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Background: Altered resting-state functional connectivity of the cerebellum in obsessive-
compulsive disorder (OCD) has been previously reported. However, the previous study 
investigating cerebellar–cerebral functional connectivity relied on a priori–defined seeds 
from specific networks. In this study, we aimed to explore the connectivity alterations of 
the cerebellum in OCD under resting-state conditions with a hypothesis-free approach.

Methods: Thirty patients with OCD and 26 healthy controls (HCs) underwent functional 
magnetic resonance imaging (fMRI) scanning at resting state. Regional cerebral function 
was evaluated by measuring the fraction of amplitude of low-frequency fluctuation (fALFF). 
Regions with mean fALFF (mfALFF) alterations were used as seeds in seed correlation 
analysis (SCA). An independent samples t test was used to compare the differences in 
mfALFF and functional connection (FC) between the two groups. Pearson correlation 
analysis was performed to identify the association between functional neural correlates 
and OCD symptom severity evaluated using the Yale-Brown Obsessive Compulsive Scale 
(Y-BOCS).

Results: Compared with the HC group, the OCD group showed significantly increased 
mfALFF values in bilateral cerebellar. The results of FC analysis showed weakened 
connectivity among the left Crus II, lobule VIII, and right striatum and between the right 
lobule VIII and the right striatum, and cingulate in the OCD group compared with the HC 
group. Some of the abovementioned results were associated with symptom severity.

Conclusions: OCD patients showed abnormal spontaneous cerebellar activity and 
weakened functional connectivity between the cerebellum and the cortico-striato-
thalamo-cortical (CSTC) circuit (striatum and cingulate), suggesting that the cerebellum 
may play an essential role in the pathophysiology of OCD.

Keywords: obsessive-compulsive disorder, cerebellum, cortico-striato-thalamo-cortical circuit, functional 
magnetic resonance imaging, FC
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INTRODUCTION

Obsessive-compulsive disorder (OCD) is a common psychiatric 
condition, with a lifetime prevalence of 1% to 3% in the general 
population (1, 2). The core symptoms of OCD are obsessions 
and compulsions. OCD patients also experience deterioration of 
cognitive functions, such as attention, memory, decision-making 
ability, and inhibitory control (3, 4).

Multiple lines of evidence indicate that cortico-striato-thalamo-
cortical (CSTC) circuit dysfunction is the core pathophysiological 
feature of OCD (5). In the CSTC circuit, the direct pathway 
projects from the prefrontal cortex to the striatum, then to the 
thalamus, and back to the prefrontal cortex (6, 7). Hyperactivity 
of the direct pathway is thought to lead to hyperactivation of 
the orbitofrontal cortex. Thus, excessive concern about danger, 
health, or injury mediated by the orbitofrontal cortex may lead to 
sustained conscious attention to perceived threats in OCD patients, 
leading to compulsive behavior aimed at eliminating perceived 
threats. The results of functional imaging studies support the 
above views. The most consistent findings in functional imaging 
studies of OCD pertain to abnormally increased activation of the 
lateral prefrontal cortex, including the orbitofrontal cortex and 
anterior cingulate (8, 9). Similarly, hyperactivity in the striatum 
and thalamus has been reported in OCD patients (10). However, 
recent studies have shown that OCD patients have structural and 
functional abnormalities in the cerebellum (11, 12), including 
increased cerebellar volume (12) and enhanced spontaneous 
cerebellar activity under resting state (13). The cerebellum 
is commonly associated with motor regulation, but recent 
experimental evidence suggests that it may also play a key role 
in cognition and emotion (14). Current evidence suggests that 
separate cerebellar regions are connected with different cerebral 
areas to form multiple cognitive circuits with topographic 
functions (15, 16). These functions include attention, language, 
working memory, visuospatial processing, and decision-making 
(14), which have been reported to be deficient in OCD patients 
(17, 18). This information is inevitably reminiscent of the role of 
cerebellar–cerebral functional connectivity in OCD.

The amplitude of low-frequency fluctuations (ALFFs) for the 
regional blood oxygen level-dependent (BOLD) signal, which 
is a method to investigate the regional spontaneous activity by 
calculating the square root of the power spectrum in the frequency 
range (19, 20), has been widely used in neuroimaging studies (21–
23). The fractional ALFF (fALFF) approach (24) is an improved 
ALFF method, which measures the ratio of power spectrum of 
low-frequency range to that of the whole frequency range. Non-
specific signal components could be effectively suppressed by 
this technology, and the sensitivity and specificity in examining 
regional spontaneous brain activity could be significantly 
improved. At present, this method has been successfully applied 
to the study of brain function (25–27). In addition, fALFF is also 
used in the selection of seed in functional connection analysis (28).

Seed correlation analysis (SCA) is a method of seed activation 
based on computed correlations with other areas of the brain that 
have similar temporal pathways, providing relatively precise and 
specific FC. This method has proven to be effective in revealing 
features of the brain connection network in psychiatric diseases 

and has been widely adopted (29, 30). In general, the seed 
can be selected based on a previous hypothesis or a collection 
of points based on prior fMRI studies. Currently, cerebellar–
cerebral functional connectivity studies based on previous 
seed hypotheses have been reported, and they found that the 
cerebellum had reduced functional connections to a wide range 
of cortical regions, including parts of the frontal, temporal, 
occipital, and parietal lobes (31). However, there are still few 
studies on the cerebellar functional connections of OCD, and in 
view of the heterogeneity of experimental samples, a study with a 
hypothesis-free approach is necessary.

In the present study, we used a multiple-algorithm analysis in 
combination with fALFF and FC to explore the alterations in the 
resting-state functional connectivity of the cerebellum in OCD.

MATERIALS AND METHODS

Subjects
Thirty right-handed adult patients with OCD were recruited from 
the Second Affiliated Hospital of Xinxiang Medical University. 
All patients were diagnosed by two psychiatrists according to 
the Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition (DSM-IV) criteria. Of the 30 OCD patients, 5 were drug-
naïve and 25 were medication-free (patients who had discontinued 
medication for at least 2 weeks were considered medication-free); 
the medication-free patients mainly had received treatment 
with selective serotonin reuptake inhibitors, with the obsessive-
compulsive symptom still existing or having relapsed when the 
cohort was recruited. None of the OCD patients had any other 
psychiatric disorder that met axis I of the DSM-IV. Twenty-six 
healthy controls (HCs) matched for age, gender, handedness, and 
education level were recruited as the control group. All HCs were 
screened using the Structured Clinical Interview for DSM-IV Axis 
I Disorders (SCID-I)  to ensure that there was no history of other 
psychiatric disorders that met the criteria of axis I of the DSM-IV. 
The exclusion criteria for all participants included serious head 
injury, a history of drug or alcohol abuse, serious physical 
illness, and contraindications to MRI. All participants received a 
complete description of the study, and written informed consent 
was obtained. This study was approved by the Ethics Committee 
of the Second Affiliated Hospital of Xinxiang Medical University 
and complied with the Helsinki Declaration.

Clinical Measures
OCD patients were assessed using the Yale-Brown Obsessive-
Compulsive Scale (Y-BOCS), and all patients were required to 
have a Y-BOCS total score of ≥16.

MRI Date Acquisition
Images were acquired with a 3 T MRI system (Siemens Magnet 
Verio) equipped with an eight-channel phased-array head coil. 
All subjects were told to relax and close their eyes during the 
scan. Foam padding and earplugs were used to reduce head 
motion and scanner noise. Resting-state BOLD images of the 
whole brain were acquired by using a gradient-echo echo-planar 

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


OCD Patients With Cerebellar DysfunctionZhang et al.

3 July 2019 | Volume 10 | Article 522Frontiers in Psychiatry | www.frontiersin.org

imaging sequence with the following parameters: time repetition 
(TR) = 2,000 ms, time echo (TE) = 30 ms, flip angle = 90°, matrix 
size = 64×64, field of view (FOV) = 220 mm, slices = 33, slice 
thickness = 4 mm, and time point = 240.

Image Processing and Analysis
Date Processing
The preprocessing of the BOLD images was conducted using 
the Data Processing Assistant for Resting-State fMRI (DPARSF, 
http://rfmri.org/DPARSF), which is based on Statistical 
Parametric Mapping (SPM, https://www.fil.ion.ucl.ac.uk/spm/)
and the toolbox for Data Processing & Analysis of Brain Imaging 
(DPABI, http://rfmri.org/DPABI). The images of the first 10 time 
points were removed to allow the signal to reach equilibrium. The 
remaining 230 points were corrected for slice timing and realigned 
for head motion correction. Subjects with more than 2 mm of 
maximal translation and 2° of maximal rotation were excluded. 
Previous studies have shown that a slight head movement can 
affect experimental results (32, 33). We also calculated framewise 
displacement (FD Jenkinson), which indexes the volume-to-
volume changes in head position (34). There were no subjects 
with FD Jenkinson >0.2 mm, and there were no significant group 
differences in FD Jenkinson (t = 0.427, p = 0.675) between the 
OCD patients (0.057 ± 0.034) and controls (0.054 ± 0.027). 
Next, the motion-corrected functional volumes were spatially 
normalized to the MNI space and were resampled to 3 × 3 × 
3 mm3 using the normalization parameters estimated during 
unified segmentation. The obtained images were smoothed with 
a 4-mm full-width at half-maximum (FWHM) Gaussian kernel. 
Further preprocessing included temporal bandpass filtering 
(0.01–0.08 Hz) and linear detrending.

Statistical Analysis
The mfALFF was calculated using DPARSF. We transformed 
the time series into the frequency domain to obtain the power 
spectrum. After calculating the square root of each frequency in 
the power spectrum, we obtained the mean square root across a 
low-frequency range (0.01–0.08 Hz), which was regarded as the 
ALFF. fALFF is the ratio of the power of each frequency at the 
low-frequency range to that of the entire frequency range (24). 
Finally, the resulting spatial fALFF maps were then normalized 
with each voxel divided by the whole-brain fALFF mean, 
providing mfALFF spatial maps.

The mfALFF values of the whole brain of the two groups 
were compared with a two-sample t test using statistical 
parametric mapping SPM8. Although the age, gender, and years 
of education of the subjects in the two groups were matched, 
respectively, we still use them as covariables in the horizontal 
regression analysis of the group. Finally, we corrected statistical 
maps for Gaussian random field (GRF) correction to a 
significance level of p < 0.05, combining the voxel threshold p < 
0.001 and cluster size >12 voxels.

The regions of cerebellar with changed mfALFF value  were 
selected as seed regions for seed-based functional connectivity 
analysis using DPARSF. Temporary series of all voxels in each 
seed region were extracted and then averaged for each individual. 

Pearson correlation coefficients were computed between the 
seeds and the voxels of the whole brain to create the correlation 
maps for each seed and each participant. All correlation maps 
were transformed to z-value FC maps by applying Fisher’s r-to-z 
conversion (35) according to the equation:
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where r is the Pearson correlation coefficient, and z is 
approximately a normal distribution.

Cerebellar–cerebral functional connectivity was compared 
between the two groups using two-sample t-test. The significance 
level was set at voxel p < 0.005 with GRF cluster correction of p < 
0.05 (cluster size > 102 voxels).

The mfALFF values, z-fc values, and Y-BOCS scores of the 
OCD patients were analyzed by partial correlation analysis 
with age, gender, and years of education as the nuisance 
covariates. The significance level was set at p < 0.05/n after 
Bonferroni correction.

RESULTS

Participants
After data collection, a total of 56 subjects were enrolled in 
the study, including 30 OCD patients and 26 controls. The 
demographic and clinical characteristics of the subjects are 
summarized in Table 1. There were no significant difference 
between the OCD group and the control group in age, gender, or 
years of education.

fALFF Analysis
Compared to the control group, the values of mfALFF were 
increased in the left Crus II, the left lobule VIII, and the right 
lobule VIII of the cerebellum under resting state in the OCD 
group (see details in Table 2 and Figure 1).

Seed-Based Functional Analysis
mfALFF-difference regions of the cerebellum were selected as 
seeds for seed-based functional connectivity analysis. The results 
of FC analysis showed weakened connectivity among the left 
Crus II, lobule VIII, and right striatum and between the right 

TABLE 1 | Participant demographic and clinical features.

OCD (n = 27) HC (n = 25) t/χ2 p Values

Agea 27.4 ± 8.9 27.8 ± 10.2 −0.173 0.864
Sex (M/F)b 14/16 10/16 0.383 0.596
Education, yearsa 11.0 ± 3.1 11.8 ± 2.5 −0.107 0.291
Y-BOCS 26 ± 5.9 N/A N/A N/A
Age of onset 20.77 ± 7.17 N/A N/A N/A
Duration of illness, years 6.88 ± 4.80 N/A N/A N/A

aTwo independent sample t-test.
bChi-square test.
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lobule VIII, and the right striatum and cingulate in the OCD 
group compared with the HC group (see details in Table 3 and 
Figure 2). Under the more rigorous correction (voxel threshold 
p < 0.001), there was no difference between the two groups.

Correlation Analysis
In OCD patients, the values of mfALFF in the right Crus II region 
of the cerebellum were positively correlated with the total score of 
Y-BOCS (see details in Figure 3). And after Bonferroni correction, 
the FC between the left Crus II and right striatum was negatively 
correlated with Y-BOCS total scores (see details in Figure 4).

DISCUSSION

In this study, we combined fALFF and FC to investigate the 
functional and connectivity alterations of the cerebellum in 
OCD. We found significantly increased mfALFF values in the 
bilateral posterior cerebellar lobes in the OCD patients, including 
the left Crus II, left lobule VIII, and right lobule VIII, consistent 
with the areas of the cerebellum that previous studies have 
suggested are involved in cognitive function. Furthermore, these 
cerebellar regions showed weakened functional connection with 
the striatum, suggesting that abnormal connection between the 
cerebellum and striatum may be involved in the neuropathology 
of OCD. In addition, some of the results above were associated 
with symptom severity.

Cerebellum and OCD
Various studies have shown that people with OCD have an 
abnormal cerebellum presenting as abnormalities in structure, 

function, and blood flow (36–39). In addition, studies have also 
reported cases of OCD caused by cerebellar organic damage (40, 
41). However, the focus on the role of the cerebellum in mental 
illness stems from its contribution to cognitive function. In motor 
regulation, the cerebellum is responsible for the expected forward 
control and error-based supervised learning in motor control. 
That is, the cerebellum, as a forward controller, predicts the 
consequences of the upcoming actions, compares and adjusts the 
errors with reality, and communicates the processed information to 
the corresponding cerebral cortex (42). Recent studies have shown 
that the cerebellum may regulate cognitive processes in a similar 
way, that is, as a forward controller to predict the consequences of 
cognitive activities and psychological expectations, then correcting 
its errors and conveying them to the cerebral cortex to help the 
cortex complete the correct cognitive activities (43). Interestingly, 
previous studies have shown that OCD patients have dysfunctional 
forward model mechanisms (44). In this study, the Crus II and 
lobule VIII regions we identified were in the posterior portion of 
the cerebellum and are involved in cognition (14), which to some 
extent confirmed this hypothesis. Previous studies have shown that 
the Crus II and lobule VIII regions are associated with executive 
function, whereas lobule VIII is involved in working memory 
(45, 46). Functional abnormalities in the above regions may be 
the cause of executive function and working memory deficits in 
OCD patients. However, some previous studies have reported 
different results. A recent rs-fMRI study showed decreased fALFF 
in the right cerebellum in treatment-naive OCD patients (47). 

TABLE 3 | Brain regions showing decreased cerebellar–cerebral FC in the OCD 
group compared with the HC group.

Brain regions MNI coordinates t values

X Y Z

Left Crus II*
Right striatum 18 24 12 −3.596
Left lobule VIII*
Right striatum 15 24 12 −3.782
Right lobule VIII*
Right striatum 12 24 0 −3.759
Right cingulate 12 41 0 −3.732

*Seed region.

TABLE 2 | The mfALFF value of cerebellum increased in OCD patients.

Brain regions MNI coordinates t values

X Y Z

Left Crus II −11 −83 −40 5.392
Left Lobule VIII −30 −63 −57 4.525
Right Lobule VIII 24 −69 −60 4.883

MNI, Montreal Neurological Institute.

FIGURE 1 | The regions showing increased mfALFF in OCD patients (p < 0.05, GRF corrected).
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In another study, female patients with OCD also had reduced 
fALFF in the cerebellum (48). The reasons for these differences 
may include sample heterogeneity, such as differences in patient 
gender composition and treatment status. Moreover, different data 
processing methods, such as differences in the FWHM during 
the smoothing process, may also be the cause of the difference in 
results. In addition, studies about the functional topography of the 
human cerebellum suggest that different regions of the cerebellum 
are involved in different functional domains, which may also be 
the cause of inconsistent results.

Cerebellum and the CSTC Circuit
Earlier research may have been limited by the heterogeneity 
of OCD and the different research methods used. In previous 
studies, the results of abnormal cerebellar regions in OCD patients 
were not consistent, which caused difficulties in the selection of 
seed regions. A previous study investigating cerebellar–cerebral 
functional connectivity has relied on a priori–defined seeds from 
specific networks. In other words, seeds were selected based on 
different samples from the previous experiment. In view of the 
present evidence suggesting the heterogeneity of OCD (49), these 

FIGURE 2 | Brain regions showing decreased FC with the cerebellar seed in OCD patients (p < 0.05, GRF corrected).

FIGURE 3 | Significant positive correlation of mfALFF values in the left  
Crus II with the severity of obsessive-compulsive symptom in OCD patients  
(p < 0.05, Pearson correlation, uncorrected).

FIGURE 4 | Significant positive correlation of FC between left Crus II and 
right striatum with the severity of obsessive-compulsive symptom in OCD 
patients (p < 0.05, Pearson correlation, Bonferroni corrected).
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seeds may not be suitable for different subjects. In this study, the 
fALFF method was first used to locate abnormal cerebellar regions 
in patients with OCD, and then the mfALFF value difference region 
was used as seed regions for whole-brain functional connectivity 
analysis. In this method, we did not make prior assumptions about 
the selection of seed regions, and this seed-based FC analysis 
approach may have advantages over studies based on a priori–
defined seeds and provide more reasonable and persuasive findings 
regarding the pathogenesis of OCD. We found that the cerebellar 
regions with increased activity in OCD patients had decreased 
functional connectivity with the components in the CSTC circuit, 
including the striatum and cingulate. Additionally, decreased 
functional connectivity between the left Crus II and right striatum 
was negatively correlated with the severity of obsessive-compulsive 
symptoms. This is different from previous findings by Xu et al. (31). 
Differences in the above research methods may account for this 
result. Interestingly, our findings are more relevant for correlating 
the cerebellum with the CSTC circuit. Recent research shows 
that the cerebellum has extensive communication with regions 
in the CSTC circuit, such as the striatum and thalamus, and the 
communication was associated with nonmotor function (50–52). 
The striatum has always been suggested to be involved in habit 
formation and goal-directed action, and striatum dysfunction is an 
important cause of OCD (53–55). Alterations of the striatum have 
also been reported in both structural and functional neuroimaging 
studies in OCD (12, 56). Previous studies have shown bidirectional 
anatomical and functional connections between the cerebellum 
and the striatum (52, 57), and the abnormal functional 
connections may lead to some cognitive impairment, such as 
in reward and executive control (58–60). We hypothesized that 
decreased functional connectivity between the cerebellum and the 
striatum might affect striatum function, resulting in the inability 
of the striatum to effectively inhibit the thalamus. The hyperactive 
thalamus then leads to excessive activation of the frontal cortex, 
causing dysfunction in executive control and reward.

The cingulate is also an important part of the CSTC circuit, 
which is mainly related to activity inhibition, decision-making, 
and emotion regulation (61). Other studies have shown that the 
cingulate gyrus is closely related to attention (62). In previous 
studies, OCD patients showed decreased gray matter (GM) and 
hyperactivity in the cingulate (63–65). Due to the weakened 
connection between the cerebellum and cingulate, OCD patients 
may not be able to effectively transmit feedforward information 
to the anterior cingulate cortex, which makes it difficult for OCD 
patients to effectively inhibit forced movements and transfer 
their attention from compulsive thoughts, behaviors, or fears.

However, there are still some limitations in this study. On the 
one hand, the sample size of this study was small. On the other 
hand, we did not find any abnormal connections between brain 
regions and seed regions in OCD patients under a more rigorous 
correction (voxel threshold p < 0.001). The reason may be the lack 
of statistical effectiveness due to the small sample size. This study 
also lacked direct evidence regarding the relationship between 
abnormal neural correlates and cognitive deficits in OCD 
patients. We also did not perform a longitudinal comparison 
before and after treatment. Therefore, we still need supplementary 

information in future studies to provide further evidence for the 
role of the cerebellum in the pathogenesis of OCD.

CONCLUSION

In summary, this study demonstrated abnormal spontaneous 
cerebellar activity and weakened functional connectivity 
between the cerebellum and the CSTC circuit in OCD patients, 
and some of the abovementioned results were associated with 
symptom severity. Our findings provide additional evidence 
that the cerebellum may play an essential role, and alteration of 
functional connections between the cerebellum and the CSTC 
circuit may be involved in the pathophysiology of OCD.
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