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Maternal immune activation (MIA) at the time of gestation has been linked to increased risk 
of neurodevelopmental psychiatric disorders. Animal and human models have been used 
to evaluate the relationship between MIA and these outcomes. Given that each of these 
two disciplines of study have their benefits and limitations, a translational perspective is 
expected to illuminate more than by the use of any single approach. In this article, we 
discuss this translational framework and explore how it may be enhanced by the utilization 
of epigenetic studies and by investigating the microbiome. In this perspectives piece, we 
focus on the impact of epidemiologic studies, animal models, and preclinical studies in 
the literature on MIA as well as the potential for greater integration between fields.
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INTRODUCTION

Fetal developmental events occurring in utero are implicated in the postnatal health of offspring 
through adulthood. Environmental exposures during gestation, including maternal infection, 
nutritional deficiencies, toxic exposures, and other factors that cause stress during pregnancy 
are particularly insidious during gestation. Central nervous system (CNS) disorders, particularly 
schizophrenia, autism spectrum disorder (ASD), and bipolar disorder likely result from both genetic 
and environmental contributions. Epidemiologic studies have revealed strong connections between 
conditions associated with heighted maternal immune activation (MIA), resulting from infection 
and stress, and schizophrenia (1, 2), ASD (3, 4), and bipolar disorder (5) in offspring. At the same 
time, substantial advances have been made through animal models to understand the mechanisms 
underlying these diagnoses. More recent studies have begun to address potential mediating pathways 
including epigenetics, and the role of the microbiome in these disorders.

IMPACT AND LIMITATIONS OF EPIDEMIOLOGIC STUDIES  
OF MIA

Epidemiologic studies offer important potential inferences into etiologic processes through the direct 
study of human populations. Results from early ecologic studies, which focused on the comparison 
of groups instead of on individuals, were consistent with associations historically found between 
schizophrenia and prenatal exposure to influenza outbreaks (6). Later, ecologic studies, with larger 
cohorts and those investigating other infectious agents, showed inconsistent results and generally 
weak effects. However, these types of studies are imprecise in their measurement of this exposure, 
as individual-level data are missing. About 70% of those who were in utero during the influenza 
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epidemic of 1957, but were unexposed, were incorrectly classified 
as exposed because ecologic studies are based on dates of birth to 
establish fetal exposure (7).

To address this limitation, individual-level information has 
been garnered through the use of birth cohort studies, by which 
exposures occurring during pregnancy can be documented 
with questionnaires, medical histories or biological samples. 
Individuals studied can then be longitudinally monitored for 
diagnoses such as ASD or schizophrenia. Birth cohort studies 
have shown that offspring of mothers with antibodies to certain 
infections, including influenza, and/or elevated C-reactive 
protein levels during pregnancy, were at increased risk for 
schizophrenia (1, 2, 8), ASD (3, 9, 10), and bipolar disorder (5, 
11). This is discussed in a recent review [see Ref. (12)].

One key limitation of birth cohort studies is that they cannot be 
used to identify biological mechanisms underlying the pathology. 
The potential to draw causal inferences is further limited by 
potential bias and confounding, though our group and others 
have utilized epidemiologic and statistical approaches to reduce 
the impact of these factors. Since a myriad of infectious agents 
produce cytokines and other inflammatory markers, they can be 
used as a common indicator of these exposures and may operate as 
a shared mechanism by which neurodevelopment of offspring may 
be prenatally modified, thus increasing the risk for schizophrenia, 
bipolar disorder, and other psychiatric conditions (2, 13, 14).

IMPACT AND LIMITATIONS OF ANIMAL 
AND HUMAN MODELS OF MIA

The abovementioned epidemiological studies have inspired 
research on prenatal infection and MIA using rodent and primate 
models. Animal models have provided unique experimental 
tools to overcome the limitations of epidemiological studies, 
such as longitudinal evaluation of neurobiological processes as 
well as establishing causality. They also facilitate the unraveling 
of cellular and molecular mechanisms, which is not possible 
in epidemiologic studies. Through studies of animal models, 
cytokines were found to act on the developing fetal brain as 
inflammatory signaling proteins of detrimental environmental 
exposures. Cytokines play critical roles in normal fetal 
development, including neuron proliferation, and synaptogenesis 
(15). However, elevated maternal proinflammatory cytokine 
levels cause changes in these processes and have been associated 
with abnormal neurodevelopment (16). The MIA models in 
animals allow for in-depth tracking of biologically-relevant 
phenotypes over time from gestation to adulthood (17). These 
models involve triggering the maternal immune system during 
fetal development using a variety of immunogens, such as 
lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid 
(poly I:C), and then observing changes in the brain and behavioral 
development of offspring for features corresponding to human 
neurological disorders (18, 19). It is possible that prenatal immune 
challenge acts as a “disease primer” which, when combined with 
other environmental, genetic, and epigenetic factors, alters the 
trajectory of fetal neurodevelopment and may ultimately result in 
the emergence of a number of CNS disorders (17).

Rodents have historically been the principal species utilized 
in animal model studies. For example, deficits in sensorimotor 
gating (17, 18), depression-like behaviors (20), and high levels 
of repetitive behaviors (18, 21, 22) have been noted in offspring 
of rodent MIA models. One particular mouse study (8) reported 
neural and behavioral abnormalities resembling those found in 
schizophrenia as a result of prenatal exposure to MIA interacting 
synergistically with traumatizing experiences in puberty (23). 
Studies have also included nonhuman primates, such as rhesus 
monkeys (24). These models have provided greater comparability 
with regard to biological phenotypes and neurodevelopmental 
processes to humans. In one rhesus monkey model, MIA 
produced progeny that displayed irregular social interactions, 
abnormal communication, and repetitive behaviors. These results 
extended rodent MIA findings to behaviors that more closely 
mirror human behaviors, such as those in both ASD and, to some 
degree, in schizophrenia (25). More recently, novel evidence 
implicating MIA exposure with alterations of nonhuman primate 
dendritic morphology was found (26). This may offer insight into 
revealing the neuropathology of CNS disorders related to MIA 
and pave the way for clinical investigations.

Recent clinical studies have served to help bridge the gap 
between non-human and human primate basic science by 
evaluating relationships between maternal immune function and 
neuroanatomic abnormalities. Maternal pro-inflammatory cytokine 
interleukin-6 concentrations were associated with offspring 
frontolimbic white matter microstructural properties, including 
maturational changes in the first 12 months postnatally (27). Another 
clinical study linked high maternal inflammatory concentration of 
interleukin-6, a pro-inflammatory cytokine, during pregnancy with 
abnormal development in offspring at 2 years of age in brain regions 
associated with sensory processing and impulse control (28).

STRESS AND MIA

Many studies have suggested a correlation between maternal stress 
during pregnancy and a myriad of negative neurodevelopmental 
effects in offspring (29, 30). Stressful experiences during 
pregnancy, including death in the family, war, natural disasters, 
and more recently socioeconomic disadvantage have been 
linked with schizophrenia in offspring (31–34). These results 
provide evidence for an association between maternal stress 
and schizophrenia in offspring. The impact of prenatal exposure 
to maternal stress has been investigated by several birth 
cohort studies. Distressing experiences while the mother was 
pregnant were recorded and used to anticipate potential risk of 
psychiatric disorders among offspring in a Danish cohort (35). 
There is a growing body of evidence implicating stress during 
prenatal development to ASD (36, 37).These results corroborate 
epidemiological research on birth cohorts from the Dutch Hunger 
Winter of 1944–45 which reported relationships between prenatal 
famine and offspring long-term cognitive and mental health 
development (38–40), including schizophrenia and affective 
disorders. Although nutritional deficiency is regarded as the likely 
cause of the findings, it is possible that maternal stress due to the 
exposure played a role. However, conflicting results were found 
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in a population-based cohort study, regarding maternal exposure 
to death of a relative and risk for ASD in offspring, in which no 
correlation was reported (41).

Although the precise mechanisms for the associations 
between maternal stress, immune activation, and subsequent 
offspring pathology are still not well known, it is thought that 
psychological stress, through the inflammatory response, 
may exert an influence on human health (42). One study 
has examined the cytokine profiles of umbilical cord blood, in 
association with prenatal stress, as a marker of their effects on 
the immune system. The findings suggest that both adaptive and 
innate immune responses were altered by prenatal stress (43). 
A more recent birth cohort investigation implicated maternal 
psychological stress in alterations of perinatal cytokine profile in 
offspring. In particular, prenatal maternal stress was associated 
with higher levels of interleukin-4, interleukin-5, interleukin-6, 
interleukin-8, and interleukin-1ß (44).

THE MICROBIOME AND MIA

The microbiome is a relatively new topic that has been explored 
as a potential etiologic factor in central nervous system disorders 
and the remediation of their symptoms. An imbalance in the 
microbiome is correlated with a variety of adverse consequences, 
including lasting behavioral abnormalities, neuropathology, 
immune dysfunction, and deficient gastrointestinal integrity. 
Abnormalities in immune function are reported in ASD and 
other psychiatric disorders, and recent studies suggest that 
microbiota is an important factor in this dysregulation (45, 46). 
The gut microbiome composition has been determined to not 
only be affected by neuroinflammation (46) but to reciprocally 
affect specific regional immune responses in the brain (47).

Animal Models
Experimental studies have shown that MIA brings about 
enduring changes in immune system activity as well as ubiquitous 
alterations in the balance of offspring microbiota in adulthood 
(48–50). One study reported changing the microbiome of 
mice using human commensal B. fragilis enhanced not only 
gastrointestinal health, but also execution of certain tasks used 
to measure behaviors principally associated with ASD (49). In 
another study, investigators found that mice that had more Th17 
cells in their intestine, and in which there was more colonization 
with segmented filamentous bacteria (SFB), were more prone to 
behavioral pathology caused by MIA (50). This susceptibility was 
passed to other mice by induction of Th17 cells and colonization 
of SFB. In addition, during MIA, elevated interleukin-17a 
responses were caused by the activation of dendritic cells, a 
key cell type involved in CNS pathology, interacting with SFB 
colonized Th17 cells (50).

MIA and the Human Microbiome
When the maternal immune system is activated during 
pregnancy, the inflammatory cytokines released affect the 
offspring’s vagal system and consequently their CNS regulation 

(51). MIA activation also affects maternal gut bacteria, which in 
turn can affect the microbiome of offspring. The microbiome 
of offspring has been shown to be populated and affected by 
the prenatal environment (52), mode of delivery (53), diet, and 
other aspects of postnatal care (54). The microbiome of children 
with ASD, when compared with controls, is less diverse, with 
overgrowth of certain microbes, such as Desulfovibrio (55), 
Alistipes, and Akkermansia (56), being more common.

Probiotics are hypothesized to aid autism symptoms by 
colonizing the gastrointestinal system with beneficial bacteria. 
However, clinical trials of probiotic supplementation have shown 
mixed results for the effectiveness of probiotics on the behavioral 
symptoms of ASD (57). A more recent open-label study using 
microbiota transfer therapy (MTT), which consists of round of an 
antibiotic, a colon cleanse, and fecal transplant therapy, resulted 
in an 80% decrease in problematic GI symptoms using the 
Gastrointestinal Symptom Rating Scale and increased diversity of 
the microbiome of participants (58). This therapy also resulted in 
improved ASD behavioral symptoms which continued for 8 weeks 
post-treatment completion. This therapy will need to be studied 
more extensively with larger sample sizes, but these results are 
promising for a potential treatment option.

It has recently been reported that oral probiotic supplementation 
during pregnancy reduced MIA cytokine levels and subsequent 
offspring ASD symptoms, such as depression, anxiety, and social 
deficits, in mouse models (59). Some of these results may be due to 
the prevention of Poly(I:C)‐induced weight loss of dams, another 
result of the oral probiotic supplementation. Although this has 
yet to be studied in humans, this offers insight into potential 
preventative measures for expecting mothers.

EPIGENETICS AND MIA

It has been found that epigenetic modifications occur beyond 
early embryonic development and are dynamic throughout fetal 
development and over one’s lifetime (60, 61). Epigenetic alterations 
offer possible mechanisms by which immune insults during prenatal 
development affect offspring outcomes. Maternal distress has been 
reported to be a leading cause in epigenetic alterations (61). Birth 
cohort studies investigating the effects of the Dutch Hunger Winter 
have examined whether standard DNA methylation is modified as 
a result of maternal famine and stress. Hypo-methylation during 
gestation alters the accessibility of offspring DNA to translation and 
therefore changes gene expression in these regions. Several genes, 
including ABCA1, insulin-like growth factor II, interleukin-10, 
GNASAS, and MEG3 have been found to have modified levels 
of DNA methylation in offspring, thus implicating extensive 
epigenetic effects of maternal famine (62, 63).

In mouse models of MIA, adult offspring have displayed 
hypo-methylation, and transcriptional changes, in genes related 
to GABAergic signaling and neural development (64). In a 
more recent review, maternal depression, and its associated 
immunological alterations in cytokines and reactive oxygen 
species levels, was linked to offspring DNA methylation (65). 
Experimental evidence from animal models has indicated that 
MIA can result in widespread DNA hypo-methylation in the 
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hypothalamus (66). This can be a potential factor for dysregulation 
of the hypothalamus–pituitary–adrenal gland (HPA) axis, which 
has been linked to the pathophysiology of schizophrenia (67). 
Alterations in the gray-matter composition of the hypothalamus 
have also been linked to ASD (68). Another study reported that, in 
MIA exposed mice, 80% of hypo-methylated sites were stabilized 
with a diet high in anti-inflammatory fats (69). Although this 
is yet to be studied in humans, this has profound implications 
for possible dietary interventions to mitigate the effects of MIA 
induced hypo-methylation in addition to standard treatment.

MIA also alters histone acetylation. Adult female offspring of 
MIA mice expressed anhedonic behavior, which was correlated 
with global histone acetylation changes in the hippocampus (70). 
Histone modification caused by MIA may alter hippocampal 
serotonin transporter (SERT) expression, a critical component to 
the etiology of depression and which may play a significant role 
in schizophrenia (70, 71).

FUTURE RESEARCH AND PERSPECTIVES

Great strides have been made through both epidemiologic 
work and basic science to explore the potential role of MIA in 
neuropsychiatric disorders. The addition of epigenetics to the 
MIA model as a mediating mechanism may shed more light 
on pathogenic processes that underlie these disorders. A key 
challenge regarding a suitable translational approach (12) is 
the Research Domain Criteria (RDOC) (72), which is aimed at 
deconstructing psychiatric disorders into their most basic psycho- 
and neuropathological components. Further insights for future 
translational research may be gleaned from standardization of 
immune activating agents and methods, integrating postmortem 
pathology, and longitudinal neuroimaging (73–75).

Although stress has been conceptualized as a teratogen, and 
may activate the maternal immune system in a way similar to 
infection, the biological framework for how it may affect offspring 
is still not well understood. Beyond cytokines, maternal cortisol 
levels have also been implicated in offspring neuropathology (76). 
Further elucidation of the biological mechanism by which maternal 

stress may act as an inflammatory agent, and influence offspring 
neuropathology relevant to psychiatry disorders, is necessary.

Although investigation of the microbiome offers the potential for 
important findings linking the immune system and psychopathology, 
several issues remain. For example, whether exposure to known 
risk factors for ASD and other psychiatric outcomes also result 
in microbiome alterations requires further investigation. Another 
question of interest relates to the cause-effect relationship between 
MIA and the maternal microbiota, on offspring neurodevelopment. 
Studies comparing psychiatric outcomes following C-section versus 
natural birth creates opportunities to address this question given 
the differences in exposure to the vaginal microbiome between the 
two delivery methods (77).

CONCLUSIONS

In conclusion, we propose it is vital to consider MIA in the context 
of not only infection but also other factors, such as maternal 
psychological stress, in the etiology of neurodevelopmental disorders. 
Epigenetic events may represent mediating or modifying factors in 
the putative pathogenesis of psychiatric disorders following MIA. 
The microbiome is another promising area of investigation in the 
MIA hypothesis of mental disorders. We believe that a translational 
approach that incorporates knowledge of these processes will be 
necessary to broaden our understanding of the effects of prenatal 
MIA on offspring susceptibility to psychiatric disorders.
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