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When measured in units of body mass index (BMI), how much variation in men’s self-
estimates of body size is caused by i) variation in participants’ body composition and ii) 
variation in the apparent muscle mass and muscle tone of the stimuli being judged? To 
address this, we generated nine sets of male CGI bodies representing low, mid, and high 
muscle mass rendered at low, mid, and high muscle tone, from 18.75 to 40 BMIhse units. 
BMIhse units in this study are estimates of BMI derived from calibration equations predicting 
BMI from waist and hip circumference, age, sex, height, and ethnicity in the Health 
Survey for England databases. Forty-five healthy adult men estimated their body size 
using a yes-no paradigm for each combination of muscle mass/tone. We also measured 
participants’ body composition with Harpenden callipers and their body concerns with 
psychometric questionnaires. We show that stimulus variation in apparent muscle mass/
tone can introduce differences up to ~2.5 BMIhse units in men’s self-estimates of body size. 
Moreover, men with the same actual BMI, but different body composition, showed up to 
~5-7 BMIhse unit differences in self-estimates of body size. In the face of such large errors, 
we advocate that such judgments in men should be made instead by simultaneously 
manipulating both the adiposity and the muscle mass of stimuli which are appropriately 
calibrated for body composition, so that the participant can match the body size and 
shape they believe themselves to have to the stimulus they see.

Keywords: male body image, body size estimation, body composition, muscularity, adiposity

INTRODUCTION

Several meta-analyses support the view that body image comprises i) a perceptual component which 
represents the accuracy with which a person can judge the physical dimensions of their own body 
and ii) an attitudinal component which captures the feelings that a person has about their body size 
and shape (1–4). Most people with anorexia nervosa (AN) experience body image distortion (DSM-
5, 2013). Perceptually, they over-estimate their body size (5–8) and attitudinally, they have negative 
feelings towards their body. Persistent over-estimation and disparagement of own body size predicts 
the long-term outcome in treatment of AN (7, 9, 10), and its continuation post-treatment is a key 
predictor of relapse, which can be as high as 31% (11).
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In men, not only is the incidence of anorexia nervosa rising 
(12, 13), but an increase in a drive for muscularity can lead both 
to the development of anorexia nervosa (14) and the onset of 
muscle dysmorphia, originally termed reverse anorexia (15). The 
presentation of male body image disorders shows a split between 
men who strive for thinness and those seeking to increase 
muscularity (16–18). Research also demonstrates that behaviors 
of men and women diagnosed with an eating disorder are more 
comparable than previously realized (19). This emphasizes the 
need for an accurate method for men to estimate their own body 
size. However, this measurement is problematic.

Men’s bodies vary in body composition (i.e., the relative 
proportion of total fat versus skeletal muscle mass) considerably 
more than women’s do. Yet virtually all scales developed for self-
estimation of body size, to date, focus only on shape change that 
depends on percentage body fat, often expressed in units of BMI. 
However, the BMI itself is limited as an accurate index of body size 
and shape because it does not explicitly distinguish between the 
two principal dimensions of body composition, namely adiposity 
and muscle mass (20, 21). Since muscles are heavier than fat, 
increasing muscle mass makes a body denser, i.e. weighing more 
at the same volume (22). Consequently, the body shapes of two 
individuals with the same BMI, but different body composition, 
one with high and the other with low muscle mass, will be different. 
Moreover, in terms of clinical risk, a clinician would classify a 
man who weighs 148 kg and who is 1.93 m tall as severely obese 
according to World Health Organisation (23) criteria, because he 
would have a BMI of 39.7. But, if this individual had a lean body 
mass of ~120 kg, a body fat percentage of less than 20%, and is a 
professional athlete, it can be assumed that he actually constitutes 
a low risk for obesity related disease (24).

In recognition of this measurement problem, attempts have 
been made to construct body scales for men which comprise 
systematically increasing combinations of muscle mass and 
adiposity. For example, Cafri and Thompson (25) constructed a 
line-drawn set of images based on the “somatomorphic matrix” 
(15). Arguably, these images lack realism in their depiction 
of individual bodies. More importantly, they showed low 
reliability on testing and the authors recommended their use 
should be discontinued (25). More recently Talbot, Smith, Cass, 
and Griffiths (26) produced a set of CGI bodies based on this 
image set (i.e., the new somatomorphic matrix). Although the 
authors found that the scores on their new measure showed 
good concurrent and convergent validity as a measure of male 
body dissatisfaction, as well as good test-retest reliability, they do 
not seem to have duplicated the size and shapes of these bodies 
in a formal, quantitative way. Specifically, there is no precisely 
calibrated mapping between the shape of the men in the images, 
and their body composition. The implication is, therefore, that 
while well intentioned, these somatomorphic matrices cannot 
currently be used to estimate body shape and size in men reliably.

THE CURRENT STUDY

Here, we set out to measure how much variation in men’s self-
estimates of body size (when measured in BMIhse units) is 

caused by i) variation in participants’ own body composition 
and ii) variation in the apparent muscle mass and muscle tone 
of the stimuli being judged. To anticipate, our intention was to 
demonstrate that the sources of error in these measurements, 
when expressed in BMIhse units, are large. Indeed, that the 
errors are likely to be so large that we really should, as a research 
community, be seeking to solve the problem by developing 
stimuli that are correctly calibrated for both muscle mass and 
body fat for use in body-size estimation tasks. This paper does 
not represent that ideal solution. Rather it is intended as a call to 
action, based on the quantitative evidence we present.

To achieve this goal, we have had to use an indirect strategy, 
because, to our knowledge, no large-scale database exists that 
would allow images to be generated that are correctly calibrated 
for body composition. Therefore, in this study, we used 3D CGI 
models of men that were independently judged to have qualitatively 
low, middle, or high muscle mass based on visual judgments 
alone. For each of the three sets of models, we allowed adiposity 
to vary continuously from a very slim figure through to a mildly 
obese figure. Any given level of adiposity can be assigned a BMIhse 
value by substituting the model’s waist and hip circumference 
into a calibration equation derived from ~5,000 observations 
from the Health Survey for England datasets [see, e.g., Refs. (27, 
28)]. The key point here is that across the three levels of muscle 
mass, qualitatively determined, we can ensure that the waist and 
hip values are the same at every BMIhse value, and that these 
circumferences increase at exactly the same rate with increasing 
BMIhse. This means that we can ask whether a participant who 
has a measured BMI of 26, for example, will match a stimulus to 
their own body that has the same BMIhse across the three levels of 
qualitatively defined muscle mass, or different BMIhse values. The 
possible outcomes can be explained by two alternative hypotheses.

The first hypothesis is based on behavioral and eye-movement 
studies of women making self-estimates of body size, which 
suggest that women judge BMI by estimating the width of the 
body in the abdominal region (29–31). Therefore, if men use 
the same gaze strategy when making self-estimates of body size 
as women, they could solve the tasks in the current study by 
identifying the stimuli which they believe to be a good match 
to their own waist and hip widths, i.e., making a match based on 
abdominal torso width. If this were the case, we would expect 
to see individuals choosing stimuli with the same BMIhse values 
across the three levels of muscle mass reflecting the body size 
they believe themselves to have. Plots of the regression of BMIhse 
on participants’ actual BMI would therefore produce overlapping 
regression lines with, statistically, the same slopes and intercepts. 
Any difference, or error, between actual BMI and the body-size 
estimate, expressed in BMIhse, should be equivalent across the 
three muscle mass levels.

An alternative, and we believe more likely hypothesis, assumes 
that men may use cues other than, or in addition to, torso edge 
separation (indexed by waist and hip widths), with which to 
make their judgments. For example, Crossley, Cornelissen, and 
Tovée (32) showed that males attach importance not only to the 
abdominal region but also the chest and the arms. Qualitative 
research conducted by Ridgeway and Tylka (33) questioned males 
about their ideal body composition and identified that as well 
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as the upper body, males also discussed their thighs and calves 
as often as their shoulders and back. More recent eye tracking 
studies have confirmed the relevance of the chest, shoulders, and 
abdominal regions as areas of interest, not only when participants 
were looking at their own bodies, but when looking at other 
men (34, 35). Therefore, if men are using features like these to 
match the body-size/shape they believe themselves to have, then 
they may need, for example, to pick low muscle mass stimuli 
with higher BMIhse values compared to the matches they make 
with high muscle mass stimuli. In other words, they may need 
to inflate the qualitatively lower muscle mass images in order to 
make a convincing match to their beliefs about their own body 
shape and size more than they do for higher muscle mass images. 
In this situation, plots of the regression of BMIhse on participants’ 
actual BMI would produce non-overlapping regression lines 
with different intercepts, and possibly different slopes. Were we 
to find such effects, this would confirm that the qualitative visual 
properties of a stimulus set with respect to muscle mass and tone 
have a strong influence on estimates of body size.

In short, calibrating our stimuli based on the HSE datasets 
gives a BMI index (i.e., BMIhse) that is agnostic about the 
differential effects of muscle mass. However, because waist 
and hip circumferences can be held constant across the three 
qualitatively defined muscle mass levels, and by making sure that 
each participant repeats the task at each of these three muscle 
mass levels, we can infer something useful about the impact of 
stimulus muscle mass on participants’ body-size judgments 
by comparing between measurements, and expressing these 
difference in BMIhse units. As a final step, we used a modestly 
sized body composition database of 178 men to assign plausible, 
quantitative muscle mass values to our stimuli, and thereby back 
calculate a likely real BMI value (this time sensitive to body 
composition) for them. We then repeated our analysis of the 
experimental data to test whether we converged on the same 
pattern of results.

In summary, we set out to measure how much error in men’s 
self-estimates of body size (when measured in BMIhse units) is 
caused by i) variation in participants’ own body composition and 
ii) variation in the apparent muscle mass and muscle tone of the 
stimuli being judged. Additionally, we used a battery of standard 
psychometric measures to index participants’ psychological state 
and to allow us to factor this into our analysis.

METHODS

The experimental procedures and methods for participant 
recruitment for this study were approved by the local ethics 
committees at Northumbria University and the University of 
Lincoln. All experiments were performed in accordance with 
relevant guidelines and regulations set out by these organizations, 
and all participants gave their informed consent to take part in 
this study.

Participants
An opportunity sample of 53 male participants aged 18–58 (M = 
24.87, SD = 9.02) was recruited from a sample of university staff 

and students and individuals from surrounding areas. Following 
participation, eight participants were excluded from our data 
set either because they did not complete all nine psychophysical 
tasks or it proved impossible to compute adequate psychometric 
functions from their data in at least one task. Measures retrieved 
from a final sample of 45 male participants aged 18–58 (M = 24.73 
years, SD = 9.23) were used for data analyses, 39 of whom consented 
to body-site measurements with Harpenden callipers (see Table 1 
for all participant characteristics). Participants were advised that 
their actual BMI should fall within the range from 18 to 40 to 
correspond with the BMIhse range of stimuli sets. Individuals with 
a current diagnosis of an eating or body dysmorphic disorder 
were excluded from taking part in the research. There was no 
financial reward for taking part in the study.

Psychometric Measurements
To assess participants’ current attitudes towards their body shape 
and size, the following questionnaires were used:

• The Body Parts Satisfaction Scale for Men (BPSS-M) (36). 
The 25-item BPSS-M asks participants to rate their level of 
satisfaction with their upper body, their face, and their legs on 
a scale from 1 to 6 (1 = extremely dissatisfied, 6 = extremely 
satisfied). The list of items includes both muscularity and 
leanness criteria, as well as an indication of an individual’s 
overall body satisfaction. For the purposes of this study, we 
reverse scored all items so that higher scores index a greater 
dissatisfaction with body size and shape.

• The Sociocultural Attitudes Towards Appearance Questionnaire 
(SATAQ-4) (37). The 22-item SATAQ-4 evaluates the extent 
of internalization of appearance ideals and appearance related 
pressures. The SATAQ-4 measures five subscales of one’s 
appearance: two for Internalization, consisting of thin/

TABLE 1 | Descriptive statistics for age, actual BMI, body composition and 
questionnaire responses (n = 45).

M SD Range

Actual Potential

Participant characteristics
 Age (years) 24.73  9.23 18.00 – 58.00
 Actual BMI (kg/m2) 25.32  4.50 18.00 – 39.70
 Body fat (%) 19.75  3.69 13.94 – 30.37 
 Skeletal muscle (%) 19.03  5.43  9.00 – 29.00
Psychometric task 
performance
 BPSS-M 87.02 21.06 25.00 – 130.00  25 – 150
 STQ Body fat 13.34  4.30  5.00 – 21.00  5 – 25
 STQ Muscular 15.57  5.05  5.00 – 25.00  5 – 25
 STQ Family pressure  7.09  3.79  4.00 – 19.00  4 – 20
 STQ Peer pressure  7.84  3.25  4.00 – 16.00  4 – 20
 STQ Media pressure 11.20  4.97  4.00 – 19.00  4 – 20
 DMS Attitudes 26.18  9.21  7.00 – 42.00  7 – 42
 DMS Behaviors 16.23  9.08  7.00 – 40.00  7 – 42
 DMS Total 43.73 16.98 15.00 – 84.00  15 – 90

STQ, Sociocultural Attitudes Towards Appearance Questionnaire 4 (SATAQ 4); 
DMS, Drive for Muscularity Scale; BPSS-M, Body Parts Satisfaction Scale for Men.
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low body fat and muscular/athletic dimensions, and three for 
Pressures consisting of family, peers, and media dimensions. 
Items are rated on a Likert scale ranging from 1 to 5 (1 = 
definitely disagree, 5 = definitely agree), with higher scores 
indicating greater internalization and acceptance of societal 
appearance ideals.

• The Drive for Muscularity Scale (DMS) (38). Participant 
drive for muscularity was measured using this 15-item scale, 
which indexes two subscales of one’s muscularity drive: 
muscularity-oriented attitudes (7-items) and muscularity-
related behaviors (7-items). The scale also provides an overall 
drive for muscularity score. Participants rated the items on a 
scale ranging from 1 to 6 (1 = Always, 6 = Never), and all items 
were reverse-coded so that higher composite scores indicated 
greater drive for, attitudes towards, and engagement in behavior 
to increase muscularity. Reliability testing for responses to the 
psychometric questionnaires across the sample showed good 
internal reliability.

For BPSS-M, SATAQ Body fat, SATAQ Muscular, SATAQ 
Family pressure, SATAQ Peer pressure, SATAQ Media pressure, 
DMS Attitudes, DMS Behavior, and DMS Total, Cronbach’s alpha 
was. 96, .75, .88, .90, .82, .94, .91, .92, and .94, respectively.

Anthropometric Measurements
To assess participant’s current body size and shape, we used the 
following measures:

• BMI. This was measured using the same stadiometer and 
calibrated scales throughout the testing period and was 
calculated as BMI = Weight (kg)/Height (m)2.

• Body Composition. We used the Harpenden skinfold caliper as 
recommended by the International Standards for Anthropometric 
Assessment guide (ISAK) (39). Skinfold measurements 
(millimeters) were taken from eight key body sites: biceps, triceps, 
subscapular, iliac crest, abdominal, suprailium, mid-thigh, and 
medial calf; along with circumference measurements (cm) 
of the upper arm, mid-thigh, and calf, using a SECA 201 
measuring tape. Body fat percentage was calculated using the 
final equation for men as set out by Peterson, Czerwinski, and 
Siervogel (40): % BFnew = 20.94878 + (age x 0.1166) – (height x 
0.11666) + (sum4 x 0.42696) – (sum42 x 0.00159), where 
height is in centimeters and sum4 is the sum of the triceps, 
subscapular, iliac crest, and mid-thigh skinfold thickness. 
Muscle mass percentage was calculated using the final equation 
developed by Lee et al. (41): SM (kg) = Ht x (0.00744 x CAG2 + 
0.00088 x CTG2 + 0.00441 x CCG2) + 2.4 x sex – 0.048 x age + 
race + 7.8. This equation employed participants’ height (Ht), 
race (Caucasian/Hispanic = 0, Asian = 1, African American = 
1.1), sex (male = 1, female = 0), corrected arm (CAG), thigh 
(CTG), and calf (CCG) girth measurements.

Stimulus Generation
We created CGI images from the Genesis 8 male base model 
in a 3D modelling environment (DAZ Studio v4.8). The models 

stood in front of a virtual camera in three quarter view [cf. (42)]. 
This modelling environment allows adiposity, muscle mass, 
and muscle tone to be manipulated individually along separate 
morph dimensions. Based on pilot data, we picked three levels 
each for visually apparent muscle mass (low, mid, and high) 
and muscle tone (low, mid, and high) that 10 raters agreed 
constituted qualitatively distinct differences for these attributes 
across three BMI categories (underweight/healthy/overweight; 
23). For these inter-rater judgments, the overall Kappa statistic 
for nominal judgment was 0.98 (SE = 0.035, Z = 28.29, p < 
.0001), suggesting that the qualitative differences between the 
three muscle mass and muscle tone renderings were indeed 
clear and unambiguous to participants. We then systematically 
manipulated the adiposity of the male model at each of the 9 
muscle mass and muscle tone combinations, to produce a set 
of stimuli that varied in BMIhse from 18.75 to 40 in 0.25 BMIhse 
steps. We calibrated models for BMIhse using the equation 
below, which was derived from the waist and hip circumference 
measurements from 5,705 Caucasian men, over the age of 18, 
from the HSE datasets (43). The height of the model to be 
entered into the calibration equation was 1.78 m [cf. (44)]. This 
calibration equation explains 88% of the variance relating the 
actual BMI of the 5,705 Caucasian men to their waist and hip 
circumferences, as well as their age and height:

 BMI x x x xhse 1 1 2 2 3 3 4 4= + + + +β β β β ε  

where x1 = waist circumference (cm), x2 = hip circumference 
(cm), x3 = height (cm), x4 = chronological age (years), β1 = 0.24 
95% CI(0.23 – 0.25), β2 = 0.20 95% CI(0.19 – 0.21), β3 = -0.15 
95% CI(-0.16 – -0.14), β4 = -0.024 95% CI(-0.047 – -0.042).

Individual stimulus images were ray-traced in Luxrender. 
The advantages of the stimuli sets are that the images i) are high 
definition and photorealistic, ii) maintain the identity of the male 
model across a wide BMIhse range, and iii) demonstrate realistic 
changes in BMIhse dependent body shape. Examples of the stimuli 
are shown in Figure 1. However, please note that, owing to the 
reduced contrast and resolution of this illustration, much image 
detail is lost compared to the original stimuli.

Yes-No Psychophysical Task
In this study we applied classical psychophysical methods [cf. (45)] 
to measure two components of the participants’ judgments of their 
own body size: i) the point of subjective equality (PSE) and ii) 
the difference limen (DL). The PSE is the participant’s subjective 
estimate of their body size, in this case measured in BMIhse units. 
The DL is an estimate of how sensitive a participant is to changes 
in body size and equates to the smallest difference in body size 
that he can detect, again measured in BMIhse units. To obtain 
these measurements, we used the method of constant stimuli 
in a yes-no forced choice paradigm. This allows a psychometric 
function to be estimated. Here, the psychometric function is a plot 
of the percentage of “this image is larger than me responses” as 
a function of the BMIhse of the stimuli presented, and the curve 
tends to have a sigmoidal shape. The PSE is defined from the 
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psychometric function as the BMIhse at which participants would 
respond “larger than me” 50% of the time. The DL is the average of 
the differences in BMIhse of the stimuli falling between the 25% and 
50% and the 75% and 50% “larger than me” response points [see 
(46)]. This range captures the steepness of the psychometric curve. 
Participants who are very sensitive to small changes in body size 
will have a steeper psychometric function with a correspondingly 
small DL. Figure 2 shows sketch plots to illustrate how the PSE and 
DL are derived from the psychometric function.

Participants carried out the yes-no task nine times, once for 
each combination of muscle mass/muscle tone. The order of 
presentation of muscle mass/muscle tone stimuli was randomized 
for each participant. For each yes-no task, participants were 
presented with a randomized sequence of images of the standard 
CGI male body model. Across the image set, BMIhse varied 
continuously from 18.75 to 40.0. On each trial of the task, one 
image was presented and participants were required to decide 
whether the body depicted was larger than they were and to 
record this decision by button press (one button for “yes” and 

a second button for “no”). Stimuli were presented on a 19” 
flat panel LCD screen (1280w x 1024h pixel native resolution, 
32-bit color depth) for as long as it took participants to make a 
decision. At the standard viewing distance of ~60 cm, the image 
frame containing the male body subtended ~26° vertically and 
~8° degrees horizontally. Each participant first judged seven 
images covering the whole BMIhse range (from 18.75 to 40.0 
in equal BMIhse steps) presented in two separate blocks. Each 
stimulus image appeared 10 times in each block, and the order of 
presentation was randomized. Based on the responses from each 
block, the participants’ PSE (i.e., an estimate of the BMIhse they 
believe themselves to be) was calculated automatically by fitting 
a cumulative normal distribution. These two values were then 
averaged to give an initial estimate of the participant’s PSE. On 
the basis of this initial estimate, the program presented a further 
set of 21 images (spread over a range of 5 BMIhse units centered 
on the participant’s initial PSE, at a spacing of 0.25 units per 
image) for the participants to judge. Each image was presented 
10 times in randomized order. This final set of judgments allowed 

FIGURE 1 | Examples of the CGI bodies used in this study to illustrate the changes of body shape and size of the male stimuli produced by changing their body 
composition. The images are grouped into three columns, from left to right: low, mid, and high muscle tone. They are further divided into three rows from bottom 
to top: low, mid, and high muscle mass. Ten raters agreed that these groupings constituted qualitatively distinct differences for these attributes across three BMI 
categories (underweight/healthy/overweight; 23). The overall Kappa statistic for nominal judgment was 0.98, SE = 0.035, Z = 28.29, p < .0001.
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us to plot the full psychometric function and use probit analysis 
off-line to calculate a definitive estimate of PSE as well as the DL 
(i.e., how sensitive participants are to changes in BMIhse).

Timeline for Task Administration
Due to the nature of testing and the length of each task, 
participants were invited to take part over two testing sessions. 
During the first testing session, participants were invited to 
complete all psychometric questionnaires, before having their 
height and weight measured by the researcher in order to calculate 
actual BMI. Standardized verbal instructions were then given for 
the psychophysical tasks and participants were asked to complete 
the first four levels of the psychophysical task. Order exposure 
of task level was randomized. During the second session, which 
occurred within two weeks of the first, participants completed the 
remaining five levels of the psychophysical task. For participants 
who chose to participate, body composition measurements were 
also taken during the second session. Collectively, participation 
lasted approximately two hours.

Analysis Pipeline
The main analyses of the experimental data included the 
following steps:

• Calculation and tabulation of univariate descriptive statistics for 
participants’ characteristics and their psychometric performance.

• Data reduction of the psychometric responses, using principal 
components analysis, to produce two latent variables: i) PC1, 
referred to as Participant_Fat_Att, represents increasing body 
image concern, together with perceived social pressures about 
body image from the media, peer groups, and family; and ii) 
PC2, referred to as Participant_Musc_Att, represents perceived 

social pressure for and positive attitudinal responses towards 
increasing muscularity, combined with a drive to take part in 
activities that would achieve this outcome.

• Computation of three linear mixed effects models:
• MODEL 1: Participants’ PSE responses predicted from 

participants’ actual BMI, apparent stimulus muscle 
mass, apparent stimulus muscle tone, participants’ 
age, Participant_Fat_Att, and Participant_Musc_Att as 
explanatory variables. See Figure 3, upper and middle 
rows, for illustrated model outcome.

• MODEL 2: Participants’ PSE responses predicted from 
participants’ percentage body fat, participants’ muscle 
mass, apparent stimulus muscle mass, apparent stimulus 
muscle tone, participants’ age, Participant_Fat_Att, and 
Participant_Musc_Att as explanatory variables. See Figure 4 
for illustrated model outcome.

• MODEL 3: Predicted participants’ DL responses using 
participants’ actual BMI, apparent stimulus muscle mass, 
apparent stimulus muscle tone, participants’ age, Participant_
Fat_Att, and Participant_Musc_Att as explanatory variables. 
See Figure 3, bottom row, for illustrated model outcome.

• Simulation to illustrate how large the differences in body-
size estimates (i.e., PSE in BMIhse units) can be in individual 
participants who have the same actual BMI. To do this, we 
estimated the covariance between body fat and skeletal muscle 
mass in men, from a modest database of 178 Caucasian males 
whose body composition had been measured using a Tanita 
MC780MA multi-frequency segmental body composition 
analyzer. See Figure 5 for illustrated model outcome.

• Simulation to illustrate the likely effect sizes of stimulus 
muscle mass and muscle tone that we would obtain, if we had 
stimuli that were correctly calibrated for body composition. To 
do this, we again used the modestly sized body composition 

FIGURE 2 | A graphical illustration of how the psychometric function for body size estimation can be used to separate out sensory sensitivity (indexed by the 
difference limen, DL) from perceptual bias (indexed by the point of subjective equality, PSE). On the left, participants A, B, and C might all have the same BMI of 
25. However, participant A under-estimates and participant C over-estimates their body size. On the right, participant A is more sensitive to body size change than 
participant B, and therefore has a steeper psychometric function, with a smaller DL.
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database of 178 Caucasian men. This simulation converged on 
a qualitatively similar pattern of results, even though the sizes 
of the effects were reduced by ~40% for stimulus muscle mass 
and ~18% for stimulus muscle tone.

RESULTS

Univariate Statistics
Table 1 shows the characteristics of our 45 male participants. 
With respect to the World Health Organization’s BMI 
classification scheme (23), the numbers of participants who fell 

into the under-weight, normal, over-weight, and obese categories 
were 2, 22, 15, and 6. Performance in the psychometric tasks also 
fell within the normal ranges for the BPSS-M (36), the SATAQ-4 
(37), and the DMS (38). All raw DL scores departed markedly 
from a normal distribution for each condition (smallest Shapiro-
Wilk’s W = 0.223, p < .0001) and were therefore logarithmically 
transformed for further analysis.

Reliability for the yes-no task was computed by taking 
participant PSE scores from block 2 and block 3 of the 
psychophysical task output and comparing these for each task level 
using paired samples t-tests. All reliability tests were conducted 
retrospectively, completed following all data collection. As can be 

FIGURE 3 | The top row shows three plots of body-size estimates (PSE) predicted from the linear mixed effect model (“Model 1 for PSE” shown in Table 4) plotted 
as a function of participants’ actual BMI. In each plot, low, mid, and high stimulus muscle mass is represented by black, gray, and white dots, respectively. The 
regression lines for each level of stimulus muscle mass follow the same color scheme. The plot on the left is for low stimulus muscle tone stimuli, the middle plot for 
mid stimulus muscle tone, and the plot on the right for high stimulus muscle tone. In each case, the black dashed line represents the line of equality, where body-
size estimates (PSE) exactly match actual BMI. The graphs in the middle row show the same regressions of body-size (PSE) on actual BMI (from “Model 1 for PSE”, 
shown in Table 4) at the same three stimulus muscle mass levels within each plot, separately for the three stimulus muscle tone levels across the row, from low 
to high. However, now each regression line is split, and plotted separately at +1 SD (solid lines) and -1 SD (dashed lines) for Participant_Musc_Att, to illustrate the 
independent influence of participants’ psychometric performance on body size estimation. Specifically, increasingly positive attitudes and drive towards muscularity 
are associated with higher body size estimates. The bottom row shows three plots of participants’ sensitivity in the body size estimation task (i.e., DL) predicted 
from the linear mixed effect model (“Model 3 for PSE” shown in Table 4) plotted as a function of participants’ actual BMI. Each plot contains the predicted DL values 
and regression lines for low (black), mid (gray), and high (white) stimulus muscle mass as a function of actual BMI. Stimulus muscle tone changes from low, through 
mid, to high across the 3 plots from left to right. These graphs show that sensitivity to changing body-size systematically decreases as a function of increasing BMI, 
and that this effect is weakest for low muscle mass stimuli, intermediate for mid muscle mass stimuli, and strongest for high muscle mass stimuli.
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FIGURE 4 | Two contour plots of body-size estimates (PSE) predicted from the linear mixed effect model (“Model 2 for PSE” shown in Table 4) plotted as a function 
of participants’ participant muscle mass (y-axis) and body fat (x-axis). Predicted body-size estimates (PSE) are represented in grey levels on the z-axis, from black 
(smaller body size) to white (larger body size). Responses from high stimulus muscle mass and high stimulus muscle tone are shown in the left panel. Responses 
from low stimulus muscle mass and low stimulus muscle tone are shown in the right panel. In both panels, as participants’ muscle mass increases, so the size that 
they believe themselves to be tends to decrease. Conversely, as participants’ body fat increases, so the body size that they believe themselves to have increases. 
Since estimated body-size changes in opposite directions for participant muscle mass and body fat, it is possible for differing body compositions to give rise to the 
same body size estimate. This is illustrated by the white dashed line in each plot, which corresponds to a predicted body size of 24 BMIhse. The converse of this 
situation is illustrated by points A and B in the left panel, which show the different muscle mass and body fat combinations from two participants in our dataset both 
of whom had an actual BMI ~23.

FIGURE 5 | (A) Scatter plot of the 10,000 data point bivariate normal distribution for a covariance of 0.55 between percentage muscle mass and body fat 
(expressed as z-scores). The black lines represent prediction ellipses that capture, respectively, 50, 60, 70, 80, and 90% of the observations in the distribution. 
(B) Differences in estimated BMI (y-axis) between pairs of participants who would both have the same actual BMI, but differing body compositions. The range 
of these differing body compositions is determined by the particular combination of the covariance between body fat and skeletal muscle mass (to produce the 
bivariate distribution) and the prediction ellipse (which selects how many observations are chosen from the distribution). The white band highlights the most likely 
combinations of covariance and prediction ellipse parameters. See text for further details.
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seen in Table 2, all paired samples t-tests showed no sginificant 
differences between blocks and all correlations between the paired 
means were shown to be statistically significant, demonstrating 
good task reliability for our final sample.

Multivariate Statistics
We wanted to quantify the relationships between participants’ 
body size estimates (indexed by BMIhse), their actual BMI, their 
body composition, and the stimulus properties. To do this, we 
used PROC MIXED (SAS v9.4) to build three linear mixed effects 
models. Two of these models had participants’ PSE as the outcome 
variable, and one had Log10 DL as the outcome. The first model 
for PSE and the model for Log10 DL used participant’s actual BMI, 
apparent stimulus muscle mass (i.e., low, mid, and high) and 
apparent stimulus muscle tone (i.e., low, mid, and high) as fixed 
effects. In the second model for PSE, we replaced participants’ 
actual BMI with their percentage body fat and muscle mass as 
fixed effects. In all three models, we wanted to control for any 
influence of chronological age and the psychometric variables 
(BPSS-M, SATAQ, and DMS).

In order to avoid the possibility of introducing substantial 
variance inflation, we first checked for evidence of co-linearity 
among the psychometric variables. Table 3 shows the Pearson 
correlations for these tasks across the sample of 45 participants. 

Table 3 shows several substantial and statistically significant 
correlations between BPSS-M and subtests of the SATAQ and 
DMS. Therefore, we used PROC FACTOR in SAS v9.4 (SAS 
Institute, North Carolina, US) to carry out a principal component 
analysis with rotation, in order to identify any significant latent 
variable(s) in the psychometric data. We used the factor scores 
from these component(s) in our statistical models. The Kaiser-
Meyer-Olkin (KMO) measure of sampling adequacy (which 
indicates the degree of diffusion in the pattern of correlations) was 
0.80 suggesting an acceptable sample. Two principal components 
(PC) had Eigen values greater than Kaiser’s criterion of 1 (i.e., 3.35 
& 2.24) which, together, explained 70% of the variance. The scree 
plot showed an inflexion, i.e., Cattel’s criterion, which also justified 
retaining just two PCs. The residuals were all small, and the overall 
root mean square off-diagonal residual was 0.07, indicating that 
the factor structure explained most of the correlations. The factor 
loadings on BPSS-M and each of the subtests of the SATAQ and 
DMS for the two PCs are shown in the last two columns of Table 3.

PC1 loaded primarily on to BPSS-M and all SATAQ subtests 
excluding that for muscularity. We interpreted increasing 
scores on this PC (henceforth referred to as Participant_Fat_
Att) as representing increasing body image concern, together 
with perceived social pressures about body image from the 
media, peer groups, and family. PC2 loaded primarily on to 
the muscularity dimension of the SATAQ, as well as both DMS 
scales. We therefore interpreted increasing scores on this PC 
(henceforth referred to as Participant_Musc_Att) as representing 
perceived social pressure for and positive attitudinal responses 
towards increasing muscularity, combined with a drive to take 
part in activities that would achieve this outcome.

Each of the three linear mixed effects models was optimized 
by ensuring that a) any fixed effect added to a model contributed 
a reduction in -2 Log Likelihood, b) fixed effects were retained in 
a model only if their Type III test of fixed effects was significant 
at p < .05. The only exceptions to this were where one non-
significant fixed effect comprised part of a significant two- or 
three-way interaction term, in which case it was retained. In 
addition, we permitted individual variation at the intercept level 
for each participant, by including a random effect for participant. 
Note, as both stimulus muscle mass and muscle tone comprised 

TABLE 2 | Results of a paired samples t-tests between the mean PSE scores 
of block two and block three of the psychophysical task for each task level 
(N = 45). * = p < .001.

Task Level Correlation Mean Difference 
(SD)

T – value

Low Tone-Low Mass *.901 –0.44 (2.41) –1.227
Low Tone-Mid Mass *.802 –1.08 (3.77) –1.921
Low Tone-High Mass *.830 –0.97 (3.25) –2.004
Mid Tone-Low Mass *.918 –0.09 (2.26) –0.282
Mid Tone-Mid Mass *.806 –0.59 (3.35) –1.187
Mid Tone-High Mass *.839 –0.43 (2.97) –0.971
High Tone-Low Mass *.794  0.46 (3.24)  0.948
High Tone-Mid Mass *.787 –0.35 (3.43) –0.686
High Tone-High Mass *.871 –0.49 (3.16) –1.047

TABLE 3 | Pearson correlations for the psychometric tasks. The last two columns show the factor loadings on BPSS-M and each of the subtests of the SATAQ and 
DMS for the two PCs from the principal components analysis.

STQ Med STQ
Peer

BPSS-M STQ Fat STQ Fam DMS
Beh

STQ Musc DMS
Att

PC1 PC2

STQ Med – 0.83 0.15
STQ Peer 0.64*** – 0.81 0.25
BPSS-M 0.52*** 0.50*** – 0.77 –0.05
STQ Fat 0.59*** 0.58*** 0.44** – 0.72 0.4
STQ Fam 0.37** 0.34* 0.40** 0.18 – 0.62 –0.54
DMS Beh 0.15 0.23 -0.01 0.27 -0.34* – 0.04 0.89
STQ Musc 0.25 0.35* 0.06 0.42** -0.25 0.74*** – 0.19 0.86
DMS Att 0.26 0.35* 0.20 0.30* -0.29 0.64*** 0.60*** – 0.20 0.80
DMS Totl 0.23 0.32* 0.11 0.31* -0.33* 0.91*** 0.74*** 0.90*** – –

* = p < .05, ** = p < .01, *** = p < .001.
NB: STQ Fat, STQ Body Fat; STQ Musc, STQ Muscular; STQ Fam, STQ Family pressure; STQ Peer, STQ Peer pressure; STQ Med, STQ Media pressure; DMS Att, DMS Attitudes; 
DMS Beh, DMS Behaviors; DMS Totl, DMS Total.
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three levels (high, mid, and low), we used the high level as the 
control when dummy coding these variables in each model. The 
detailed outcome of the statistical modelling is shown in Table 4 
and is illustrated graphically in Figures 3, 4.

The top row of Figure 3 shows scatterplots from the first model 
for PSE, the index of participants’ body size estimation (in BMIhse 
units), and corresponds to “Model 1 for PSE” as shown in Table 4. 
Stimulus muscle tone increases across the three plots from the 
first (left) to the third (right) column. In each graph, values of PSE 
predicted from the model are plotted on the y-axis as a function 
of participant’s actual BMI. Within each plot, data points and their 
respective regression lines for PSE on actual BMI are shown for 
low (black), mid (gray), and high (white) stimulus muscle mass. 
The black dashed line represents veridical responses, i.e., where a 
participants’ body size estimate in BMIhse units would exactly match 
their actual body size in BMI units. Not surprisingly, participants' 
estimates of their own body size systematically increased with their 

actual BMI, as many authors have shown before (e.g., 27, 47). A 
second point to note is that the slopes of the regression lines are all 
less than 1 (F1,43 = 5.34, p = .03). This is consistent with the yes-no 
task producing a contraction bias effect (48), as reported previously 
by 27, 28. This is a perfectly normal bias seen in unanchored 
magnitude estimation tasks, such as our yes-no task.

The important results for the current study are the significant 
effects that both the apparent muscle mass and muscle tone of 
the stimuli have on participants’ body size estimates. Specifically, 
stimuli that are judged subjectively to have low muscle mass give 
rise to significantly higher body size estimates than do those 
judged to have mid muscle mass (LSmean difference = 1.58 BMIhse 
units, t = 4.61, p < .001) or high muscle mass (LSmean difference = 
1.76 BMIhse units, t = 5.13, p < .001). The difference between body 
size estimates for mid and high muscle mass stimuli was not 
statistically significant (LSmean difference = 0.18 BMIhse units, 
t = 0.52, p = .6). Similarly, stimuli that are judged subjectively to 

TABLE 4 | Output from the 3 linear mixed effects models.

Model Parameters  F-value (DF) Z-value p-value Parameter
estimate

Parameter
95% CI

-2Log
likelihood

1) Model 1 for PSE
Empty Model
Full Model

Fixed Effects:
Stim_Musc_Tone

Stim_Musc_Mass

Participant_BMI
Participant_Musc_Att
Participant_Age

6.97 (2, 350)

15.92 (2, 349)

64.35 (1, 44)
9.86 (1, 44)
5.40 (1, 44)

 <.001

 <.001

 <.001
.003
.03

1) 0.50
2) 1.28
1) 0.18
2) 1.76

0.67
–1.18
 0.095

–0.18 – 1.17
 0.60 – 1.96
–0.50 – 0.85
1.09 – 2.44
 0.50 – 0.84
–1.95 – –0.42
 0.013 – 0.18

2142.2
2001.4

Random Effect:
Subject variance 3.97  <.001 4.78

2) Model for Log10 DL
Empty Model
Full Model

Fixed Effects:
Stim_Musc_Tone

Stim_Musc_Mass

Participant_BMI
Participant_BMI ×
Stim_Musc_Mass

1.61 (2, 356)

12.74 (2, 356)

3.37 (1, 44.9)
10.34 (2, 356)

0.20
 <.001

.07
 <.001

1) –0.039
2)   0.015
1)   0.58
2)   0.88

0.034
1) –0.021
2) –0.011

–0.044 – 0.017
–0.046 – 0.076
 0.24 – 0.93
 0.53 – 1.23
 0.014 – 0.054
–0.034 – 0.0071
–0.044 – 0.017

177.4
141.1

Random Effect:
Subject variance 4.29  <.001 0.068

3) Model 2 for PSE
Empty Model
Full Model

Fixed Effects:
Stim_Musc_Tone

Stim_Musc_Mass

Participant_Body_Fat
Participant_Musc_Mass
Participant_Age

7.40 (2, 309)

11.83 (2, 309)

6.56 (1, 39)
5.80 (1, 39.2)
9.80 (1,39.1)

 <.001

 <.001

.01

.03

.003

1)   0.53
2)   1.43
1) –0.03
2)   1.56

0.38
–0.21
0.16

–0.20 – 1.26
 0.70 – 2.17
–0.77 – 0.70
 0.82 – 2.29
 0.08 – 0.68
–0.41 – –0.013
 0.06 – 0.26 

2142.2
1799.9

Random Effect:
Subject variance 3.91  <.001 7.02

NB Stim_Musc_Tone, stimulus muscle tone; Stim_Musc_Mass, stimulus muscle mass; Participant_Musc_Att, psychometric latent variable for participants’ attitudes to muscularity.
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have lower muscle tone give rise to higher body size estimates. The 
corresponding differences in the LSmeans for body size estimates 
were: low to mid tone = 0.78 BMIhse units, t = 2.27, p = .02; low to 
high tone = 1.28 BMIhse units, t = 3.71, p < .001; mid tone to high 
tone = 0.50 BMIhse units, t = 1.45, p = .1.

The middle row of Figure 3 illustrates the statistically significant 
and independent influence that Participant_Musc_Att had on 
body size estimates. This also is derived from “Model 1 for PSE” as 
shown in Table 4. The graphs in this row follow the same regime 
as above except that the regression lines for the three different 
stimulus muscle mass levels are plotted at +1 SD (solid lines) and 
-1 SD (dashed lines) for Participant_Musc_Att. These graphs show 
very clearly that increasingly positive attitudes and drive towards 
muscularity are associated with higher body size estimates.

The bottom row of Figure 3 shows scatter-plots of the output 
from the “Model for Log10 DL” in Table 4, which indexes the smallest 
difference in body size that participants can detect; i.e., their sensitivity 
in the yes-no task. As before, stimulus muscle tone increases across 
the three plots from left to right and the color coding for stimulus 
muscle mass is the same. In each graph, predicted values of Log10 DL 
are plotted on the y-axis as a function of participant actual BMI. It is 
clear from all three graphs that sensitivity reduces (i.e., DL increases) 
with increasing actual BMI. This effect is systematically greater—i.e., 
the regression slopes are steeper—for stimuli judged to have greater 
muscle mass. As Table 4 shows, this effect is statistically significant. 
There is, however, no significant influence of stimulus muscle tone 
on DL (Table 4). The Weber fractions (i.e., ΔI/I) reduce over the 
range of participant actual BMI from 15 to 42.5 for low stimulus 
muscle mass (0.074–0.033), remain approximately constant for mid 
stimulus muscle mass (0.058–0.047), and increase for high stimulus 
muscle mass (0.030–0.081). Therefore, participants gave responses 
which best approximated Weber’s law when viewing stimuli with 
mid-level muscle mass.

Figure 4 shows two contour plots derived from the second 
model for PSE (see Table 4, “Model 2 for PSE”), in which the 
fixed effect of actual BMI was replaced with two fixed effects 
together constituting body composition: percentage skeletal 
muscle mass and percentage body fat of the participant. As 
Table 4 shows, both of these factors had statistically significant 
effects on participants’ body size estimates, although these 
effects were in opposite directions: body size estimates 
increased with increasing participant body fat and decreased 
with increasing participant muscle mass. Each plot in Figure  4 
shows predicted PSE in the z-axis: grey levels from black 
to white represent low to high predicted PSE. Participants’ 
body fat and muscle mass are plotted on the x- and y-axes 
respectively. The plot on the left of Figure 4 corresponds to 
high stimulus muscle mass and tone. The plot on the right of 
Figure 4 corresponds to low stimulus muscle mass and tone. 
The white dashed line in each plot corresponds to a predicted 
PSE of 24 BMIhse units. The important point illustrated by 
Figure 4 is that variable combinations of participant muscle 
mass and body fat (i.e., body composition) can give rise to 
identical estimates of body size, when measured in BMIhse 
units. However, in order to achieve the same PSE with stimuli 
of lower muscle mass and tone, this regime shifts to the left.

How Big Are the Differences in Estimated 
Bmihse for Participants Who Have the 
Same Actual BMI?
The implication from Figure 4 is that individuals who have the 
same actual BMI, but who have different body compositions, 
will estimate their body size, when indexed in BMIhse units, very 
differently. This is illustrated by two participants from our dataset, 
A and B, in the left pane of Figure 4, both of whom have a BMI 
~23. Clearly, in the context of a body size estimation task where 
only the adiposity of stimuli is changed, this is potentially very 
undesirable. Therefore, we wanted to quantify just how large 
this variation in body size estimation can be. In principle, we 
could achieve this directly if we knew how much variation there 
is in the body composition of the participants at different actual 
BMIs. Unfortunately, in our experimental dataset, there were not 
enough participants whose actual BMI fell within the range of 
a BMI unit +/- 0.5 to estimate such covariance reliably. Instead, 
we used a body composition database which was obtained from 
178 Caucasian males (age M = 33.6, SD = 11.15; actual BMI M = 
25.4 SD  = 3.75; body fat M = 14.4 kg, SD = 7.29 kg; skeletal 
muscle mass M = 39.1 kg, SD = 5.7 kg) using a Tanita MC780MA 
multi-frequency segmental body composition analyzer. We 
used this dataset to calculate the covariance between body fat 
and skeletal muscle mass, at each actual BMI point (+/-0.5 BMI 
units) for which there were at least 15 observations—i.e., where 
the covariance estimate is more likely to be reliable. According 
to this criterion, the covariance values at BMIs 22, 23, 25, and 26 
were -0.55, -0.41, -0.37, and -0.17 respectively. Moreover, we had 
12 BMI points between BMIs 18–31 for which we had at least 5 
data points, and the average covariance across these 12 points was 
M = -0.35, SD = 0.23. We then used PROC SIMNORM in SAS 
v9.4 (SAS Institute, North Carolina, US) to calculate 5 bivariate 
normal distributions, each with 10,000 data points, for a range of 
covariance values from -0.15 to -0.55 in steps of 0.1, consistent 
with the covariance values that we observed in the data at different 
BMIs. Next, for each of these 5 distributions, we computed 
prediction ellipses that captured 50%, 60%, 70%, 80%, and 90% 
of the possible combinations of percentage body fat and skeletal 
muscle mass—i.e., from about half of the range in each distribution 
to almost the full range, as is illustrated in Figure 5A. In the final 
step, separately for each of the five distributions, we identified from 
these ellipses the biggest difference in body composition at each 
of the prediction values (i.e., lowest body fat with highest muscle 
mass and vice versa) and used Model 2 for PSE (see Table 4) to 
convert these participant body composition values into self-
estimates of body size, expressed in BMIhse. Figure 5B shows plots 
of the difference in these pairs of BMIhse estimates (y-axis), as a 
function of prediction ellipse percentage (x-axis). Separate lines 
are plotted for the five different covariances between body fat and 
skeletal muscle mass. The white band in the background highlights 
the most plausible range of BMIhse differences, given that it selects 
prediction ellipses that capture most but not all combinations of 
body fat and muscle mass computed from covariance values in the 
middle of the range that we observed in real data. What is striking is 
that even a conservative evaluation of these simulations forces the 
conclusion that differences in body size estimation by participants 
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who have the same actual BMI are large, typically between ~5–7 
BMIhse units, which is enough to leapfrog between body weight 
classifications in World Health Organisation, (23) criteria.

Applications of Real Skeletal Muscle Mass 
Values to Correct Bmihse Estimates of 
Body Size
As a final step in our analyses, we attempted to assign plausible 
muscle mass values to our stimuli (as distinct from qualitative 
labels) and recalculate the effects of stimulus muscle mass and tone 
on body size estimates. If our strategy for calibrating stimuli for 
BMIhse is completely unrelated to reality, then we should expect to 
see our error estimates all but disappear. If however the analyses we 
present have some validity, we should expect to see similar effects 
once plausible muscle mass values have been assigned.

As described in the Methods section, we generated low, mid, 
and high muscle content bodies by setting the morph dimensions 
of muscularity and muscle tone in Daz Studio to either low, mid, 
or high levels. Therefore, to assign plausible low, mid, and high 
muscle mass values in kg to each stimulus class, we first divided 
the distribution of skeletal muscle mass values from our biometric 
database of 178 men into three ranges split at the 33rd and 67th 
centiles (low mid and high skeletal mass means were: M = 33.67 
kg, SD = 2.48; M = 39.00 kg, SD = 3.30; M = 44.81 kg, SD = 4.20, 
respectively), and assigned a categorical variable with three levels to 
correspond to these three ranges. We then used PROC MIXED in 
SAS v9.4 to predict actual BMI in this database from i) the centile 
to which a skeletal muscle mass belonged, ii) an individuals’ waist 
circumference, and iii) an individual’s hip circumference. The 
fitted model thus allowed us to connect the biometric database 
to our experimental dataset because, for every body-size estimate 
in BMIhse units, we know the waist and hip circumference of the 
corresponding CGI model. For example, for a high muscle mass, 
mid muscle tone stimulus, we can enter the waist and hip values 
that correspond to a body size estimate in BMIhse units into the 
fitted model from the biometric database and calculate what the 
body size estimate would be in real BMI units. As a final step, 
having converted every body-size estimate from BMIhse to real BMI 
units in this way, we re-ran model 1 in Table 4. We found significant 
Type III fixed effects for: stimulus muscle mass (F2,349 = 8.11, p < 
.001), stimulus muscle tone (F2, 350 = 6.63, p = .001), participant 
age (F1,44 = 5.41, p = .02), participant actual BMI (F1,44 = 64.36, 
p < .001), and Participant_Musc_Att (F1,44 = 9.86, p = .003).

Post hoc pairwise comparisons still showed that low muscle mass 
stimuli gave rise to significantly higher body size estimates than 
did mid muscle mass (LSmean difference = 0.89 corrected BMIhse 
units, t = 3.08, p = .002) or high muscle mass stimuli (LSmean 
difference = 1.09 corrected BMIhse units, t = 3.79, p < .001). The 
difference between body size estimates for mid and high muscle 
mass stimuli was not statistically significant (LSmean difference = 
0.21 corrected BMIhse units, t = 0.71, p = .5). With respect to muscle 
tone, the corresponding differences in the LSmeans for body size 
estimates were: low to mid tone = 0.63 corrected BMIhse units, t = 
3.08, p = .03; low to high tone = 1.05 corrected BMIhse units, t = 
3.62, p < .001; mid tone to high tone = 0.42 corrected BMIhse units, 
t = 1.47, p = .1. In short, assigning plausible muscle mass values 

to our stimuli gave rise to a qualitatively similar pattern of results, 
even though the sizes of the effects were reduced by ~40% for 
stimulus muscle mass and ~18% for stimulus muscle tone.

DISCUSSION

The primary aim of this study was to estimate how much variation 
there is in men’s own body size estimates, when measured in 
BMIhse units, caused by i) variation in the participants’ own body 
composition and ii) variation in the apparent muscle mass and 
muscle tone of the stimuli being judged. Our results suggest that 
the accuracy of male body judgments is not captured using body 
stimuli which only vary in adiposity, but instead needs variation 
in both adiposity and muscularity to accurately represent the 
perception of body image and reflect the variation of these 
dimensions in the male population.

Consistent with previous studies where women estimated their 
own body size or other women’s body size [e.g., Refs. (27, 47, 
49)], in the current study, plots of estimated body size are linearly 
predicted by the participant’s own actual BMI, but with a slope of 
less than unity (see the top two rows of Figure 3). Lower actual 
BMI participants over-estimate body size, middle-range actual BMI 
participants’ estimates are the most accurate, and high actual BMI 
participants under-estimate. This pattern of responses is predicted 
by a normal perceptual feature of magnitude estimation called 
contraction bias (48). It occurs when the psychophysical task is not 
anchored, which means that the participant does not have available 
to them constant reminders of the smallest and largest examples 
from the range of stimuli they will be presented. In this situation, 
body size estimation must be made by comparing the difference 
between the size of the stimulus presented to the body size the 
participant believes themselves to have with an internal reference 
distribution based on all the bodies that the participant has ever 
seen. This kind of judgment is most accurate when the participant’s 
belief is closest to the average body size of their internal reference 
distribution, and increasingly less accurate as the two diverge. 
When there is an increasing difference between the reference and 
the body size being estimated, the participant makes an estimate 
closer to the average of the reference distribution than it should be. 
Hence, the term contraction bias (48).

In addition, the ability to detect a change in body size (as indexed 
by the DL) becomes progressively worse as the BMIhse of the bodies 
being judged increased (see the bottom row of graphs in Figure 3). 
This is consistent with another feature of perception called 
Weber’s law. Weber’s law states that the just noticeable difference 
(JND) between two stimuli will be a constant proportion of their 
magnitude, leading to a constant Weber fraction over the stimulus 
range (46). This means that discriminating between higher BMIhse 
bodies requires progressively larger differences in BMIhse between 
stimuli (29).

Psychological Attitudes
As in previous studies with female participants, the psychological 
state of the participants modulates the accuracy of their self-
estimates of body size [e.g., Refs. (27, 47]. In the current study, this 
is an effect that was statistically independent of their perceptual 
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responses and is consistent with a multidimensional model of body 
image in which the size and shape someone believes themselves 
to be is a linear combination of attitudinal and perceptual factors 
[cf.  (1)]. We found that men who have increasingly positive 
attitudes and drive towards muscularity were more likely to over-
estimate their body size. However, by contrast to previous findings 
with female participants, body fat concerns did not influence 
the male participant’s judgments. This may reflect a difference in 
the relative importance of muscularity and body fat in men and 
women. Body fat has been consistently identified as the central 
feature of body image concerns in women, whereas in men the 
central concern has been identified as muscularity [e.g., Refs. 
(19, 50–54). This is reinforced by a strong social media pressure 
to be both high in muscularity and low in adiposity (55, 56). 
Additionally, concerns about muscularity, along with concerns 
with adiposity, are suggested to play a key role in the development 
of anorexia nervosa in men (14), emphasizing the need to be able to 
independently index body image concerns about muscularity and 
adiposity to determine their separate importance in its etiology.

Apparent Muscle Mass and Muscle Tone 
of the Stimuli
Looking across the stimulus types, our results suggest that as 
apparent muscle mass and muscle tone decrease in the stimuli, 
so men effectively selected images with higher BMIhse values 
to match the body size they believe themselves to have. This 
is an important result in several ways. First, it gives some 
insight into how the men may have been solving the task. Our 
stimulus calibration procedure is based on a multiple regression 
equation derived from anthropometric measurements obtained 
from the Health Survey for England, specifically waist and hip 
circumferences. This means that in our set of CGI bodies, a 
stimulus that has a BMIhse of 25 will have exactly the same waist 
and hip circumference irrespective of which combination of 
low/mid/high muscle mass and low/mid/high muscle tone it 
comprises. Therefore, according to our first hypothesis, if our 
participants had been using the horizontal widths across the 
waist-hip region to match their own body size belief against the 
stimulus [cf. (31)], then we would not have found statistically 
significant differences in body size estimates between the 
different levels of stimulus muscle mass and tone. Given that 
men are more likely to deposit fat on the stomach than women 
(57, 58), fixating this region for estimating adiposity would be an 
even better strategy for men than for women. This is because the 
men would have reliably selected the same matches across muscle 
mass/tone combinations for a given belief about their own body 
size (i.e., they would have chosen the bodies with the same waist 
and hip widths). Had this been the case, graphically we would 
have seen the black, white, and gray regression lines in the first 
two rows of Figure 3 overlie each other. But they do not. Instead 
the self-estimates of body size were ~2.5 BMIhse units greater for 
the low muscle mass stimuli than either the mid or high muscle 
mass stimuli, and this is consistent with our second hypothesis: 
that men may attend to the chest and upper arms when matching 
stimuli to the body size/shape they believe themselves to have.

Critically, when we recalculated these effects, having attempted to 
assign plausible skeletal muscle mass to our stimuli, we observed the 
same pattern of results, albeit the effect sizes were reduced by up to 
~40%. This provides convergent evidence that reinforces the need for 
all researchers to be running these kinds of experiments with stimuli 
that are correctly calibrated for body composition and BMI.

From a practical point of view, constructing a figural scale for 
body-size estimation where only adiposity changes would mean 
that an arbitrary choice would need to be made about the apparent 
muscularity of the stimuli presented to participants. The present 
results show that an arbitrary choice of this kind could lead to fixed 
errors in any survey results using such a scale. For example, suppose 
two figural scales were developed, one from our low muscle mass/
low muscle tone images and the second from our mid muscle 
mass/mid muscle tone images. We would expect to see, on average, 
that self-estimates of BMIhse would be ~2.5 BMIhse units higher for 
the former scale, and this could lead in turn to over-estimates of 
obesity rates, for example. Similarly, research highlights that there 
is a comparable split between males who wish to lose weight, and 
those seeking to gain weight (16–18). Presenting a stimulus set 
with an arbitrary choice of visual muscularity would introduce 
considerable uncontrolled variability into any epidemiological 
study or public health assessment. In a clinical sample, e.g., men 
with eating disorders or muscle dysmorphia, such erratic body size 
estimation may even compromise the effective intervention and 
treatment of body image distortion (54).

Participant Body Composition
We calculated the potential variation in self-estimates of body size, 
when measured in BMIhse units, that is attributable to the body 
composition of the participant. To facilitate these calculations, 
we needed sensible estimates of the covariance between body fat 
and skeletal muscle mass as a function of actual BMI. We obtained 
these covariance estimates from a bio-impedance database of 178 
male volunteers and used them in a simulation to identify a range 
of maximum differences in body composition in individuals who 
would have the same BMIs. As a last step, we entered these body 
composition values into our fitted model from the experiment 
which predicts body size estimates in BMIhse units from the body 
composition of the participant, and calculated the predicted 
differences in body size estimates. The results are illustrated in 
Figure 5B. For participants with the same actual BMI, the results 
show that self-estimates of body size can potentially vary over a 
range of ~5–7 BMIhse units based on differences in the skeletal 
muscle and fat composition of the participant. This suggests a 
strong potential source of uncontrolled variance in body size 
estimation when using body scales which are designed to vary 
only in adiposity. Errors of this magnitude can easily move a 
participant’s self-estimate of BMIhse between BMI categories, such 
as from normal to overweight or even to obese.

This study strongly suggests that for men’s bodies, stimuli 
that do not account explicitly for variation in both muscle mass 
and muscle tone in the stimuli, as well as measurement methods 
that do not take explicit account of body composition in the 
participant, may lead to significant errors in self-estimates of body 
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In conclusion, this study suggests that the accuracy of male 
body judgments cannot be captured simply using body stimuli 
only varying in adiposity, but instead requires variation in both 
adiposity and muscularity to accurately index the perception 
of body image and reflect the significant variation in these 
dimensions in the male population.
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