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Drug addiction is a worldwide public health problem, resulting from multiple phenomena, 
including those both social and biological. Chronic use of psychoactive substances 
has been shown to induce structural and functional changes in the brain that impair 
cognitive control and favor compulsive seeking behavior. Physical exercise has been 
proven to improve brain function and cognition in both healthy and clinical populations. 
While some studies have demonstrated the potential benefits of physical exercise in 
treating and preventing addictive behaviors, few studies have investigated its cognitive 
and neurobiological contributions to drug-addicted brains. Here, we review studies in 
humans using cognitive behavioral responses and neuroimaging techniques, which 
reveal that exercise can be an effective auxiliary treatment for drug addictive disorders. 
Moreover, we describe the neurobiological mechanisms by which exercise-induced 
neuroplasticity in the prefrontal cortex improves executive functions and may decrease 
compulsive behaviors in individuals prone to substance use disorders. Finally, we propose 
an integrative cognitive-psychobiological model of exercise for use in future research in 
drug addiction and practical guidance in clinical settings.

Keywords: aerobic exercise, neuralplasticity, substance use disorder, addiction, alcohol abuse

INTRODUCTION

Addiction to psychoactive substances (e.g., nicotine, cocaine, marijuana, alcohol, heroin, inhalants, LSD, 
and ecstasy) is a public health problem of the modern world (1). The Diagnostic and Statistical Manual 
of Mental Disorders of the American Psychiatric Association (DSM-V 2013) classifies drug addiction 
as a substance use disorder (SUD) when an individual meets two or more of the following criteria 
regarding the use of psychoactive substances: tolerance, craving, repeated attempts to stop use, or social, 
personal, physical, or psychological problems related to drug use (2). In addition to the influences of 
biological, cultural, social, economic, and psychological factors on individuals with SUD (3), studies in 
animal models and humans have shown that psychoactive substance use induces epigenetic, molecular, 
structural, and functional changes to the brain (4). Thus, the neurobiological model of drug addiction 
has proposed a complex interaction between biological and environmental factors and created new 
integrative perspectives for prevention, treatment, and pharmacological targets (5).

SUD is traditionally related to abnormal dopamine release and sensitivity in the brain reward 
system. This neural network is composed of several interconnected brain areas, including the 
ventral tegmental area, nucleus accumbens, amygdala, striatum, hippocampus, and prefrontal 
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cortex (PFC) (6). The PFC is an integrated neural system in 
humans required for normal executive functioning, including 
decision-making and inhibitory control, and beneficial socio-
emotional functioning (7). Studies using positron emission 
tomography (PET) and functional magnetic resonance imaging 
(fMRI) have demonstrated that individuals with SUD present 
decreased activityin the PFC (8). This condition seems to be 
related to a reduced number of dopamine receptors and an 
abnormal firing rate of dopaminergic neurons (9). These changes 
in the dopamine system and PFC activity may favor compulsive 
substance intake and seeking behaviors, as well as loss of control 
over drug consumption (8). Similarly, incomplete prefrontal 
cortex development and the resulting decrease in ability to 
control impulsive decisions has been suggested as an explanation 
for adolescents’ particular vulnerability to drug abuse (10), 
highlighting the importance of preventing the use of addictive 
psychoactive drugs during this period of brain development. 
Hence, contemporary rehabilitation programs have emphasized 
the importance of interdisciplinary treatment approaches that 
target the reestablishment of normal PFC functioning while 
combining the use of medication, social care, and behavioral 
therapy supported by psychiatrists, psychologists, social workers, 
and family (5).

Physical exercise has been proposed as a complementary 
therapy for individuals with SUD undergoing treatment at 
different stages of addiction rehabilitation (11–13). Preclinical 
animal research has shown evidence of neurobiological 
mechanisms induced by physical exercise that support its 
potential use as a therapeutic strategy to treat drug addiction. 
Examples are the following: normalizing dopaminergic and 
glutaminergic transmissions, promoting epigenetic interactions 
mediated by BDNF (brain-derived neurotrophic factor), and 
modifying dopaminergic signaling in the basal ganglia (11, 14). 
However, identifying similar molecular interactions between 
exercise and the human brain presents significant methodological 
challenges that need to be overcome in order totranslate these 
findings from animal models to humans.

The benefits of physical exercise for cognitive functioning 
and brain structure in humans are, on the other hand, well 
documented in literature (15). For instance, aerobic exercise is 
linked to improvements in executive functions and increased 
gray matter volume and activity in PFC regions (16, 17). 
Furthermore, children and adults with higher cardiorespiratory 
fitness (i.e., VO2 max) show improved cognitive performance 
and neuronal activity in the PFC and anterior cingulate cortex 
(ACC) (18). The results of preclinical animal studies show 
that these brain adaptations seem to be related to the release 
of exercise-induced molecules, such as BDNF (19) and IGF-1 
(insulin-like growth factor 1) (20). Both molecules act as 
neurotrophic factors and create new synapses, neurons, and 
neural networks (18). These adaptations are facilitated by an 
increase in cerebral blood flow during exercise (21) and a release 
of a vascular endothelial growth factor (VEGF) (22), which 
promotes mitotic activity in vascular endothelial cells, thereby 
promoting angiogenesis and enhancing the oxygen and nutrient 
supply to neurons (18). Additionally, exercise is also related to 
the integrity of the brain-blood barrier (23). However, despite 

the wide range of benefits of the exercising brain, its effects on 
individuals with SUD who have impaired PFCs and cognitive 
functions need to be further investigated.

In this mini review, we present the results of a review of the 
current literature on exercise and SUD. We limited our search 
to studies that investigated the effect of acute or chronic aerobic 
exercise on cognitive and/or neurobiological markers in humans 
with SUD. The search terms used to select the articles were 
“tobacco cigarettes,” “nicotine,” “alcohol,” “methamphetamine,” 
“crack,” “cocaine and marijuana,” “physical activity,” “endurance 
exercise,” “aerobic exercise,” “addiction,”:substance use disorder,” 
“executive functions,” “prefrontal cortex,” “cognition,” and “brain.” 
Two authors selected the published and peer-reviewed articles 
identified on electronic databases (Pubmed Central, Medline, 
Scopus, and Web of Science) in February 2019, while a third 
author resolved differences in opinion. Only articles published 
in English were considered. Finally, we propose an integrative 
cognitive-psychobiological model of exercise to support future 
research on the subject and provide methodological guidance 
for its application in clinical settings as a therapeutic tool for the 
treatment of SUD.

The Effect of Aerobic Exercise on Brain 
and Cognitive Function in Individuals 
With SUD
Aerobic exercise is typically performed at submaximal intensity 
for a long duration with most of the energy consumption coming 
from mitochondrial oxygen-dependent production of ATP. 
Organic adaptations of the cardiorespiratory system as a result 
of aerobic training are mainly reflected by higher values of VO2 
max, which has been associated with improvements in several 
health parameters, as well as brain and cognitive functioning (18, 
24). Examples of aerobic exercise include running, swimming, 
and cycling among summer sports and cross-country skiing or 
speed skating among winter sports (25). Table 1 describes studies 
that investigated the effect of aerobic exercise on the brain and 
cognitive functions in individuals with SUD. Acute effects of 
aerobic exercise (i.e., immediately after exercise cessation) have 
been shown to include increases in PFC oxygenation associated 
with greater inhibitory control (26) and improved memory, 
attention, and speed processing in polysubstance users (27). 
Similarly, methamphetamine users who exercised on a stationary 
cycling ergometer exhibited improvements afterward, such as 
better drug-specific inhibitory control, reduced craving levels, 
and enhanced brain activity in the ACC, the area involved in 
conflict monitoring and inhibition (28). Wang et al. (29) and 
Wang, Zhou, and Chang (30) also studied methamphetamine 
users and showed that exercise performed at moderate intensity 
(i.e., 65–75% of maximum heart rate) elicits a decrease in craving 
levels, improves performance on a go/no-go task, and increases 
N2 amplitude during no-go conditions when the individuals have 
to inhibit the impulse to press the bottom of the computer screen 
after a visual cue. Notably, the N2 is an event-related potential, 
monitored using non-invasive electroencephalography (EEG), 
that originates from the fronto-parietal cortex and is directly 
associated with inhibitory control (31).
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TABLE 1 | Studies investigating the effects of physical exercise on the brain and cognitive functions in individuals with substance use disorders.

Results from acute exercise studies 

Reference Study procedures Drug type Exercise (type; intensity; 
time)

Neurobiological 
marker and 
cognitive test

Outcomes

Janse Van 
Rensburg and 
Taylor, (2008) (32)

Smokers (N=23) underwent 
to conditions (Exercise 
and passive resting). They 
performed a cognitive 
test before and after the 
conditions.  

Nicotine Aerobic exercise on a 
treadmill; Light self-paced 
intensity; 2min warm-up 
and 15min exercise

Stroop test Following the exercise 
session, smokers did not 
improve on the cognitive test 
performance compared to the 
control session.

Janse Van 
Rensburg et al., 
(2009) (33)

Smokers (N=10) underwent 
to conditions (Exercise and 
passive resting) followed 
by fMRI scanning while 
watching smoking and 
neutral images.

Nicotine Aerobic exercise on 
cycleergometer; Moderate-
intensity (RPE 11-13); 2min 
warm-up, 10min exercise.

fMRI Smokers presented reduced 
brain activity in areas related 
to reward, motivation and 
visuo-spatial attention 
following exercise, compared 
to the control condition.

Rensburg et al., 
(2012) ( 34)

Smokers (N=20) underwent 
to conditions (Exercise and 
passive resting) followed 
by fMRI scanning while 
watching smoking and 
neutral images.

Nicotine Aerobic exercise on 
cycleergometer; Moderate-
intensity (RPE 11-13); 2min 
warm-up, 10min exercise)

fMRI Smokers presented 
decreased activity in visual 
processing (i.e., occipital 
cortex) areas during smoking 
images after the exercise 
session

Wang, Zhou and 
Chang., 2015 (30)

Participants (N=24) 
performed two conditions: 
exercise and reading 
control sessions The 
cognitive tests and the 
brain electroactivity were 
measured following each 
condition.

Methamphetamine Aerobic exercise on cycle-
ergometer; 65-75% of 
estimated maximum HR, 
30min (5min warm-up, 
20min of exercise and 5min 
cool-down)

Electroencephalogram 
(EEG), GoNoGo

Both general and 
methamphetamine specific 
inhibitory control were 
improved after the exercise 
session compared to the 
control session. Greater N2 
amplitude was observed 
during the cognitive tests 
on the Nogo conditions of 
both inhibitory control tests 
compared to the control 
session.

Wang et al., 2016 (29) Participants (N=92) were 
randomly assigned to 4 
groups: light exercise, 
moderate exercise, 
vigorous exercise and 
reading control group. 
Cognitive test and brain 
electroactivity were 
measure before and 
20min after the exercise or 
reading session.

Methamphetamine Aerobic exercise on a 
cycle-ergometer; each 
group had its own intensity 
based on estimated 
maximum HR (40-50%, 
65-75% and 85-95%, 
corresponding to light, 
moderate and high 
intensities, respectively); 
30min of exercise (5min 
warm-up, 20min of exercise 
and 5min cool-down)

Electroencephalogram 
(EEG) a while 
performing a general  
GoNogo task and a 
methamphetamine 
specific GoNogo task.

Moderate intensity group 
showed better reaction time 
and lower number of errors. 
The same group showed 
greater N2 amplitude during 
Nogo conditions of both 
general and meth-specific 
inhibitory control.

Da Costa et al., 
2017 (35)

Individuals with substance 
use disorder (N=15) 
were compared with 
15 healthy individuals 
during a maximum effort 
exercise session. During 
the session, all volunteers 
had their prefrontal cortex 
oxygenation measured 
while performing a 
cognitive test. 

Multiple drug 
users (35.5% were 
addicted to one 
substance, 43% 
to two substances 
and 21.1% to 
three substances). 
8 reported to be 
crack/cocaine user, 
6 were alcohol 
users and 3 were 
marijuana users.

Aerobic exercise until 
voluntary exhaustion [20 
on Borg Scale (6-20)]. The 
cycloergometer was kept in 
60-70 rpm. The initial load 
was 25w and in every two 
minutes, 25w increment 
occurred.

Near infrared 
spectroscopy (NIRS) 
and Stroop test

Individuals with substance use 
disorder increased prefrontal 
cortex oxygenation during 
exercise associated to better 
reaction time on the Stroop 
test. Also, lower cravings was 
reported after the exercise 
session. 

(Continued)
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In nicotine users, a meta-analysis (40) and a systematic review 
(41) show little or no effect of exercise in smoking cessation. 
However, those reviews did not include studies using cognitive or 
neurobiological markers as outcomes. On the other hand, Rensburg 
et al. (32–34) conducted a series of important experiments that 
suggest potential benefits of aerobic exercise to the brain and 
cognitive functions of nicotine users. The first study showed that 
15 min of light-intensity treadmill exercise reduced craving levels 
compared to a control condition (passive resting) but did not find 
improvements in inhibitory control. However, performance on the 
inhibitory control task was only measured by reaction time and 
not by the number of errors, which might limit our interpretation 
of the results (32). In the second experiment, 10 min of moderate-
intensity cycling exercise elicited decreases in craving levels 
compared to a control condition (passive sitting for 10 min). After 
each condition, participants underwent fMRI scanning while 
viewing neutral pictures and pictures related to smoking. While 
viewing smoking images participants demonstrated reduced 

activation in brain areas related to reward (i.e., caudate nucleus), 
motivation (i.e., orbitofrontal cortex), and visuo-spatial attention 
(i.e., parietal lobe and parahippocampal gyrus) after exercise 
(33). Another study replicated the same experimental design 
with a larger sample of smokers. The results showed that 10 min 
of moderate-intensity exercise also reduced craving levels, and 
the fMRI analyses revealed decreased activity in visual processing 
(i.e., occipital cortex) areas during smoking images for the exercise 
condition but not for the control condition (passive sitting) (34). 
Thus, these results show the potential effects of aerobic exercise in 
modulating craving and correlated brain areas in nicotine users.

Therefore, despite the limited amount of studies available in 
the literature so far, it is apparent that acute sessions of aerobic 
exercise decrease craving levels and seem to benefit cognitive 
and brain functions in these individuals. However, it could also 
be important to understand if regularly performed exercise (i.e., 
chronic effects) may potentialize the acute benefits to the brain and 
cognition of individuals with SUD throughout weeks and months 

TABLE 1 | Continued

Results from chronic exercise studies

Reference Study design Drug type Exercise (type; intensity; 
frequency; time)

Neurobiological 
marker and 
cognitive test

Outcomes

Da Costa et al., 
(2016)
 (36)

Individuals with substance 
abuse (N=9) performed 
3 months of exercise 
intervention. They 
performed a cognitive 
test before and after the 
exercise protocol.

Crack and cocaine Aerobic exercise (free 
running), self-selected 
intensity; 3 sessions/
week; 36-60min/session. 
The protocol lasted for 3 
months.

Stroop test It was found that the 
participants decreased the 
reaction time associated 
with improvements on 
cardiorespiratory fitness.  The 
number of errors on the Stroop 
test kept the same comparing 
pre and post intervention.

Cabral et al., (2017) 
(37)(a)

Case report. The subject 
performed prefrontal 
cortex oxygenation during 
incremental exercise 
before, 45 days after and 
90 days after the beginning 
of the running protocol.

Alcohol and 
nicotine

Aerobic exercise (free 
running); self-selected 
intensity; 3 sessions/
week; the running time 
was increased along the 
weeks (first week: 3-6min, 
last week: 40-50min). 
The protocol lasted for 12 
weeks.

Near infrared 
spectroscopy (NIRS). 
Stroop test

After 90 days of running, the 
subject improved prefrontal 
cortex oxygenation in 921% at 
ventilatory threshold, 604.2% 
at respiratory compensation 
point and 76.1% at maximum 
effort. Moreover, the individual 
increased number of correct 
answers during inhibitory 
control test by 266.6% and 
reaction time by 23%.

Wang et al., (2017) 
(38)

Randomized controlled 
trial study. Participants 
were divided in two 
groups: exercise (N=25) 
and control group (N=25). 
Cognitive tests and 
electroencephalogram 
were measured in both 
groups before and after 12 
weeks.

Methamphetamine Aerobic exercise (cycling, 
jogging, jump rope); 
65-75% of estimated 
maximum HR; 3 sessions/
week; 40min/session (5min 
warm-up, 30min of aerobic 
exercise and 5min cool-
down). The protocol was 
conducted for 12 weeks.

Electroencephalogram 
(EEG), Go/NoGo

Both general and 
methamphetamine specific 
inhibitory control were improved 
after the exercise session 
compared to the control group. 
Greater N2 amplitude was 
observed during the cognitive 
tests on the Nogo conditions of 
both inhibitory tests compared 
to the control group.

Cabral et al., (2018)
(39) (b)

Case report. The participant 
had its brain activity 
measured before and after 
the exercise protocol during 
rest, while doing a cognitive 
test. Moreover, prefrontal 
cortex oxygenation was 
measured during incremental 
treadmill exercise. 

Crack/cocaine and 
alcohol

High intensity aerobic 
exercise; all out for 30s 
and resting for 4:30min 
3 sessions a week. The 
protocol lasted for 4 
weeks.

Electroencephalogram 
(EEG) and Near 
infrared spectroscopy 
(NIRS), Stroop test

Prefrontal cortex 
oxyhemoglobin increased 
228.2% at the beginning of the 
treadmill test, 305.4% at the 
middle and 359.4% at the end 
of the test. Prefrontal cortex 
activity during the Stroop test 
was enhanced. The Stroop 
effect was decreased by 327%.
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of exercise training. To date, only two studies have investigated the 
chronic effects of aerobic exercise in individuals with SUD using 
neurobiological and cognitive markers (Table 1). In one study, 
methamphetamine users showed improved inhibitory control 
and greater activation of the ACC during an inhibition task after 
performing 3 months of moderate-intensity exercise for 30 min 
three times a week (38). Curiously, this pioneering work by Wang 
et al. (38) did not report changes in cardiorespiratory fitness, which 
limited the association between the cardiorespiratory adaptations 
induced by exercise and improvements in brain and cognitive 
functioning. However, the results of a different pilot longitudinal 
study with polysubstance users showed that 3 months of aerobic 
exercise improved inhibitory control and was correlated with 
cardiorespiratory fitness improvements (36).

Because of the lack of longitudinal studies in the literature, we 
have conducted two case reports, in which we tested two different 
exercise interventions. The first one was a 3-month running 
program (three times a week), based on self-selected moderate-
intensity exercise. The study was conducted with a chronic 
alcohol user receiving treatment in a public psychiatric hospital. 
Measures of PFC oxygenation, inhibitory control, and the need for 
medical intervention were assessed before and after the exercise 
program. At the end of the 3-month period, the participant 
demonstrated improved PFC oxygenation, decreased reaction 
time in the inhibitory control task, and reduced need for medical 
intervention (37). The second case report involved a crack/cocaine 
and alcohol user receiving treatment. They engaged in 4 weeks of 
high-intensity exercise (three times a week), and we measured 
PFC oxygenation, brain activity through electroencephalography, 
and inhibitory control before and after the intervention. The 
participant showed increased PFC activity during the inhibitory 
control test and increased PFC oxygenation during exercise (39). 
Taken together, the relationship between cognitive abilities and 
brain function and regular exercise suggests a promising role of 
physical exercise in promoting greater executive control on the 
compulsive behavior of individuals with SUD.

PSYCHOBIOLOGY OF SELF-SELECTED 
EXERCISE INTENSITY: PRACTICAL 
TOOL FOR CLINICAL SETTINGS AND 
RESEARCH

From an evolutionary perspective, humans have adapted to 
withstanding prolonged aerobic exercise through the search for 
food and persistence hunting of prey (supposedly pursued until 
physical exhaustion) (42). Aerobic self-selected exercise along with 
the cognitive appraisal of environmental cues for the acquisition 
of food and survival have been postulated to be key features in the 
development of the human brain (43). However, modern society 
has removed the need for humans to run/walk for food or shelter. 
As a result there is an increasing rate of hypokinetic behavior and 
related diseases such as diabetes, obesity, and hypertension (44, 
45). Rational declarative decision-making concerning the volume, 
intensity, and frequency of exercise has not been sufficient to 
change sedentary behavior. Therefore, methods are being proposed 

to promote greater adherence to physical activity regiments, and a 
psychobiological integrative perspective appears to be a promising 
approach to achieve this goal (46, 47).

Cognitive and affective regulation of exercise intensity have been 
suggested to play a key role in both tolerance and adherence to 
exercise programs. For instance, homeostatic disturbances caused by 
high-intensity exercise have been associated with negative affective 
states and lower pleasure during exercise in sedentary individuals 
(45), leading to lower rates of adherence (48). Conversely, self-
selected exercise intensity has been associated with positive affective 
states and higher levels of pleasure during exercise (45). Self-selected 
exercise intensity emphasizes the brain as the central governor of 
exercise intensity fluctuations (46), whereas the decision-making to 
increase and decrease velocity or tolerate or terminate the exercise 
session is controlled by the PFC through a bi-directional mind/body 
integration (49). Within this framework, top-down mechanisms 
are those initiated via declarative or non-declarative mental 
processing at the PFC level, which regulates muscle recruitment and 
alters physiological and behavioral responses. On the other hand, 
bottom-up mechanisms are initiated by sensitizing the ubiquitous 
somato-, viscero-, chemo-, and mechanical sensory receptors 
that influence central neural processing from the periphery to the 
brainstem, limbic system, and cerebral cortex (50). While performing 
any physical activity with self-selected intensity, the cognitive 
interpretation of the physiological state may be constantly working 
to preserve body homeostasis in order to reach the established goal 
(46, 51). In other words, fluctuations in pace while running are a 
behavioral outcome monitored by the brain (52). This behavioral 
modification results from integrating the task cognitive appraisal 
with afferent information related to biochemical and biophysical 
changes, such as temperature, heart and respiratory rate, blood 
pressure, blood concentrations of metabolites (e.g., PO2, PCO2, 
H+, HCO3

−, and lactate), intramuscular H+, and energy substrate 
availability during the exercise (53).

Furthermore, feelings of fatigue and self-defeating thoughts 
demand inhibitory control mediated by the PFC in order to 
maintain physical activity (54). In this context, decision-making 
might be based on feelings such as perceived exertion (i.e., how 
hard the exercise is), affect (i.e., generic valence for good and 
bad feelings), and internal conversations such as “I cannot do it,” 
“I will give up,” or “it is very difficult” (53, 55). Therefore, self-
selected exercise intensity emphasizes cognitive control (top-
down) under the physiological changes (bottom-up) during 
physical effort (Figure 1), and it can be used as a strategy to 
develop self-monitoring and self-control abilities during the 
treatment of individuals with SUD. For instance, when setting 
a goal during an exercise session, such as running for a specific 
time or distance (i.e., time trial exercise), individuals need to 
regulate their pace to successfully complete that task. Thus, 
during the exercise, the decision to regulate the pace (running 
velocity) will be influenced by several environmental stimuli (i.e. 
weather, terrain, competitors, verbal instructions, and time or 
distance feedbacks) combined with the physiological state.

Several therapies focusing on this mind-body interaction 
through the top-down and bottom-up bi-directional mechanism 
have been suggested as promising rehabilitation tools in regulating 
stress and the immune system (56, 57). Therefore, we hypothesize 
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that self-selected exercise intensity employs the bi-directional 
mechanism enabling improvements in self-control abilities 
associated with brain exercise-induced neuroplasticity. This 
cognitive regulation can be tested in humans while investigating 
perceptual responses, exercise-induced effects, and PFC function 
using neuroimaging methods (e.g., fMRI, PET scan, and fNIRS) 
and/or electroencephalogram. In addition, the brain responses 
can be associated with tests that evaluate the executive constructs 
of SUD-specific decision-making and inhibitory control, such as 
cue-reactivity go/no-go tests in which individuals have to inhibit 
their responses to salient stimuli relating to drug-related cues 
(e.g., drug behavior pictures). This cue-reactivity response has 
been shown to activate areas of the PFCand to predict relapses 
in different substances disorders (58,  59). Thus, we suggest 
that randomized clinical trials could follow the neuroscience 
paradigm and cognitive methodologies to test this hypothesis. 
In addition, the implementation of a control group would play 
a key role in these experimental designs in order to compare the 
self-selected intensity of exercise with other types of exercise 
intensity regulation to demonstrate its efficacy.

CONCLUSION

Despite the need for further prospective studies and clinical trials 
to test the efficacy of the psychobiological model of exercise as an 
intervention and treatment for SUD, physical exercise has been 
shown to be an effective and promising additional therapeutic 
tool for individuals with SUD. Here, we have described the brain 
areas affected by chronic substance use in patients with SUD as 

well as those improved by aerobic exercise. Some of these areas 
are primarily related to executive functions, which refer to a set of 
self-regulatory processes associated with the control of thoughts 
and behavior, including inhibitory control and decision-making. 
Therefore, in the same way that physical exercise is advised for 
treating other diseases, the neuroplasticity promoted by aerobic 
exercise may indicate its usefulness as a potential additional 
treatment for individuals with SUD. Specifically, these benefits 
may be seen in brain areas related to executive control, such as 
those areas involved in inhibition of drug-seeking behavior 
and impulsivity, as well as in decision-making regarding drug 
consumption. Furthermore, individuals with SUD who improve 
their fitness levels may enhance PFC function and cognition. 
These benefits should improve an individual’s ability to inhibit 
drug consumption behavior when exposed to environmental cues 
and, consequently, their ability to maintain abstinence. However, 
this is still a hypothesis, and further studies are necessary to 
provide evidence of the effectiveness of exercise on maintaining 
drug abstinence, specifically exercise of self-regulated intensity. 
Thus, we propose an integrative cognitive-psychobiological model 
of exercise for future research and provide practical guidance to 
optimize its potential benefits during rehabilitation programs.
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