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The study of brain networks, including those derived from functional neuroimaging 
data, attracts a broad interest and represents a rapidly growing interdisciplinary field. 
Comparing networks of healthy volunteers with those of patients can potentially offer 
new, quantitative diagnostic methods and a framework for better understanding brain 
and mind disorders. We explore resting state functional Magnetic Resonance Imaging 
(fMRI) data through network measures. We construct networks representing 15 
healthy individuals and 12 schizophrenia patients (males and females), all of whom are 
administered three drug treatments: i) a placebo; and two antipsychotic medications ii) 
aripiprazole and iii) sulpiride. We compare these resting state networks to a performance 
at an “N-back” working memory task. We demonstrate that not only is there a distinctive 
network architecture in the healthy brain that is disrupted in schizophrenia but also that 
both networks respond to antipsychotic medication. We first reproduce the established 
finding that brain networks of schizophrenia patients exhibit increased efficiency and 
reduced clustering compared with controls. Our data then reveal that the antipsychotic 
medications mitigate this effect, shifting the metrics toward those observed in healthy 
volunteers, with a marked difference in efficacy between the two drugs. Additionally, 
we find that aripiprazole considerably alters the network statistics of healthy controls. 
Examining the “N-back” working memory task, we establish that aripiprazole also 
adversely affects their performance. This suggests that changes to macroscopic brain 
network architecture result in measurable behavioral differences. This is one of the first 
studies to directly compare different medications using a whole-brain graph theoretical 
analysis with accompanying behavioral data. The small sample size is an inherent 
limitation and means a degree of caution is warranted in interpreting the findings. Our 
results lay the groundwork for an objective methodology with which to calculate and 
compare the efficacy of different treatments of mind and brain disorders.
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INTRODUCTION

In recent years, neuroimaging data and graph theory have allowed 
for the description of the topological properties of large-scale brain 
networks (1–3). Disorders of the brain have long been thought to 
be due to abnormal connectivity patterns, and these networks allow 
for a quantitative measure of this disruption (4, 5). Schizophrenia 
is a debilitating psychiatric condition with a range of symptoms, 
including auditory and visual hallucinations, delusions, disorganized 
thinking, and cognitive impairment. Various network-based 
studies have associated schizophrenia with a subtle randomization 
of connections (6–11). Antipsychotic medications are employed 
to treat symptoms with varying degrees of success and side effect. 
Sulpiride is a selective dopamine antagonist most commonly used 
in Europe and Japan for schizophrenia treatment. Aripiprazole 
is an atypical third-generation antipsychotic introduced for the 
treatment of schizophrenia in the USA in 2002 and Europe in 2004 
(12). It acts as a dopamine receptor partial agonist, whereas typical 
antipsychotics used to combat the symptoms of schizophrenia 
are pure dopamine antagonists. Partial agonists have long been of 
interest (13) to avoid the extrapyramidal and endocrine side effects 
caused by typical antipsychotics.

There is a body of evidence demonstrating drug treatments 
lead to specific localized changes in functional network structure 
(14, 15), and a growing interest in whole-brain approaches (16). 
Yet, few graph theoretical studies to date have been conducted 
to understand if and how medication alters an individual’s 
whole-brain network (17–19). We hypothesized that an effective 
medication would act to make the functional brain networks of 
patients more similar to those of healthy volunteers. We set out 
to test this in the context of three drug treatments: i) placebo; ii) 
aripiprazole, and iii) sulpiride. We used resting state fMRI data to 
analyze the functional connectivity, and a working memory task 
to assess the cognitive abilities, of 15 healthy volunteers and 12 
patients with chronic schizophrenia.

Our results show that schizophrenia patients and healthy 
controls exhibit different network topologies, in agreement 
with the existing literature (7, 10, 20). Further, the antipsychotic 
drug treatments alter the topology of the brain network in 
a measurable way, particularly in healthy individuals. In 
the brain networks of patients, we found evidence that the 
antipsychotic drugs lead to network topologies that are closer 
to those of healthy individuals. This correlates with improved 
cognitive performance. In healthy individuals, treatment with 
aripiprazole leads to a significantly altered network, as well as 
lower cognitive performance.

MATERIALS AND METHODS

Experimental Design and Statistical 
Analysis
Sample
Twelve people with chronic schizophrenia and 15 healthy, 
nonpsychotic volunteers were recruited for participation in this 
study (see Supplementary Datasheet 2 for detailed demographics). 
The patients were diagnosed according to standard operational 

criteria in the DSM-IV (21) and were clinically stable during 
their involvement (i.e., exhibiting low symptom ratings and 
undergoing no change of medication in the preceding 4 weeks). 
All were receiving antipsychotic drugs, and four were receiving 
additional psychotropic medication, but were not treated with 
their usual medication on the days of scanning to avoid effects 
on the fMRI data. Healthy volunteers were selected to match the 
patient group in terms of age, gender, premorbid IQ, years of 
education, and handedness, and screened for major psychiatric 
disorders using the Mini International Neuropsychiatric 
Interview (22). All subjects provided informed consent in 
writing, and the protocol was approved by the Addenbrooke’s 
NHS Trust Local Research Ethics Committee.

Every subject attended three scanning sessions, each 1 
to 2 weeks apart, for collection of functional MRI data and 
completion of working memory tests (see below). At each visit, 
they were administered one of three drug treatments: i) an oral 
placebo, 180 and 90 min before scanning; ii) oral aripiprazole, 
15 mg 180 min before scanning and oral placebo, 90 min before; 
iii) oral placebo, 180 min before scanning and oral sulpiride, 400 
mg 90 min before. We used a double dummy design with dosing 
of aripiprazole 180 min and sulpiride 90 min before the start of 
fMRI scanning. Both patients and experimenters were blind for 
the drug condition. The study medication was randomized by a 
colleague, who was not a member of the study team and stored in 
envelopes for each patient and testing session. There was a sealed 
envelope with the drug order for each participant that could be 
opened in case of a serious adverse effect. Both aripiprazole and 
sulpiride are antipsychotic medications designed to alleviate 
the symptoms of schizophrenia. At both time points (−180 min 
and −90 min), we co-administered 10 mg of domperidone to 
minimize side effects. Domperidone is a peripheral D2 receptor 
blocker sometimes used to mitigate nausea in pharmacological 
functional neuroimaging studies (23, 24). It does not cross 
the blood-brain barrier and will therefore not confound the 
neuroimaging results. The order of drug administration and the 
playlists of the working memory paradigm were counterbalanced 
across one group and repeated for the other.

Working Memory Tests
At each session, the subjects were required to complete an 
“N-back” task to assess their verbal working memory (25–27). 
The task demanded that subjects maintain a series of visually 
presented letters in their working memory such that each 
stimulus could be compared with the letter presented N letters 
earlier in the series (i.e., N-back)—see Figure 2A. For example, 
if the sequence of letters was F-B-A-B, the subject could be 
expected to indicate on presentation of the last letter in the series 
that B was presented two letters previously (2-back). Difficulty 
was manipulated to four levels (0-back to 3-back) by varying 
the number of letters back in the series that the subject had to 
compare to the current letter. All subjects were provided with 
written instruction and completed a practice version before 
undertaking the full task. They completed three playlists matched 
for difficulty and distraction, which were allocated across 
sessions such that each subject would complete each playlist once 
across their three visits (for placebo, aripiprazole, and sulpiride). 
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An individual’s performance at this cognitive task was assessed 
by recording their hit rate, defined as the proportion of times 
they were able to successfully present a correct answer. In each 
session, there were 10 correct targets for each N-back level. Data 
for the performance of patients 11 and 12 administered sulpiride 
were missing so analyses were carried out without them, leaving 
n = 10 patients and n = 15 healthy subjects.

Acquisition and Preprocessing of fMRI Data
A General Electric (GE) Signa system scanner operating at 1.5 T 
at the BUPA Lea Hospital (Cambridge, UK) was used to acquire 
functional MRI data over 17 min and 12 s, during which time, 
subjects were asked to lie quietly with their eyes closed. In each 
session, 516 gradient-echo T2*-weighted echo planar images 
depicting blood oxygenation level-dependent (BOLD) contrast 
were generated from 16 noncontiguous near-axial planes: repetition 
time, 2 s; echo time, 40 ms; flip angle, 70°; voxel size, 3.05 × 3.05 × 
7.00 mm; section skip, 0.7 mm; matrix size, 64 × 64; field of view 
(FOV), 240 × 240 × 123 mm. Four volumes were discarded to allow 
for T1 equilibration effects, leaving 512 volumes per data set (10).

Control 2 was missing an anatomical image so was discarded 
from the study, and patient 11 was missing data for the aripiprazole 
treatment. Each data set was analyzed for effects of head motion 
within the scanner (28–30), resulting in the further rejection of 
patient 3 on aripiprazole and sulpiride, control 10 on placebo and 
sulpiride, control 8 on sulpiride, and patient 5 on placebo, all of 
which were deemed to have too many motion-related artefacts to 
be reliable (see Supplementary Presentation 1). The remaining 
data sets were corrected for motion through realignment and 
wavelet despiking (31, 32). We used a 12-parameter affine 
transformation to register the data to MNI stereotactic standard 
space and a 6-mm Gaussian kernal for spatial smoothing. Finally, 
the voxel time series were high- and low-pass filtered with cutoff 
frequencies of ≈ 0.01 Hz and ≈ 0.08 Hz, respectively, as per (28, 
31). Statistical analyses of subsequent network metrics were 
performed using those data sets which were available for all drug 
treatments, equating to 9 patients and 12 controls.

Kolmogorov-Smirnov Test
The two-sample Kolmogorov-Smirnov test is a non-parametric test 
to compare two sets of data. The Kolmogorov-Smirnov statistic is a 
measure of the distance between the empirical distribution functions 
of the two samples and is calculated under the null hypothesis that 
both samples are taken from the same continuous probability 
distribution. The statistic can then be used to assign a p-value to the 
likelihood that the null hypothesis may be rejected. We used this 
method to assess the distribution of the global network measures 
for each of the six groups: controls (×3—aripiprazole, placebo, 
sulpiride) and patients (×3—aripiprazole, placebo, sulpiride). A 
p-value < 0.05 was taken to indicate a significant result.

Analysis of Variance (ANOVA)
To examine the effects of the drugs, volunteer type, and task 
difficulty on cognitive performance, we performed a three-
way ANOVA with two repeated measures (33) in various 
combinations on the hit rates of the subjects. A p-value < 0.05 
was taken to indicate a significant result.

Cohen’s d
To quantify effect sizes between groups, we calculated Cohen’s d 
(34), which is defined as: 
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Games-Howell Post Hoc Test
The Games-Howell post hoc test is a modification of the traditional 
Tukey’s Honestly Significant Differences (HSD) test for data sets 
with unequal variances and/or sample sizes. For two groups with 
means x1 and x2 and standard deviations σ1 and σ 2, the critical 
qcrit can be looked up in the Studentized t statistic q table with a 
modified degrees of freedom:
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Then, we consider the difference between the means, which, 
to be considered significant, must satisfy:
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We employ the Games-Howell post hoc test to examine the 
drug treatment effects on the patients alone, and use a significant 
level of 0.05.

Anatomical Parcellation and Wavelet 
Decomposition
For each individual data set, voxel time series were averaged 
within each of the 325 equally sized anatomical regions in a 
random driven atlas [see Ref. (35) for approach]. Twenty-
eight regions lacked good-quality fMRI time series for some 
subjects, so were discarded from our analysis, leaving data sets 
for 297 brain regions for all subjects. The discarded regions are 
mostly cerebellar, an area known to be highly susceptible to 
artefacts due to the major arteries which pass in the vicinity 
(36), and the complete list can be found in the Supplementary 
Presentation 1. The maximal overlap discrete wavelet transform 
(37) was used to decompose each individual regional mean 
fMRI time series into the frequency interval 0.030 to 0.060 Hz 
(scale 3). This frequency range was selected as it is has been 
shown that frequencies ≤ 0.1 Hz exhibit the most prominent 
salient neuronal fMRI dynamics (38).
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Topological Network Construction
Undirected weighted networks were generated for each individual 
based on correlating scale 3 wavelet coefficients. The resulting 
correlation coefficients rij form the weight of the edges connecting 
regions i and j. A simple thresholding procedure was then applied 
to eliminate edges with weights smaller than τ; all remaining 
edges are then given a weight of 1, providing an undirected, 
unweighted network. The threshold τ can be varied to generate 
networks with any desired percentage of possible connections. 
Following the example of Lynall et al. (10), which studies a subset 
of this particular data set, we choose to focus on 37% to 50% 
connectivity. First, this ensures that all graphs are connected, 
and second, it avoids the increasing randomness associated 
with higher connection densities (39). All results given for the 
unweighted networks are averages across this range.

Global Network Measures
Clustering
The clustering coefficient, Ci, for a node i can be defined as (40):
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where T(i) is the number of triangles containing node i, and ki is 
the degree of i—see Figure 1A.

The average clustering then provides a global network measure 
of clustering, and is simply the average of all values of nodal 
clustering, or:
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FIGURE 1 | Average clustering and global efficiency values. The box plots display distributions of (A) average clustering and (B) global efficiency for the networks 
of each group and drug, for individuals with networks for every drug treatment. The extreme ends of the whiskers correspond to the maxima and minima and the 
white line in the box corresponds to the median. Controls (n = 12) are grouped on the left and patients (n = 9) on the right. Placebo is shown in blue, aripiprazole 
in pink, and sulpiride in gold. p values refer to likelihood the distributions match that of the control placebo group (two-sample K-S test). Outliers are defined as 
being more than 1.5× the interquartile range away from the median; note this is purely visual and no values are excluded from statistical analyses. Schizophrenia 
is associated with lower clustering and higher efficiency, seen by comparing the control placebo plot to the patient placebo plot. The antipsychotic medications 
increase clustering and decrease efficiency, therefore moving patients closer to controls and affecting the control networks. All values can be found in Supplementary 
Datasheet 1 and the demographics of all participants can be found in Supplementary Datasheet 2. The schematics illustrate the concepts of (A) clustering and 
(B) efficiency. (A) Clustering measures the number of triangles which exist around a node (green solid lines), as a proportion of those that could (also green dashed 
lines). (B) Efficiency averages the inverse shortest paths (green lines) between all node pairs; many short paths equates to higher efficiencies.
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Characteristic Path Length
If the shortest path lengths, Lij, between all existing node pairs 
i and j, are identified, then the characteristic path length of the 
network, L, is simply given by the mean of their sum:

 L
N N

Lij
i j G

=
−

≠ ∈
∑1

1( )
 (6)

Efficiency
A measure of the global efficiency of a network, EGlobal, is given 
by the mean of the sum of the inverse shortest path lengths, Lij, 
between all existing node pairs i and j (17, 41):

 E
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1
1
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where N is the number of nodes in the graph G. Networks for 
which the average path length is small can thus be said to have 
high global efficiency (17) (see Figure 1B).

This is equivalent to averaging the nodal efficiencies for all 
nodes in the network.

Assortativity
The assortativity of a network is a measure of the preference of its 
nodes to connect to other nodes of similar degree. Let exy be the 
joint probability distribution (or mixing matrix) of the degrees. 
Then if e axy x

y
=∑  and e bxy y

y
=∑  are, respectively, the 

fraction of edges that start and end at vertices with values x and y 
and further that exy ≠ axby (the case of no assortative mixing), the 
assortativity coefficient can be defined simply by calculating the 
Pearson correlation coefficient (42):

 A
xy e a

xy
xy x y

a b
=

−∑ ( b )

σ σ
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where σa  and σb are the standard deviations of the distributions 
ax and by. A has a value in the range −1 ≤ r ≤ 1, where A = 1 
would correspond to a perfect correlation between x and y, i.e., 
perfect assortativity, and similarly, A = −1 would indicate perfect 
disassortativity.

Software
Motion diagnostics, preprocessing and parcellation of the 
functional MRI data were completed using the preprocessing 
pipeline with temporal despiking from (31, 43). Metric 
calculations and network manipulations were carried out using 
the Python networkx library (44) and Matlab. We used IBM SPSS 
Statistics for all ANOVA calculations (45).

RESULTS

The Effects of Schizophrenia on Global 
Efficiency and Clustering Are Mitigated 
by Medication
We first compared the functional brain networks derived from 
schizophrenia patients and healthy volunteers on placebo 
treatments and, as expected (7, 10), find distinct differences. In 
agreement with the existing literature, the schizophrenia networks 
have moderately increased efficiency (median EGlobal,SZ = 0.7144 
compared with EGlobal,HV = 0.7132, p = 0.04, d = 0.38) and a large 
reduction in clustering (median CSZ = 0.6765 compared with 
CHV = 0.7079, p = 0.01, d = 1.06)—see Figure 1. With clustering 
and efficiency values intermediate between those of random 
graphs and lattices, both the healthy and patient networks exhibit 
small-world properties (46).

We next employed an ANOVA (two-way, one repeated-measure) 
to examine any differences in network measures between groups, 
and the factors underlying them. This confirmed group differences 
due to subject type on both efficiency and clustering (p = 0.010 and 
p = 0.002, respectively) and also indicated group differences due to 
drug effect (p = 0.041 and p = 0.05 respectively)—see Tables 1 and 2, 
and Supplementary Datasheet 1. Our hypothesis was that the 
antipsychotic medications would aim to make the brain connectivities 
of patients more similar to those of healthy individuals. In the light 
of the observed differences between the control and patient placebo 
groups, this hypothesis translates to an expectation that aripiprazole 
and sulpiride will reduce efficiency and increase clustering. We do 
indeed find this for the healthy volunteers, but only small changes 
for the patients (Figure 1). Moreover, after each antipsychotic drug 
treatment, the brain networks of people with schizophrenia had 
global efficiencies which were no longer statistically different from the 

TABLE 1 | Summary statistics for a 2 way ANOVA with 1 repeated measure on the network global clustering values of patients and healthy controls treated with 
placebo, aripiprazole, and sulpiride. Individuals for which networks were available for all drug treatments were used, equating to n = 12 for healthy controls and n = 9 for patients. 
There is a significant difference between the network clustering of the HV and SZ groups (p = 0.002), a significant drug effect (p = 0.005) and an additional drug-group type 
interaction term (p = 0.005)—all highlighted in red. This interaction term stems from the effect of aripiprazole—it greatly increases the clustering of control networks while causing 
only a small and variable increase in the schizophrenia networks. The placebo and sulpiride treatments have a more consistent effect on the two groups.

Source SS df MS F p

Between groups
Subject type <0.001 1 <0.001 8.093 0.010
Error 0.001 19 <0.001
Within groups
Drug <0.001 2 <0.001 3.480 0.041
Drug×Subject type <0.001 2 0.0001 1.005 0.376
Error 0.0010 38 <0.001
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healthy brain networks (median EGlobal = 0.7137, p = 0.241, d = 0.16 
for aripiprazole and EGlobal = 0.7135, p = 0.081, d = 0.37 for sulpiride). 
Both antipsychotic drugs also led to average clustering coefficients 
that were much closer to those of healthy brain networks (median 
C = 0.6867, p = 0.032, d = 0.83 for aripiprazole, C = 0.6952, p = 0.081, 
d = 0.60 for sulpiride). Post hoc tests revealed that differences in 
efficiency and clustering across drug treatments in patients alone are 
not significant (see Supplementary Datasheet 4).

Aripiprazole Significantly Changes Healthy 
Brain Networks
We found that aripiprazole has a dramatic effect on healthy 
individuals, with a large variation across individuals. We observe 
significantly reduced global efficiencies (median EGlobal = 0.7080, 
σ = 0.009, p = 0.006, d = 1.08) and an even greater increase in 
clustering (median C = 0.7490, p < 0.001, d = 1.63). Sulpiride 
increased clustering in healthy networks (median C = 0.7294, 
p = 0.028, d = 0.74), but had no significant effect on global 
efficiency (median EGlobal = 0.7094, p = 0.321, d = 0.43). Almost 
all metrics examined are greatly altered in the healthy volunteers 
administered with aripiprazole, indicating considerable 
restructuring of functional connectivity (see Figure  1 and 
Supplementary Datasheet 1). These results are consistent with 
observations in the brain networks of people with schizophrenia, 
the drug treatments reduce efficiency and increase clustering.

Cognitive Performance of Healthy 
Individuals is Impaired After Taking 
Aripiprazole
All subjects score consistently highly on the very easy 0-back task, 
but their performance deteriorates considerably with increasing 
difficulty of the task, with subjects experiencing profound 
difficulty with the 3-back version (see Figure 2, Table 3, and 
Supplementary Datasheet 3). In the healthy cohort, aripiprazole 
has a detrimental effect on performance, whereas the impact of 
sulpiride is negligible—see Figure 2B. In the challenging 2-back 
version of the task, the disparity is most clear—aripiprazole 
has a negative impact on cognitive performance, giving rise to 
an average hit rate of 0.65 ± 0.21 (compared with 0.83 ± 0.19 
on placebo). Sulpiride, however, has no noticeable impact, with 
subjects achieving an average hit rate of 0.83 ± 0.18.

An ANOVA (three-way, two repeated measures) revealed 
that, naturally, the predominant factor in determining success 
at the working memory tests was the difficulty of the task (p < 
0.0001) (see  Table 3). However, it also demonstrated that the 
drug treatments have a significant effect (p = 0.007). We then 
separated out the drug treatments into placebo-aripiprazole and 
placebo-sulpiride groups and repeated the ANOVA on controls 
and patients separately. This shows that the effect is only observed 
in the healthy volunteers, and that aripiprazole is the medication 
responsible (p  =  0.015, d  =  0.37 for the placebo-aripiprazole 
groups and p = 0.769, d = 0.04 for the placebo-sulpiride groups). 
Thus, among healthy volunteers, we find that aripiprazole results 
in poorer performance at the N-back working memory task as 
compared with placebo, and that sulpiride has no noticeable effect.

Cognitive Tests Show Worse Performance 
of Patients but do not Capture 
Drug Effects
Patients scored worse than controls in the N-back working 
memory task, but not significantly so, with an average hit rate 
of 0.73 ± 0.18 for patients and 0.83 ± 0.19 for controls for the 
placebo 2-back task. Aripiprazole and sulpiride do not change 
the performance of patients much (average hit rates of 0.71 ± 0.21 
and 0.79 ± 0.28, respectively, for the 2-back task) with an ANOVA 
showing no significant drug effect (p = 0.217) (see Figure 2C).

DISCUSSION

Network Topology, Illness, and Medication
It has been known for some time that the whole-brain functional 
brain network organization of people with schizophrenia differs 
from that of healthy volunteers (7, 10). However, very few 
graph-theoretic studies have been conducted into the effect 
of antipsychotic medication, or indeed any drug for any brain 
disorder, on this network organization. The ones that have been 
conducted found measurable drug effects (17, 18, 47, 48) [including 
converse to treatment, inducing psychosis (49)]. We hypothesized 
that a drug designed to treat schizophrenia would modify the brain 
connectivities of patients, making them more similar to those of 
healthy individuals. The results for global efficiency and clustering 
in Figure 1 clearly demonstrate this principle—sulpiride and 

TABLE 2 | Summary statistics for a two-way ANOVA with one repeated measure on the network global efficiency values of patients and healthy controls treated with 
placebo, aripiprazole, and sulpiride. Individuals for which networks were available for all drug treatments were used, equating to n = 12 for healthy controls and n = 9 
for patients. There is a significant difference between the network efficiency of the HV and SZ groups (p = 0.010) and a significant drug effect (p = 0.041)—highlighted 
in red. Individuals for which networks were available for all drug treatments were used, equating to n = 12 for healthy controls and n = 9 for patients. There is a significant difference 
between the network efficiency of the HV and SZ groups (p = 0.010) and a significant drug effect (p = 0.041).

Source SS df MS F p

Between groups
Subject type 0.026 1 0.026 12.208 0.002
Error 0.040 19 0.002
Within groups
Drug 0.004 2 0.002 6.023 0.005
DrugxSubject type 0.004 2 0.002 5.997 0.005
Error 0.012 38  <0.001
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FIGURE 2 | N-back working memory task. Panel (A) illustrates the nature of the task. Subjects are shown a sequence of letters, and asked to indicate if they are 
presented with a letter which matches the letter presented “N-back.” In the example shown, the subjects are expected to note for the 2-back task that B was 
presented two letters previously (and for the 0-back task that they are observing the current letter). There is nothing to note for the 1-back and 3-back tasks. 
Naturally, 0-back is the easiest version of the task and 3-back the hardest. For each drug treatment, hit rates (or fraction of correct responses out of a total of 10 
prompts) from (B) healthy individuals (n = 15) and (C) schizophrenia patients (n = 10) averaged across each level of difficulty are presented as box plots. Results for 
placebo are shown in blue, aripiprazole in pink, and sulpiride in gold. The extreme ends of the whiskers correspond to the maxima and minima, and the white line 
in the box corresponds to the median. Values below the boxes represent the median values, and for the drug treatment groups, the difference with the median of 
the placebo group is provided in brackets. Aripiprazole is associated with a reduced number of correct answers as compared with placebo, most strikingly so for 
controls completing the 2-back task. All values can be found in Supplementary Datasheet 3.
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aripiprazole act to reduce efficiency in both controls and patients. 
While the differences among the patient group do not prove to be 
significant, they do leave the patients with network efficiencies 
and clustering comparable to those of the unmedicated controls, 
and the controls have lower efficiency and higher clustering than 
before. In addition, we also observed a strong effect of a single dose 
of aripiprazole on medication-naive healthy controls. This finding 
is consistent with our result in patients, as the drug seemingly 
tries to “correct” for schizophrenia network characteristics—in 
the absence of schizophrenia—by altering the network metrics to 
decrease efficiency and increase clustering.

Network Topology and Cognitive Ability
Our results suggest that there is an optimal configuration for 
a brain network in terms of maximizing cognitive ability: 
performance worsens given any change (increase or decrease) in 
the examined metrics from a healthy baseline, the control placebo 
group. We saw that as well as having a characteristically different 
brain network structure, schizophrenia patients perform less well 
at tests of cognitive ability than their healthy counterparts, as has 
been previously demonstrated (4), although these effects are not 
significant. Further, we showed that the group who performed 
most differently on medication (healthy volunteers having been 
administered aripiprazole) was also the group who had the most 
changes to the topology of their brain networks. This supports 
the notion that one’s cognitive ability is intrinsically linked to the 
structure of the brain’s functional network (50). For example, to 
integrate and process information quickly, a network requires 
some level of efficiency. The control group on aripiprazole had 
diminished efficiency and performed significantly worse at the 
N-back tasks than when on placebo. No such impaired performance 
is seen for sulpiride, for which the reduction in efficiency was 
negligible. On the other hand, the schizophrenia brain networks 
appear to have too high an efficiency, perhaps leading to disordered 
or overwhelming information integration, and they too perform 
worse. The drugs do non-significantly decrease efficiency in 
patients, and their performance is slightly improved at the 1- and 
2-back tasks. A previous study on MEG-derived networks using 
the N-back working memory paradigm (51) demonstrated a shift 

toward a more random network configuration (with a decrease in 
modularity and clustering, and an increase in global efficiency) as 
the cognitive demands of the task increased. The authors also note 
significant differences from purely random networks and argue 
that global sychronization is important in higher cognition, which 
is reflected in the network architecture.

Neurochemical Differences in 
Schizophrenia
Schizophrenia implicates D2 receptors (among others) (52, 
53), and a succession of studies have demonstrated increased 
presynaptic dopamine synthesis in psychosis and at-risk patients 
(54, 55). Dopamine antagonists, such as aripiprazole and 
sulpiride, are therefore used to treat schizophrenia. PET studies of 
schizophrenia patients have found that greater dopamine receptor 
occupancy by aripiprazole was associated with better working-
memory performance in terms of error rate and reaction time 
(56). Conversely, in healthy volunteers, greater striatal D2 receptor 
occupancy by aripiprazole was related to greater decrease in 
frontal metabolism, and greater reduction in frontal metabolism 
was associated with impaired performance at a working memory 
task (57). Thus, striatal dopaminergic function could contribute 
to the working-memory impairments observed in schizophrenia, 
and antipsychotic drugs could mitigate this by reducing excess 
striatal dopaminergic neurotransmission. With no excess 
dopamine synthesis in healthy volunteers, a reduction induced by 
dopamine antagonists leads to worsened performance.

Consistent with the literature, our results indicated that 
aripiprazole significantly worsened the performance of healthy 
subjects at the N-back working memory task, but did not hinder 
the patients. Sulpiride had no significant detected effects. The main 
pharmacological difference between the two antipsychotics is that 
aripiprazole is a partial D2 antagonist and sulpiride is the most 
selective D2 antagonist. Given this, we might expect that sulpiride 
have a larger detrimental effect on the healthy controls’ performance, 
but it is possible that due to the relatively high dose of aripiprazole, it 
had stronger D2 antagonistic effects due to the relatively high dose of 
sulpiride. It is also surprising that we observed such small differences 
between the healthy and patient groups at the working memory 

TABLE 3 | Summary statistics for a three-way ANOVA with two repeated measures on the hit rates during a working memory task with four levels of difficulty of patients 
and healthy controls treated with placebo, aripiprazole, and sulpiride. Individuals for which data were available for all drug treatments were used, equating to n = 15 for 
healthy controls and n = 10 for patients. We see a significant effect of cognitive difficulty (p < 0.001) and a significant drug effect (p = 0.007)—highlighted in red.

Source SS df MS F p

Between groups
Subject type 0.007 1 0.007 0.044 0.836
Error 3.762 23 0.164
Within groups
Drug 0.386 2 0.193 5.489 0.007
DrugxSubject type 0.011 2 0.006 0.160 0.853
Error 1.618 46 0.035
Cog. difficulty 4.828 3 1.609 42.779 <0.0001
Cog. difficultyxSubject type 0.045 3 0.015 0.403 0.751
Error 2.596 69 0.038
DrugxCog. difficulty 0.120 6 0.020 1.160 0.331
Subject typexDrugxCog. difficulty 0.162 6 0.027 1.160 0.331
Error 2.384 138 0.017
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tasks. However, we recruited relatively stable and high-functioning 
patients, and all participants were trained outside the scanner so that 
their performance was relatively stable. We aimed to match patients 
and controls for task performance so that drug effects were not 
confounded by group effects at the baseline (the placebo treatment).

Limitations
The greatest limitation of this study is the small sample size: n = 15 for 
healthy controls and n = 12 for patients with schizophrenia, which is 
further reduced to n = 12 and n = 9, respectively, for the functional 
brain networks, and n = 15 and n = 10, respectively, for the working 
memory tasks. The fMRI time series were collected with standard 
parameters at the time of study, which given the age of the data sets, 
inevitably have some drawbacks compared with modern state-of-
the-art data sets. Most notably, this includes a greater sparsity of 
imaging, compounded by the loss of 28 regions due to head motion 
artefacts. However, we do note that the acquisition time was long 
(17 min 12 s), which will have benefited the accuracy of the regional 
correlations and, therefore, also, the networks we derived from them 
(58). There is a considerable literature comprising studies based on 
this type of data (10, 46), and importantly, key network-based results 
have been replicated in more modern studies (19, 59).

Finally, there are likely confounding effects from other drugs. 
All patients were prescribed oral antipsychotic medication and 
asked not to take their medication on the days of the fMRI study 
(see Supplementary Datasheet 2 for the details of their usual 
medications). While this mitigates acute pharmacological effects, 
patients had been treated with these other antipsychotics for 
several years, and their long-term effects cannot be accounted 
for. This limitation affects the analysis and interpretation of group 
effects (differences between patient and controls), but not for the 
comparison of drug conditions within each group (of patients 
and controls). An earlier study utilizing a subset of these data 
(10) found no significant correlation with antipsychotic dosage 
(in chlorpromazine equivalents) and any of the connectivity or 
network metrics they examined.

Brain Networks as a Means to 
Assess Medication
This quite unique data set allowed for an investigation into the 
effects of antipsychotic drugs on both the large-scale functional 
brain networks and the cognitive performance of people diagnosed 
with chronic schizophrenia and healthy volunteers. Despite its 
limitations, clear drug effects were observed on the network 
topology and performance at the N-back working memory task. 
We find a reduction in the difference between specific healthy and 
patient network metrics and that aripiprazole impairs cognitive 
ability and radically rewires the brain networks of healthy 
volunteers. It would be highly beneficial for future studies to use 
state-of-the-art functional MRI data to further investigate the links 
between disrupted networks in people with brain disorders, how 
medication influences these, and an “ideal” network topology for 
the brain (which should be identified by association with an optimal 
behavioral parameter, such as the best cognitive performance). 
Such advanced studies have the potential for not just diagnosis of 
the original brain disorder, but also for the quantification of the 

effectiveness of a drug in treating the illness. This would then allow 
for a systematic comparison between alternative treatments.
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