with greater difficulty of shifting 
out of internally directed and ruminative thinking. Dedovic et al. 
(15) and Petrican et al. (16) reported the weaker functional 
dominance in dorsal attention network (DAN) [low connectivity 
between the superior parietal lobule (SPL) and the frontoparietal 
control network].

Network neuroscience explores interactions of different 
neurobiological element from an integrative perspective and 
is capable of providing with better predictive biomarkers for 
brain disorders by machine learning (17, 18). Machine learning 
is suitable for individual-level prediction from a prospective 
viewpoint, and it is a potentially powerful tool for precision 
psychiatry (19). For example, Support Vector Machine (SVM), 
as a typical method of machine learning, has been widely 
used to identify imaging biomarkers in diseases such as 
schizophrenia, major depression, bipolar disorder, etc. (20). 
For more information on machine learning and its application 
in psychiatry, one can refer to the comprehensive reviews 
(21–24). Recently, machine learning has proved useful to build 
connectome-based biomarkers for autism spectrum disorder, 
bipolar disorder, subtypes of depression, and schizophrenia 

(25–28). However, not many connectome-based biomarkers 
have been developed for SD.

Compared with SD, MDD has received more attention and 
significant breakthroughs have been achieved. For example, 
concrete evidence has demonstrated that bursts within the 
lateral habenula (LHb) drive depression in rats (29). As an 
evolutionary conserved epithalamic structure, LHb is involved 
in negative motivational value and decision-making (30–33). 
LHb is also considered to be the pathophysiological basement 
of MDD (34, 35). For more details on LHb, one can refer to 
these recent reviews (36–38). The deep brain stimulation of 
LHb has been successfully used to treat patients with refractory 
MDD (39). These findings on MDD may provide useful clues 
regarding SD.

LHb has been investigated by multimodal MRI in depressive 
and healthy subjects, but not in subjects with SD. LHb volume 
measured by high-resolution T1-weighted images decreases 
in depression, but not in posttraumatic stress disorder or 
schizophrenia (40, 41). Using task-based functional MRI (fMRI), 
Salas et al. (42) have shown that LHb is activated in response 
to negative reward prediction. It is worth noting that the fMRI 
study on LHb has several limitations. First, the habenula volume 
approximately ranges from 29 to 36 mm3 in each hemisphere 
based on structural MRI and postmortem measurement, which 
can be smaller than the voxel size of standard fMRI (40, 41, 43). 
The smoothing kernels [5–12 mm full width at half maximum 
(FWHM)] are larger in size than LHb. Second, the habenular 
signal is likely contaminated by adjacent structures, such as 
the medial dorsal thalamus or the epithalamic paraventricular 
nucleus (43).

Herein, connectome-based biomarkers are developed to 
predict subclinical depression through a machine learning 
algorithm and identify dysfunctional brain regions and 
connections. The method of predictive modeling used in 
our study is different with the traditional method of brain 
mapping (13). Predictive modeling integrates all brain data 
or features into a single prediction of outcome, making 
multiple comparisons unnecessary and increasing statistical 
power (18). Specifically, we parcellate the whole brain 
into 48 regions and 246 subregions using the latest human 
Brainnetome Atlas (44) and build large-scale resting-state 
functional brain networks using fMRI data. A two-sample 
t-test is used to identify initial candidate connections, and 
the resultant regional connections are input into SVM models 
as features. The performance of the predictive models is 
estimated by leave-one-out cross-validation. The node degree 
of subregions within the thalamus is compared between SD 
and HC groups. Connections linked with subregions of LHb 
are further investigated.
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MATERIALS AND METHODS

Participants
All the participants were enlisted from volunteers who had 
undergone health screening at Guangzhou Medical University 
from 2012 to 2014. The Beck Depression Inventory II (BDI-II) 
scale is administered to evaluate the depression symptom 
severity. Thirty-four subjects (11 males, 23 females) with 
BDI-II score >13 are placed into the SD group (BDI score 
mean ± SD: 22.58 ± 6.92) and 40 healthy controls (21 males, 
19 females) are selected to match the SD group by age, sex, 
and education. According to the two-sample t-test, there is no 
significant difference for the age (years) between SD and HC 
groups (mean ± SD: 19.91 ± 1.64 vs. 19.70 ± 0.85, p = 0.50), 
neither for the education (years) (mean ± SD: 13.18 ± 0.58 
vs. 13.08 ± 0.62, p = 0.47). By the chi-square test, there is no 
significant difference for the gender (p = 0.07). None of the 
participants fulfilled the criteria for MDD based on Diagnostic 
and Statistical Manual of Mental Disorders IV (DSM-IV). 
Other inclusion criteria for all participants include age ranging 
from 19 to 25 years, right-handedness, no visualized lesion 
on any MRI scans, no neurological illness, and no alcohol 
or drug dependence. The study is approved by the Medical 
Ethics Committee of Guangzhou First People’s Hospital of 
Guangzhou Medical University and is in accordance with 
the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards. All participants signed a 
written informed consent in accordance with the Declaration 
of Helsinki (2000).

MRI Imaging Data Acquisition
All MRI images were acquired using one 3-Tesla MRI scanner 
(Siemens, Erlangen, Germany) with an eight-channel phase-array 
brain coil. Foam pads and headphone were utilized to minimize 
the head motion and reduce noise, respectively. As in our previous 
studies (10–12), high-resolution T1-weighted images were 
obtained with a standard magnetization prepared rapid gradient 
echo (MP-RAGE) sequence [repetition time (TR)/echo time 
(TE) 2,530/2.34 ms, flip angle (FA) 7°, field of view (FOV) 256 × 
224 mm, slice thickness 1.0 mm]. The resting-state fMRI data were 
collected by one echo-planar imaging (EPI) sequence (TR/TE 
2,500/21 ms, FA 90°, FOV 200 × 200 mm, matrix 64 × 64, 42 slices 
without gap, voxel size 3.5 × 3.1 × 3.1 mm). The images of 200 time 
points were collected, and the total amount of fMRI acquisition 
time is 500 s. During the resting-state fMRI scan, the participants 
were asked to relax, to close their eyes, not to think of anything in 
particular, and not to fall asleep. Wakefulness of participants has 
been confirmed immediately after the fMRI scanning session.

Study Design and Main Procedures
The study design and procedures are schematically shown in 
Figure 1. There are six steps for this study (Figure1A). After the 
first step of image preprocessing, functional brain networks for 
HCs and SDs are constructed. Then two-sample t-tests are used to 
identify potential dysfunctional connections. Three methods are 
proposed to further select connections from previously identified 

candidates. These selected connections are used to train and 
test the predictive models of SD. After excluding confounders 
such as the number of connections and p-value, dysfunctional 
brain regions and connections are determined by examining 
the models with high predictive accuracy. Finally the emphasis 
is placed on the dysfunctional thalamus and LHb. Abnormal 
connections associated with the thalamus and its subregions, 
including LHb, as well as the node degree of these subregions 
are characterized. These six steps are described in details below.

Functional MRI Image Preprocessing
As shown in Figure 1B, the T1-weighted and rs-fMRI data is 
preprocessed using the DPARSF toolbox (http://www.restfmri.
net/forum/DPARSF) (45, 46) as follows. First, the initial 20 
time points of raw fMRI data are removed in order to eliminate 
unstable factors. Second, the time layer correction and head 
movement correction are carried out. Third, the brain of each 
subject is registered to a normative template through spatial 
standardization. Fourth, a band-pass filtering of 0.01–0.1 Hz and 
Gaussian smoothing with 6 mm FWHM are implemented.

Construction of Functional Brain Networks
The procedure for constructing functional brain networks 
is shown in Figure 1C. First, the newly developed human 
Brainnetome Atlas is used to parcellate the whole brain into 48 
brain regions (246 subregions). This atlas is four to five times 
as accurate as the traditional Brodmann map and has a more 
objective and accurate boundary (44). Each subregion represents 
a node in the constructed brain network. The time course of each 
subregion is calculated by averaging the time course of all voxels 
therein. The strength of functional connection or the connection 
weight (Wij), also identified as edge weight, is expressed as the 
Pearson correlation coefficient between the time courses of any 
two subregions (i, j). The correlation matrix is transformed into 
Z scores by applying Fisher’s r-to-Z transformation. For each 
individual, a weighted undirected network is obtained in the form 
of a 246 × 246 adjacency matrix (A). Given that it is controversial 
for interpreting negative correlation or functional connectivity 
(47, 48), the normalized absolute value of the matrix is used as 
done in previous studies (49, 50), such that 0 ≤ Wij ≤ 1 for all i and j.

Node degree and edge weight are used to determine whether 
a brain region (or subregion) is connected or dysfunctional in 
SD. The node degree (ki) refers to the number of connections 
that link this node to the rest of the network. For our weighted 
networks, the definition can be transformed as

 
k Wi ij

j N
=

∈∑  (1)

where Wij is the strength of the connection between node i 
and node j, and N is the set of nodes in the network. The edge 
weight (Wij) is an important measure for evaluating the alteration 
in the strength of a connection in SD.

Identification of Dysfunctional Connections
As shown in Figure 1D, two-sample t-tests are performed to 
examine significant differences between edge weight in SD and HC  
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groups (p < 0.05). For multiple comparisons, the false discovery rate 
(FDR) is controlled by the linear step-up procedure introduced by 
Benjamini and Hochberg (51). To avoid the information leakage, 
the two-sample t-test is carried out after leaving one out, not for 
all subjects. This step generated 74 different masks of abnormal 
connections. Based on each mask, the work in Connection 
Selection and Predictive Models is done. However, for the group 

study in Dysfunctional Thalamus and Lateral Habenula, the two-
sample t-test is done for all subjects.

Connection Selection and Predictive Models
The study uses the library for support vector machines (LIBSVM) 
toolkit developed by Professor Lin of Taiwan University (https://
www.csie.ntu.edu.tw/~cjlin/libsvm/), which integrates many 

FIGURE 1 | Study design and procedures. (A) Overview of the study procedures; (B) functional MRI (fMRI) image preprocessing; (C) construction of functional brain 
networks; (D) identification of dysfunctional connections; (E) connection selection and predictive models.
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functions such as kernel selection, parameter adjustment, and 
prediction. For the training of SVM classification model, the radial 
basis kernel function (RBF) is used. This kernel function provides a 
good classification for samples with nonlinear relationship between 
labels and features as expressed below.

 
K x x x xi j i j, ,( ) = − −





>exp γ γ
2

0  (2)

According to the recommendation from LIBSVM, the values 
of the optimal penalty coefficient C and the kernel function 
parameter γ are determined by the way of “grid-search” using 
cross-validation (52). After going through all the pairs of (C, γ) 
with C = 2−5, 2−3,…, 215 and γ = 2−15, 2−13,…, 23, the pair leading to 
the best cross-validation accuracy is found.

Three methods are proposed to select connections from identified 
candidates, and these selected connections are used to train and test 
the predictive SVM models of SD, as shown in Figure 1E. For the 
first method, the significantly altered connections associated with 
each brain region defined by the human Briannetome Atlas are 
used as input features. A total of 24 SVM models are built to predict 
SD, and they are named as anatomical-region-based models. The 
performance of these models is estimated through leave-one-out 
cross-validation using measures of accuracy, sensitivity, confusion 
matrix, receiver operating characteristic (ROC) curve, and the area 
under the curve (AUC). These models are ranked by accuracy. The 
brain regions leading to the models with an accuracy >0.90 are 
considered to be dysfunctional.

To determine whether models using connections associated with 
subregions not belonging to one specific anatomically well-defined 
brain region and with subregions that are anatomically nonadjacent 
can achieve comparable performance to the anatomical-region-
based models, two more independent experiments are conducted. 
First, the method of sliding window with 16 subregions is employed 
to generate different input features and models. The reason why the 
number of subregions was set as 16 is that the thalamus leading 
to the predictive model of the highest ACC owns 16 subregions. 
As shown in the middle column of Figure 1E, to slide the window 
row by row throughout the adjacency matrix (246 × 246) will 
generate 231 windows (246 – 16 + 1 = 231). The models using 
the connections within each individual window as input features 
are named as sliding-window-based models. Second, a model is 
constructed using the functional connections within 16 randomly 
selected subregions as input features. A total of 100 similar models 
are generated and identified as random-selection-based models. The 
accuracy values of these three categories of models are compared.

Exclusion of Confounders
To estimate whether the performances of the anatomical-region-
based models are dependent on the number of connections associated 
with the brain region and the p-value of these connections, their 
correlation coefficients are assessed. The distribution of connections 
in the model with the highest accuracy is investigated to explore 
whether these models with good performance are independent.

Dysfunctional Thalamus and Lateral Habenula
In order to further identify dysfunctional subregions and 
connections, the connections of brain regions achieving the 

highest predictive accuracy (thalamus) are examined. The 
number and p-value of connections associated with each of the 
16 subregions are identified. Finally, the node degree of each 
subregions is compared between SD and HC groups.

RESULTS

Anatomical-Region-Based Models
The 24 anatomical-region-based models ranked by the accuracy 
of predicting SD are presented in Figure 2A. The accuracy ranges 
from 0.65 to 0.92. The top five models used connections associated 
with the regions of thalamus, posterior superior temporal sulcus, 
cingulate gyrus, superior parietal lobule, and superior frontal 
gyrus. The accuracy of each of these five models is higher than 
0.90. The anatomical locations are shown in Figure 2B. The ROC 
curves and the AUC values are shown in Figure 2C. The cingulate 
model achieves the highest AUC of 0.957. The thalamus model 
yields the second highest AUC of 0.943. The confusion matrices 
of the top five anatomical-region-based models are listed in 
Table 1. For the thalamus model, 31 out of 34 subjects with SD 
(91.2%, also defined as sensitivity) and 37 out of 40 HCs (92.5%, 
also defined as specificity) are predicted accurately. The posterior 
superior temporal sulcus model yields the highest specificity of 
95.0%, and the posterior superior temporal sulcus model yields 
the highest sensitivity.

Other Subregion Selection Strategies
The accuracy of the models using other subregion selection 
strategies is compared with that of the anatomical-region-based 
models, as shown in Figure 2D. No significant difference in 
accuracy is observed between the 231 sliding-window-based 
models and the 24 anatomical-region-based models (0.81 ± 0.06 
vs. 0.80 ± 0.08). The accuracy of the 100 random-selection-based 
models is 0.45 ± 0.06, which is significantly lower than that of 
the anatomical-region-based models and the sliding-window-
based models (p < 0.001). The top five anatomical-region-
based models, and in particular the thalamus model, achieve 
extraordinarily higher accuracy, as compared with the other 
models. Two important features are worthy to be noted. First, 
the brain regions involved in the top five anatomical-region-
based models are potentially dysfunctional due to SD. Second, 
the arbitrary anatomically adjacent subregions (obtained by the 
sliding window method) can generate comparable prediction 
accuracy with anatomically well-defined subregions (obtained 
by the anatomical-region-based method), but the randomly 
selected subregions cannot reliably predict SD.

Effect of the Number of Connections 
and the p-value
The number of connections associated with the 24 brain regions 
used for the predictive models of SD ranges from 52 to 240, as 
shown in Figure 3A. The top five models, which correspond 
to the regions of thalamus, posterior superior temporal sulcus, 
cingulate gyrus, superior parietal lobule, and superior frontal 
gyrus, have connections with the average number of 85, 120, 83, 
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FIGURE 2 | The performances of predictive models of subclinical depression (SD) and their comparison. (A) The prediction accuracy of 24 anatomical-region-based 
models; (B) the brain regions leading to the top five accuracy models; (C) receiver operating characteristic (ROC) curves and area under the curve (AUC) of the top 
five models; (D) comparison of the accuracy of models using connections with thalamus, 24 anatomical-region-based models, 231 sliding-window-based models, 
and 100 random-selection-based models.
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222, and 131, respectively. Figure 3B shows the mean p-value of 
connections in individual brain regions, which ranges from 0.025 
to 0.031.

The dependence of the accuracy of the predictive models on the 
number of connections associated within individual brain regions 
and the mean p-value of connections are shown in Figure 3C. 
The accuracy of the predictive models is related to the number 
of connection associated with brain regions (r = 0.093), but there 
is no statistical significance (p = 0.665). When the number of 
connections associated with brain regions is randomly reduced 
to 90, as with the thalamus, the accuracy does not increase. For 
instance, after reducing the number of connections in middle 
frontal gyrus from 229 to 90, the accuracy decreases from 0.89 
to 0.70 (the mean of 100 times random samples). The accuracy 
of the predictive models is negatively related to the mean p-value 
of connections associated with brain regions without statistical 
significance (r = 0.169, p = 0.429). The high value of accuracy 
of the top five models is due to neither the large number of 
connections, nor the small p-value of the connections.

Dysfunctional Connections With the 
Thalamus
Given that the thalamus is seen as one possible dysfunctional 
brain region of SD, connections associated with the thalamus are 
investigated, as shown in Figure 4. The number of connections 
between the thalamus and precuneus, insular gyrus, paracentral 
gyrus, and amygdala is higher than that of the other regions (11, 
8, 8, and 8, respectively). However, the number of connections 
between the thalamus and itself, the posterior superior temporal 
sulcus, cingulate gyrus, superior parietal lobule, and superior 
frontal gyrus is only 6, 5, 3, 4, and 4, respectively. High accuracy 
values of the models using connections associated with the 
posterior superior temporal sulcus, cingulate gyrus, superior 
parietal lobule, and superior frontal gyrus are independent on 
the thalamus. These regions may also be impacted by SD.

Subregions Within the Thalamus 
and Lateral Habenula
The distribution of the 90 significantly different connections 
associated with the thalamus among 16 subregions is shown in Figure 
5A. There are 18 connections associated with the right posterior 
parietal thalamus (PPtha_r), much higher than those connected 
with the other regions. The significant asymmetry is observed, i.e., 
the right side has more connections than the left. Astonishingly, only 
two edges are connected to the left posterior parietal thalamus. The 
p-value of connections associated with PPtha_r is smaller than that 
of PPtha_l, as illustrated in the right part of Figure 5A. Based on 
Montreal Neurological Institute (MNI) coordinates, LHb is located 
in the posterior parietal thalamus (Figure 5B).

Node Degree of Subregions Within the 
Thalamus
The node degrees of 16 subregions within the thalamus are 
compared between SD and HC groups, as shown in Figure 6. 
Significant difference is found for 10 subregions. For eight 
subregions, the node degree of SD is significantly smaller than 
that of HC. The node degree of subregions on the right is higher 
than that of subregions on the left, for both SD and HC groups.

DISCUSSIONS

Sophisticated connectome-based brain biomarkers permit the 
association of brain measures with both subjective experiences 
and objective behaviors, leading to a reconceptualization of 
diagnoses of mental illness. Herein, we have built several reliable 
brain biomarkers (>0.9 accuracy) that predict SD using abnormal 
functional connections as input features and SVM as the machine 
learning algorithm. We have found dysfunctional brain regions, 
especially the thalamus and LHb, which may be the etiological 
origin of SD. We have observed a reduction of the node degree 
for the right LHb in SD, but not for the left. The significance of 
these findings and the related advantages of this methodology are 
interpreted and discussed in the following subsections.

Reliable Biomarkers for Subclinical 
Depression Prediction
In this study, we have identified reliable brain biomarkers for SD 
prediction through the large-scale brain networks driven from 
resting state fMRI and a machine learning algorithm. Previously 
we had constructed biomarkers using the degree of centrality of 
different brain regions. The highest AUC was 0.82 for the right 
posterior parietal lobule (12). Here, the biomarkers are more 
reliable, and the highest AUC of 0.957 is achieved while using 
connections with the cingulate gyrus. Moreover, the arbitrary 
anatomically adjacent subregions (obtained by the sliding window 
method) and the anatomically well-defined subregions (obtained 
by the anatomical-region-based method) produce models with 
similar performances. These models present significantly higher 
accuracy than those driven by the randomly selected subregions. 
These results suggest that anatomical adjacency is important in the 

TABLE 1 | The confusion matrices of the top five anatomical-region-based 
models.

Model and items Normal
(gold standard)

Patient
(gold standard)

Total

Thalamus model
Predict to normal 37 (92.5%) 3 (8.8%) 40
Predict to patient 3 (7.5%) 31 (91.2%) 34

Posterior superior 
temporal sulcus model
Predict to normal 36 (90.0%) 2 (5.9%) 38
Predict to patient 4 (10.0%) 32 (94.1%) 36
Cingulate gyrus model
Predict to normal 37 (94.4%) 4 (11.8%) 41
Predict to patient 3 (5.6%) 30 (88.2%) 33
Superior parietal lobule 
model
Predict to normal 36 (90.0%) 3 (11.1%) 39
Predict to patient 4 (10.0%) 31 (88.9%) 35
Superior frontal gyrus 
model
Predict to normal 38 (95.0%) 5 (14.7%) 43
Predict to patient 2 (5.0%) 29 (85.3%) 31
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FIGURE 3 | Exclusion of confounders (the number of connections and the mean p-value). (A) The number of connections with significant difference between healthy 
controls (HCs) and SDs for each of 24 brain regions; (B) the p-value for significant difference of connection weight between HCs and SDs for each of 24 regions; 
(C) the relationship between the accuracy of prediction and the number of connections with significant difference (left part), between the accuracy of prediction and 
the mean of p-value for significant difference of connection weight (right part).
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selection of feature (or connections) while building brain models 
or biomarkers. However, more sophisticated algorithms of feature 
selection, such as L1-regularized sparse canonical correlation 
analysis (L1-SCCA), may yield better biomarkers than anatomical 
adjacency (18, 25).

Dysfunctional Brain Regions in Subclinical 
Depression
Using the criterion of owing prediction accuracy greater than 
0.90, we identified the top five regions associated with dysfunction 
in SD from 24 cortical and subcortical regions, defined by the 
human Brainnetome Atlas (44). These regions include the 
thalamus, posterior superior temporal sulcus, cingulate gyrus, 
superior parietal lobule, and superior frontal gyrus. Most of these 
regions had been reported in previous studies of SD. The related 
findings for each dysfunctional region are described below.

Not unexpectedly, given that the thalamus has multiple 
functions of relaying information between different subcortical 
regions and the cerebral cortex, the dysfunctional thalamus 
is identified in SD. It had been reported that two subtypes of 
depression had hyperconnectivity between the thalamic and 
frontostriatal network, resulting in symptoms related to reward 
processing, adaptive motor control, and action initiation (27, 53). 
Of particular importance, LHb, a small epithalamic structure, 
is believed to control reward and aversion processing. The 
importance of these observations will be discussed in detail below.

Distinct connectivity patterns are observed in subregions of 
the posterior cingulate cortex for SD (8). The anterior cingulate 
cortex (ACC) is an important component of reward circuitry, 
with abnormalities resulting in anhedonia (loss of interest/
pleasure), a core symptom in MDD (54). Abnormal ACC is also 
linked to default model network (DMN, self-related thoughts), 
hyperconnectivity, and switching between the DMN and the 
central executive network (CEN, externally-focused cognition) 
(8, 14, 55, 56).

Previously we had reported that the superior parietal lobule 
(SPL, Brodmann area 7, BA 7) presented the decreased fractional 

ALFF (fALFF) (9). The SPL had been proposed to be the key 
component controlling the executive network and playing a 
critical role in working memory (57).

The superior frontal gyrus includes the dorsolateral prefrontal 
cortex (DLPFC) and the medial prefrontal cortex (MPFC). In 
depression, DLPFC is used for emotion adjustment, with the 
activity of DLPFC inhibited at rest but increased during symptom 
remission (58, 59). Our previous work had shown that the 
functional connectivity between SPL and DLPFC was reduced 
in SD (9). MPFC is an important component of DMN playing a 
crucial role in self-referential processing. A lack of DMN inhibition, 
i.e., self-focus, is a core issue of MDD (60). Most importantly, 
both regions of the superior frontal gyrus had been the targets for 
repetitive transcranial magnetic stimulation (rTMS) in depression 
treatment (61).

Dysfunctional Brain Regions Connected 
With the Thalamus
We have found that the dysfunctional thalamus in SD is mainly 
linked with the precuneus, insular gyrus, paracentral lobule, and 
amygdala. It is not surprising to observe the insula and amygdala 
because they are the neuroanatomical core of MDD pathology 
and closely related to anxiety (27). The precuneus is related to 
anhedonia, and the paracentral lobule (premotor) to anxiety. 
Positive connectivity between the LHb (an epithalamic structure) 
and the sensorimotor cortex had been reported by Ely et al. (13).

There is no overlap between the four regions with large 
number of abnormal connections associated with thalamus and 
the four regions (except thalamus) of the top five models ranked 
by accuracy. This is explained by the difference between machine 
learning and classical statistics which is discussed below.

Lateral Habenula—Beyond a Reasonable 
Doubt
Only one previous study had investigated the resting state 
functional connectivity of the LHb in SD (13). Herein, the SD 

FIGURE 4 | The number of connections that present significant difference and connect the thalamus and each of 24 brain regions.
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FIGURE 5 | Dysfunctional thalamus and lateral habenula. (A) The number of dysfunctional connections for16 subregions of thalamus (the left part) and the p-value of 
the dysfunctional connections with 16 subregions of thalamus (the right part); (B) the anatomical atlas of thalamus and LHb.
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group shows greater LHb connectivity with DMN and lower 
connectivity with the salience network, which is consistent with 
prior finding in MDD. Here we found a lateralized decrease of 
node degree in the subregion with LHb (at right) in SD. This 
finding is consistent with our previous finding of decreased 
subcortical degree centrality (12). We speculate that the 
decreased node degree of LHb corresponds to its hyperactivity 
and abnormal bursts. Given that LHb has an inhibitory effect on 
dopamine neurons, Hikosak (32) proposed that the hyperactivity 
of LHb results in hypoactivity of dopamine neurons, reducing 
motor activity in MDD. Hyperactivity of LHb could be the 
result of bursts. According to Yang et al. (29), LHb burst firing 
increases in depression and LHb bursts lead to depression in 
rats. Interestingly, Ely et al. (13) found that LHb connectivity 
increased in the left and decreased in the right. This may partly 
explain the decreased node degree of the right LHb.

Among many dysfunctional brain regions, which one is the 
most likely etiological origin of SD? Is it LHb, as in depression 
for rats (29)? Given the correlative nature of resting-state 
fMRI, it is difficult to establish a causal inference (58). 
Therefore, we do not know which brain region is the cause or 
consequence of SD. However, based on these evidences given 

in our study, we believe that LHb may be the origin of SD, 
beyond a reasonable doubt.

Machine Learning and Classical Statistics
In this study, we have used the classical statistical method, the 
two-sample t-test, to initially screen the candidate connections 
with significant difference between SD and HC groups. The 
selected connections are input into the SVM models as features. 
The two-sample t-test is actually used as a one feature selection 
algorithm. The method of using group tests has been proven to 
yield an inflated bias (62). Thus, we did not carry out strict multiple 
comparison corrections. More powerful feature selection or 
dimension reduction algorithms, such as L1-regularized sparse 
canonical correlation analysis, linear elastic-net, and minimum-
redundancy maximum relevancy, can be assessed in the future 
(25, 63).

Moreover, we found that connections with small p-values do 
not always lead to high prediction accuracy in machine-learning-
based models. This is consistent with previous studies, and 
originates from the essential difference between group difference 
and classification (62, 64, 65).

FIGURE 6 | Node degree of 16 subregions in the thalamus of HC and SD.
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