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Background: Aberrant functional and structural connectivity across multiple brain 
networks have been reported in bipolar disorder (BD). However, most previous studies 
consider the functional and structural alterations in isolation regardless of their possible 
integrative relationship. The present study aimed to identify the brain connectivity 
alterations in BD by capturing the latent nexus in multimodal neuroimaging data.

Methods: Structural and resting-state images were acquired from 83 patients with BD 
and 94 healthy controls (HCs). Combined with univariate methods conducted to detect 
the dysconnectivity in BD, we also employed a semi-multimodal fusion framework fully 
utilizing the interrelationship between the two modalities to distinguish patients from HCs. 
Moreover, one-way analysis of variance was adopted to explore whether the detected 
dysconnectivity has differences across stages of patients with BD.

Results: The semi-multimodal fusion framework distinguished patients from HCs with 
81.47% accuracy, 85.42% specificity, and 74.75% sensitivity. The connection between the 
anterior cingulate cortex (ACC) and superior medial prefrontal cortex (sMPFC) contributed 
the most to BD diagnosis. Consistently, the univariate method also identified that this 
ACC–sMPFC functional connection significantly decreased in BD patients compared to 
HCs, and the significant order of the dysconnectivity is: depressive episode < HCs and 
remission episode < HCs.

Conclusions: Our findings, by adopting univariate and multivariate analysis methods, 
shed light on the decoupling within the anterior midline brain in the pathophysiology of 
BD, and this decoupling may serve as a trait marker for this disease.
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InTRODUCTIOn

Bipolar disorder (BD) is a debilitating and common mental 
disease, affecting approximately 2% of the global population (1). 
Patients often struggle with significant functional impairments 
including unemployment, high health-care utilization, and social 
stigma (2). Neuroimaging studies of BD have reported reduction 
of gray/white matter density in distributed areas throughout 
the brain (3, 4), possibly reflecting that BD involves alterations 
in structural brain networks. The alterations in widespread 
structural brain networks are paralleled with disrupted functional 
brain networks in BD, evident across multiple neuronal systems 
involved in emotion regulation, high-order cognition, and self-
referential functions (5–7).

A long-standing hypothesis is that functional links are 
underlined by anatomical connections in the brain, which has 
been supported by recent evidence showing that the network 
structure of the cerebral cortex shapes the functional connectivity 
on multiple time scales (8). Prior studies have highlighted that 
the structural and functional connectivity abnormalities are 
interrelated in BD (9) after observing the association between 
the decreases of functional connectivity and impaired white 
matter integrity in the cingulate–amygdala circuit (10). An 
emerging notion suggests that the structural brain network can 
be manifested by the white matter axons between brain areas and 
the morphometric correlations within gray matter (GM) regions 
(11, 12). Morphometric correlations likely reflect anatomical 
connectivity, which has been evidenced by a study highlighting 
the apparent system-specific correlation patterns between cortical 
GM and underlying white matter connectivity (13). Furthermore, 
morphometric correlations are closely related to the white matter 
fibers and coupling of functional activity between corresponding 
brain areas. Thus, combining the morphometric network and 
functional network as an innovatively multimodal approach may 
help to further illuminate the neuropathology of BD.

Another multivariate analysis method attracting extensive 
attention is the application of machine learning in BD study, 
which can utilize the neuroimaging data as features to 
individually distinguish patients with BD from healthy controls 
(HCs) and therefore be able to translate the clinically relevant 
structural and functional brain connectivity into objective and 
clinically useful biomarkers (14, 15). For example, by using 
the functional pattern of the inferior frontal gyrus, Roberts 
et al. discriminated adolescents with BD and individuals at 
genetic high risk from HCs, with 64.8% average accuracy (14). 
Moreover, Mwangi et al. utilized the GM density and white 
matter density to differentiate patients with BD from HCs and 
reported a prediction accuracy of 70.3% and 64.9%, respectively 
(15). Although these studies have made a significant progression 
in establishing the model of building bridges between aberrant 
brain function/structure and clinical expression in BD, several 
limitations should be taken into account for future studies. First, 
these studies conducted the classification based on restricted 
regions of interest, leading to the inability to detect abnormal 
functional architecture of BD at the whole-brain level. Moreover, 
these studies considered the brain structure and function in 
isolation and ignored fusing the complementary information 

from each other, which is regarded as a possible source leading 
to a relatively low classification accuracy rate under 80%, the 
criterion considered clinically useful (16).

Therefore, for the current study, we employed a semi-
multimodal fusion approach that was proposed in our prior 
study to find the discriminative brain connectivity pattern in 
BD (17). The approach exploits the interactive information 
of the structural MRI and resting-state functional MRI 
(fMRI) data by comprehensively considering the abnormal 
connectivity pattern due to their associations of disease from 
both the structure and function aspects. In this approach, 
whole-brain structural connectivity was constructed by the 
correlations between the GM volumes within each brain area 
across subjects, and whole-brain functional connectivity 
was constructed by the correlations between the mean time 
courses of each pair of region of interest (ROI). It utilized the 
distance of brain functional and structural connections as one 
of the feature selection criteria in this multivariate analysis 
method. As it comprehensively considers the abnormal brain 
connectivity pattern due to their associations of disease 
from both structural and functional aspects and the inter-
modality latent nexus, our approach may provide great 
potential to increase the classification accuracy and enhance 
the credibility of the detected biomarkers.In parallel with the 
semi-multimodal fusion approach, we also used the traditional 
univariate statistics method to investigate whether the results 
obtained from the framework would yield consistency in the 
between-group comparison.

MATERIAlS AnD METhODS

All study procedures were approved by the medical ethics 
committee of the second Xiangya Hospital, Central South 
University. Prior to obtaining consent, the capacity to provide 
informed consent for all potential participants was ascertained by 
two licensed psychiatrists. After explaining the study procedures, 
informed written consent was obtained from all participants. All 
study procedures were conducted in strict accordance with the 
Declaration of Helsinki.

Study Sample
In this study, 92 patients with BD and 98 demographically 
similar HCs were recruited by the Second Xiangya Hospital, 
Central South University. All participants were right-handed 
native Chinese speakers who were carefully screened in a 
semi-structured interview by two trained senior psychiatrists. 
Patients were confirmed to meet the DSM-IV (Diagnostic and 
Statistical Manual of Mental Disorders) criteria for bipolar I 
disorder or bipolar II disorder (18). Diagnostic procedures 
included patient history information gathered from patients 
and their families. The medical, neurological, and psychiatric 
examinations were carefully performed by clinical psychiatrists. 
Patients with BD were excluded if they met the following criteria: 
1) less than 18 years old or greater than 45 years old; 2) previous 
electroconvulsive therapy and any other contraindications to 
MRI; 3) history of alcohol or substance abuse except nicotine; 
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4) chronic neurological disorders or debilitating physical illness; 
and 5) benzodiazepine treatment, if any, stopped less than 24 h 
prior to scanning.

HCs were physically healthy, had no history of severe 
illness, and had no first-degree relative with a history of 
psychiatric illness. Clinical assessments for the HCs were 
conducted by an experienced psychiatrist to verify inclusion 
and exclusion criteria. Eligible participants were required not 
to meet the DSM-IV criteria for an axis I psychiatric disorder, 
non-patient edition (18), and had to meet exclusion criteria 
(1), (2) and (3).

Clinical Characteristics
Clinical symptoms were assessed with the 17-item Hamilton 
Depression Rating Scale (HAMD) (19), Hamilton Anxiety 
Rating Scale (HAMA) (20), and Young Mania Rating Scale 
(YMRS) (21) for patients with BD. Details are presented in 
Table 1. Patients whose HAMD score ≥ 17 and YMRS < 12 were 
defined as depressive episode, patients whose YMRS score ≥ 12 
and HAMD < 17 were defined as mania or hypomania episode, 
patients whose YMRS score ≥ 12 and HAMD ≥ 17 were defined 
as mixed episode, and patients whose HAMD score < 17 and 
YMRS score < 12 were defined as remission episode.

Data Acquisition
Imaging data were collected on a 3-T Philips Gyroscan Achieva 
scanner. High-resolution three-dimensional T1-weighted scans 
were recorded in a magnetization prepared rapid gradient 
echo sequence [Time of repetition (TR)/Time of echo (TE)  = 
1,924/20  ms; Field of view (FA) = 8°; acquisition matrix = 
256×256; FOV  = 250×250 mm2]. Whole-brain resting-state 
fMRI  data were acquired using a gradient-recalled echo-planar 
imaging pulse sequence (TR/TE = 2,000/25 ms; FA = 90°; 
acquisition matrix = 64×64; FOV = 24×24 cm2; total volumes = 
250). During the 8 min resting-state fMRI scan, participants were 
simply instructed to keep their eyes closed, relax, lay still in the 
scanner, and refrain from falling asleep.

MRI Data Analysis
MRI data analyses were carried out using Statistical Parametric 
Mapping (SPM8: http://www.fil.ion.ucl.ac.uk/spm). The 
preprocessing flow is in accordance with the standard voxel-
based morphometry–diffeomorphic anatomical registration 
through exponential lie algebra (VBM-DARTEL) procedure. 
First, T1 images were segmented into three tissue types (GM, 
white matter, and cerebrospinal fluid) using the standard unified 
segmentation module in SPM8. Second, study-specific GM 
templates were derived from the entire image data set using the 
DARTEL method. Third, after initial affine registration of the 
GM DARTEL templates to the corresponding tissue probability 
maps in the Montreal Neurological Institute (MNI) space, non-
linear warping of GM images was performed to match the 
corresponding MNI space DARTEL GM templates. Fourth, 
images were modulated to ensure that relative volumes of GM 
were preserved following the spatial normalization procedure.

We constructed the structural connection matrix as the 
following steps. First, we generated 90 cortical and subcortical ROIs 
by applying the automated anatomical labeling (AAL) parcellation 
scheme (excluding the cerebellum). Pearson correlation coefficients 
(CCs) were calculated between the volumes within each ROI across 
subjects. Therefore, two structural connectivity networks (BD 
group vs. HC group) were generated based on the aforementioned 
approaches. After removing 90 diagonal elements, we extracted 
the lower triangle elements of the CC as features; the feature space 
was spanned by the (90×89)/2 = 4,005-dimension feature vectors. 
Therefore, 4,005-dimension feature vectors MS

BD and MS
HCwere 

constructed for the BD and HC group, respectively.

Resting-State fMRI Data Analysis
Resting-state fMRI data were analyzed using SPM8 software 
and the functional toolbox data processing and analysis for 
brain imaging (DPABI) (22). The preprocessing flow is in 
accordance with the standard processing procedure which was 
implemented in DPABI. Before functional image preprocessing, 
we discarded the first 10 volumes of each participant to allow 
the MR signal to reach equilibrium. The remaining 240 fMRI 
volumes were preprocessed as the following steps including 
slice-time, realignment, coregistration, normalization into the MNI 
space, resampling at 3 mm3, and spatial smoothing with full width 
at half maxima (FWHM) = 8 mm. We treated nuisance covariates 

TABlE 1 | Demographic and clinical data.

Items Patients With 
BD(n = 83)

healthy 
Controls 
(n = 94)

T/χ2 
Value

P-Value

Age (years) 25.63 ± 5.59 23.3 ± 4.6 3.1 0.002**
Gender (M/F) 37/46 47/47 0.52 0.47
Education (years) 13 ± 2.9 14 ± 2.1 −2.3 0.02*
HAMD 11.1 ± 9.3 N/A N/A N/A
HAMA 9.3 ± 8.7 N/A N/A N/A
YMRS 6.6 ± 9.6 N/A N/A N/A
Age of onset (years) 21.4 ± 5.3 N/A N/A N/A
Total duration (months) 53.7 ± 57.1 N/A N/A N/A
Current mood
Manic 19 N/A N/A N/A
Depression 35 N/A N/A N/A
Remission 29 N/A N/A N/A
Mixed 0 N/A N/A N/A
Medication 
administration
Drug naive 5 N/A N/A N/A
Mood stabilizers 3 N/A N/A N/A
Mood stabilizers + 
antipsychotics

50 N/A N/A N/A

Mood stabilizers + 
antidepressants

8 N/A N/A N/A

Mood stabilizers + 
antipsychotics + 
antidepressants

7 N/A N/A N/A

Antipsychotics + 
antidepressants

8 N/A N/A N/A

P-value was calculated by independent two-sample t-test. BD, bipolar 
disorder; N, number; HAMD, Hamilton Depression Rating Scale 17 item; 
HAMA, Hamilton Anxiety Rating Scale; YMRS, Young Manic Rating Scale; 
N/A, not available.
*p < 0.05 and **p < 0.01.
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including white matter signals and cerebrospinal fluid signals 
as confounding factors to regress out to minimize non-neural 
influences on fMRI signals. We controlled for head motion 
first through regression of six head motion parameters plus 
their temporal first derivatives. We used so-called scrubbing by 
removing outlier volumes, defined as frame-wise displacement 
(FD) of more than 0.5 mm from the previous frame or global 
mean intensity of more than 2 SDs. If more than 48 volumes 
were scrubbed (i.e., > 20% of the acquired volumes), we excluded 
these subjects from subsequent analysis. We also compared the 
motion parameters of these two groups, and we did not detect a 
significant difference of mean FD power value (patients with BD 
mean (SD) = 0.15 (0.12); HCs mean (SD) = 0.13 (0.07); p = 0.13). 
Finally, the residual time series was temporally band-pass-filtered 
(0.01–0.08 Hz) to reduce the effect of low- and high-frequency 
physiological noise (23). After excluding 9 patients with BD and 
4 HCs because of their high motion parameters, there were 83 
patients with BD (patients with BD type I = 79; patients with BD 
type II = 4) and 94 HCs enrolled in the subsequent analysis.

In the construction process of the functional connection 
matrix, we also applied the AAL parcellation scheme to 
parcellate all brain maps into 90 cortical and subcortical 
ROIs (excluding the cerebellum). Pearson correlations were 
calculated between the mean time courses of each pair of ROIs. 
We converted the resultant CCs to normally distributed scores 
by using the Fisher z transformation, and the variance due to the 
linear effects of age, gender, and education years was removed 
to derive the corrected symmetric matrix. Therefore, a 90×90 
symmetric matrix was obtained for each participant. Finally, we 
extracted the lower triangle elements of CCs as features, and the 
feature space was spanned by the (90×89)/2 = 4,005-dimension 
feature vectors.

Statistical Analysis
As the structural connections were defined by the Pearson CCs 
between the inter-regional volume across subjects within a group, 
we adopted a non-parametric permutation test with 10,000 
repetitions to characterize the disease-associated structural 
networks of BD. Before conducting the non-parametric 
permutation test, a linear regression analysis was applied at every 
ROI for controlling the effects of age, gender, and education. The 
residuals of this regression were then substituted for the raw ROI 
volume values and described as corrected regional volumes. In 
each repetition, we randomly reassigned the corrected regional 
volumes of each subject to one of the two groups with the same 
number of subjects as were in the original groups and obtained 
an association matrix for each randomized group. Differences 
in CCs between randomized groups were then conducted to 
achieve a permutation distribution of difference under the null 
hypothesis. Lastly, the actual group-related difference of the CCs 
was assessed in the corresponding permutation distribution, 
and  a two-tailed p-value was calculated on the basis of its 
percentile position.

A two-sample t-test was conducted to compare the corrected 
functional connectivity between the two groups (i.e., patients 
with BD vs. HC). Statistical maps of structural and functional 
connectivity were generated after multiple comparison analysis 
false discovery rate (FDR) corrected using the Benjamini and 
Hochberg method with p < 0.05).

Machine learning
Except for the traditional univariate analysis, we also 
conducted a multivariate analysis method to further capture 
the latent and subtle discriminative brain connectivity pattern 

FIgURE 1 | Flowchart of the multivariate analysis method in this study. BD, bipolar disorder; HC, healthy controls.
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between patients with BD and HCs. The pipeline of the 
multivariate analysis method is presented in Figure 1. To avoid 
the curse of dimensionality of mass features that emerged 
in the neuroimaging field, a feature selection framework 
as suggested in a previous work, which is comprised of the 
initial feature filtering procedure and the modified sparsity 
regularization, was employed to remove redundant features 
before classification (17).

Feature Filtering Procedure
The flow path of the feature filtering procedure was as follows:

(1) The differential structural connection matrix ΔMSwas 
generated by subtracting the corrected features in MS

HC from 
the corresponding corrected features in MS

BD, i.e., ΔMS = 
|MS

BD − MS
HC|.

(2) All features in ΔMS were sorted in descending order in 
accordance with their absolute values.

(3) All features of the corrected functional connection 
matrix were ranked according to their significance level in the 
two-sample t-test that was performed between patients with 
BD and HCs.

(4) To integrate the corrected structural and functional 
connection information extracted from T1 and the resting state 
fMRI (rs-fMRI), we conducted an overlapping pattern to select 
the features. We selected the top-ranked c features from the 
different modalities, where c was set based on the rule that the 
value of the c-th feature in ΔMS equals the mean value of the 
whole ΔMS vector.

(5) After overlapping the selected features from the two 
modalities, the final selected feature set L was obtained.

Feature Selection Procedure
We assumed X = [x1…xi … xn]T to be an n×1matrix that represents 
l features of n training samples, where the matrix X is constructed 
by the individual functional connectivity features extracted from 
the previous analysis. Let Y = [y1…yi … yn]T be the n dimensional 
categorical target labels that we aim to predict (+1 = patients 
with BD; −1 = HCs). The linear regression model used for the 
prediction can be defined as follows:

 Ŷ XW=  

where W∈Rl×1 denotes the regression coefficient vector and 
Ŷ  indicates the predicted label vector. To fully utilize the 
complementary information conveyed by the latent nexus 
between structural and functional connectivity, an inter-
modality distance constraint was added to the original 
k-support norm, a sparsity regularization that allows us to 
handle the curse of dimensionality for improving predictive 
performance. Additionally, compared with the commonly 
used least absolute shrinkage and selection operator (LASSO) 
and elastic net models, the k-support norm can give a better 
predictive performance, and it is useful for generating sparse 
but correlated features, which have been thought to be suitable 
for interpretation in medical research (24). Therefore, the 

object function of the adopted inter-modality feature selection 
framework can be further defined as follows:
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where λ1 > 0 and λ2 > 0 control the sparseness and the degree of 
preservation of the inter-modality relationship, respectively, and 
D is the inter-modality distance constraint:

 
D x mi i F

i

n

= −
=

∑ 2

1  

where xi denotes the feature vectors of the functional connectivity 
features of the i-th subject and midenotes the feature vectors of the 
anatomical connectivity features of the i-th subject. The relative 
distance between the inter-modality feature vectors is x mi i F

−
2

. 
The detailed descriptions of the feature selection procedure are 
presented in the supplementary material (S1). Notably, both 
the feature filtering and feature selection procedures were only 
performed on the training data sets.

Classification
We retrieved those features with non-zero regression coefficients 
for the subsequent classification using support vector machine 
(SVM). Here, we used the SVM of the radial basis kernel function, 
with parameter C = 10 to trade off learning and extendability, and 
other parameters were kept as default values (25). The general 
performance of the classifier was evaluated using a K-fold cross-
validation procedure (K = 10). Specifically, we randomly divided 
the entire sample size into 10 sample sets; 1 set was first left out 
as a testing sample, and the remaining 9 sample sets were used 
for training the classifier. The optimal values of the regularization 
parameters including λ1 and λ2 with the best performances were 
determined based on the training data by searching on a mesh 
grid G (1:20:100) and were then used to classify the testing sample. 
Overall classification accuracy was assessed by calculating the 
proportion of the testing samples that were correctly predicted. To 
eliminate the randomness induced by the division step, we iterated 
the entire process 100 times and obtained the final classification 
accuracy by averaging the accuracies of the 100 rounds. The 
prediction accuracy, specificity, and sensitivity were calculated to 
evaluate the performance of the classifier.

Consensus Connection and node 
Definition
The absolute values of the regression coefficient vector W 
in the best trial and each round were summed to evaluate 
the discriminative ability of the corresponding connection 
to classification. Connections were defined as consensus 
connections when the corresponding regression coefficient w 
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summarization value in all rounds ranked within the top 1% 
(4,005*1% = 40). Nodes were defined as consensus nodes when 
the corresponding regression coefficient w summarization value 
whose connections were listed in the consensus connection sets 
were arranged within the top 10% (90*10% = 9).

Exploratory Analyses
Given that most of our patients were BD type I, we therefore 
conducted the univariate statistical analyses solely on the 
functional and structural connectivity of patients with BD I. 
The connections between the anterior cingulate cortex (ACC) 
and superior medial prefrontal cortex (sMPFC) selected by the 
semi-multimodal fusion framework were contributing most in 
distinguishing patients with BD from HCs. These findings were 
consistently supported by our univariate method analysis. As Table 
2 shows, all the strengths of the corrected functional connections 
between ACC and sMPFC of the two hemispheres (i.e., four 
functional connections that survived after FDR correction with 
p < 0.05) in patients with BD were reduced, compared with HCs. 
Considering the heterogeneity of our samples (that is, patients in 
the BD I group were currently at a different stage), we therefore 
allowed more granular groups in BD I and conducted statistical 
analysis. We divided patients with BD I into three groups, 
including depressive, mania, and remission episode, and assessed 
the actual group difference of the summation value of the four 
corrected functional connections by using one-way analysis of 
variance, followed by the Tukey–Kramer post hoc comparison 
procedure when significant main effects were present.

Therefore, in patients with BD, we consequently conducted 
partial correlation analysis between the summation value of 
the four ACC–sMPFC functional connections across two 
hemispheres with clinical variables (i.e., HAMD, HAMA, and 
YMRS) and used illness duration as a covariate.

RESUlTS

Demographic Characteristics and Clinical 
Symptoms
Demographic and clinical characteristics of patients with BD 
and HCs are presented in Table 1. There were no significant 

differences between the two groups with respect to gender. 
Patients with BD were significantly older than the HCs (p  < 
0.01), and the number of years of education received by 
patients with BD was shorter than that of the HCs (p < 0.01). 
Mean duration of illness was 53.7 months (SD = 57.1) for 
patients with BD.

Statistical Analysis
We did not detect any significant group-related differences in 
structural connectivity. As Figure 2 and Table 2 show, patients 
with BD displayed significantly altered functional connectivity 
between the ACC and the sMPFC when compared with the 
HCs. It should be noted that all the detected altered functional 
connections were reduced in patients with BD, compared 
with HCs.

Consensus Connections and Consensus 
nodes
The algorithm trained with whole-brain connectivity data 
distinguished patients with BD from HCs with accuracy  = 
81.47%, sensitivity = 74.75%, specificity = 85.42%, and 
area under the curve (AUC) = 0.88. The receiver operating 
characteristic curve is presented in Figure S1. Consensus 
connections and nodes were selected based on their best 
classification performance. The detailed spatial locations of 
the 40 selected consensus connections are presented in Figure 
3 and Table S1, and the corresponding information of the 
nine selected nodes is provided in Figure 4 and Table S2. As 
Figure 3 and Table S1 present, the consensus connection set 
includes the connection between the ACC and the sMPFC, the 
connection between the ACC and the superior frontal cortex 
(sPFC), and connections between frontal regions (e.g., ACC and 
sMPFC) and the temporal and subcortical regions (e.g., middle 
temporal gyrus, amygdala, hippocampus, and caudate). It can 
be obviously observed that regions including the ACC, sMPFC, 
and supplementary motor area (SMA) were perceived to have 
the greatest discriminative ability in disease diagnosis.

Exploratory Analyses
After re-analyzing the functional and structural connections 
solely in the patients with BD I, we observed that the results 
of the BD type I group were similar to those in whole sample 
(see Table S3). One-way analysis of variance revealed a 
significant omnibus difference in the summation value of 
the four corrected functional connections between ACC 
and sMPFC across all diagnostic groups [depressive episode 
mean (SD) = −0.55 (0.77), mania episode mean (SD) = 
0.046 (1.2), remission mean (SD) = −0.46 (0.96), HCs mean 
(SD)  = 0.32 (0.96), F = 9.32, p < 0.001; see Figure 2]. Post 
hoc tests revealed a significant decrease in depressive episodes 
compared with HCs (p < 0.001) and a decrease in remission 
episodes compared with HCs (p = 0.0011). We did not 
detect any significant correlation between the connectivity 
pattern of ACC and sMPFC with clinical variables in patients 
with BD.

TABlE 2 | After controlling for age, gender, and educational years, functional 
connections showing significantly altered connection strength in patients with 
BD compared to HC.

Connections Patients 
with BD 
(n = 83)

healthy 
controls 
(n = 94)

P-value FDR 
corrected

Corrected Structural Connections
None
Corrected Functional Connections
L ACC—L sMPFC −0.1 ± 0.24 0.09 ± 0.23 <0.0001 0.0017
R ACC—L sMPFC −0.09 ± 0.26 0.08 ± 0.26 <0.0001 0.0365
L ACC—R sMPFC −0.09 ± 0.26 0.7 ± 0.24 <0.0001 0.0365
R ACC—R sMPFC −0.1 ± 0.26 0.08+0.29 <0.0001 0.0494

FDR corrected using Benjamini and Hochberg method. L, left; R, right; ACC, 
anterior cingulate cortex; sMPFC, superior medial prefrontal cortex.
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DISCUSSIOn

The present study achieved good classification performance 
in discriminating patients with BD and HCs, with accuracy, 
sensitivity, specificity, and AUC of 81.47%, 74.75%, 85.42%, and 
0.88, respectively. Besides the consensus connection between 
the ACC and sMPFC being found to contribute the most to BD 
diagnosis, the connection between the ACC and sPFC was also 
included in the consensus connection set. These findings were 
partly in accordance with the traditional univariate analysis, 
which showed the decreased functional connectivity between 
ACC and sMPFC in patients with BD compared with HCs. 
The ranking order of the detected ACC–sMPFC functional 
connectivity in all diagnostic groups is: depression episode  < 
HCs and remission episode < HCs. Moreover, for selected 
consensus nodes, ACC, sMPFC, and SMA were identified as the 

most relevant brain regions for distinguishing patients with BD 
from HCs.

Notably, the semi-multimodal fusion framework employed in 
this study is a hierarchical design, which aims to elucidate robust 
and meaningful connections from a set of spurious connections. 
Specifically, the framework consists of feature filtering and 
feature selection procedures (17). In the feature filtering 
procedure, connections need to satisfy inter-group differences in 
both functional and structural aspects before they are picked for 
further analysis. In the feature selection procedure, the distance 
between the functional connection and its corresponding 
structural connection was used as the penalty term to constrain 
the overfitting in the machine learning algorithm. Therefore, by 
considering the inter-modality relationships between resting-
state fMRI and structural MRI as feature selection rules, the 

FIgURE 2 | Functional connectivity in patients with bipolar disorder (BD) versus healthy controls (HCs). Error bars stand for ±1 standard deviation. (A) Patients 
with BD showed four significantly reduced functional connections between ACC and sMPFC (FDR corrected with p < 0.05); (B) There was an omnibus difference 
in the summation value of the aforementioned four abnormal functional connections across all diagnostic groups.
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FIgURE 4 | Consensus nodes. (A) The spatial distribution of the consensus nodes, whose size was scaled according to their mean discriminative power in the 
tenfold cross-validation. (B) The normalized discriminative ability of the consensus nodes.

FIgURE 3 | Consensus connections. (A) The spatial distribution of the consensus connections, whose weight was scaled according to their mean discriminative 
power in the tenfold cross-validation. (B) The normalized discriminative ability of the consensus connections.
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selected biomarkers (i.e., consensus connections and nodes) in 
our study may be more reliable.

In this study, the most convergent finding from machine 
learning and traditional univariate analysis was located at the 
link between ACC and sMPFC, which both belong to the anterior 
midline of the brain. These findings of our study were consistent 
with previous studies showing decoupling within the midline 
of the anterior part of the brain in BD patients, compared with 
HCs (26, 27). The ACC has been involved in certain higher-level 
functions, such as attention allocation (28), reward anticipation 
(29), performance monitoring (30), and emotion regulation 
(31). Due to its anatomical, metabolic, and functional alterations 
during both the early stages and the different phases of BD (32–
34), the ACC has been regarded as a trait marker of this disease. 
The sMPFC is critical for self-referential functions and regulation 
of emotion, behavioral, endocrine, and innate immunological 
responses to stress (35), whose abnormities in function and 
structure of sMPFC have also been highlighted to be associated 
with mood instability (36), the most challenging symptom in 
patients with BD.

Consistent with the aforementioned notion regarding the 
ACC functional alterations as a trait marker for BD, this study 
also found that the ACC–sMPFC decoupling was exhibited 
across depression and remission episodes in BD patients. We 
also observed the ACC–sMPFC decoupling in mania episodes, 
although this decoupling did not survive after the statistical 
correction. The absence of a significant difference may be 
due to our small samples with mania episodes, which limits 
the statistical power to detect a difference in this subgroup 
of patients. The ACC–sMPFC decoupling observed across 
different episodes of BD suggests that the altered functional 
connectivity of ACC with sMPFC, along with the ACC 
functional alterations, possibly serves as a potential trait 
marker for this disease. What should be noted is that since 
the majority of our patients are BD I subtype, it is strongly 
warranted for further study to examine the characteristics of 
this ACC–sMPFC coupling in patients with BD II, especially 
in those with mania episode.

Given some overlapped brain functions subserved by the 
ACC and sMPFC, such as self-referential functions, emotion 
regulation, as well as attention, how the coordination between 
the ACC and sMPFC affects emotion has attracted intense 
attention. After observing a series of results including a main 
effect of self-relevance in the MPFC and a main effect of 
valence in the ACC, Moran et al. concluded that emotional 
stimuli processed self-referentially at the MPFC are tagged for 
emotional valence via the ACC (37). Thus, we speculated that 
the frequent clinical observations in BD including the abnormal 
self-referential and emotional regulation may be associated 
with the decoupling of the ACC and the sMPFC, when the 
sMPFC over/under-generalizes self-relevant information or the 
ACC mislabels emotional valence. Especially, patients with BD 
having more unstable self-esteem compared with HCs, which 
couples with unrealistic standards of success as well as emotion 
dysregulation, has been suggested to make BD patients prone 
to extremely fluctuating in self-evaluation, finally resulting in 
their vulnerability to mood instability (38). Another possible 

area of clinical relevance in this link may be associated with 
their critical roles in the triple networks (39), combined with 
our detection of the connectivity between ACC and sPFC in the 
consensus connection set. Copious amounts of literature have 
demonstrated the ACC, sMPFC, and sPFC as the key nodes for 
the salience network (SN), default mode network (DMN), and 
central executive network (CEN), respectively. In the triple-
network framework, it has been proposed that the SN plays a 
switching role to influence the activity of the CEN and DMN in 
different mental processing. This study using a machine learning 
method may extend prior evidence to further document the 
disrupted switching role of the SN on the DMN and CEN in 
BD (27).

Limitations of the present study should be pointed out. 
First, the sample size, totally comprising of 83 patients with 
BD and 94 HCs, is relatively small from a machine learning 
perspective and may cause the overfitting problem. Second, 
our relatively small sample size may degrade the statistical 
power in the correlation analysis, which showed no significant 
associations between the behavioral and clinical parameters 
and the abnormal functional connectivity values in patients. 
However, consistent with our findings, previous studies 
(40) also have not found significant correlations between 
functional connectivity strength and clinical symptoms in 
BD. Thus, another possible cause is the heterogeneity in mood 
states and medication exposures of our sample. Nevertheless, 
future studies using larger samples are needed to clarify 
the relationship of the abnormal functional connectivity 
with clinical symptoms in BD. Third, all the patients with 
BD were treated with medication. The majority of patients 
took antidepressants, lithium, and/or anticonvulsants, and 
some patients were also on antipsychotics. Medication 
administration may influence our findings. Fourth, patients 
with BD and HCs were not completely matched by age and 
education years. Although we treated age and education years 
as covariance factors to exclude their effect, this inconsistency 
in age and education years distribution between the two 
groups may confound our results. Fifth, only structural and 
functional connectivity were recruited, and therefore, more 
modalities should be used. Future studies with anatomical 
networks that are constructed using diffusion tensor 
imaging can be combined with the other two types of brain 
connectivity in cross-sectional and longitudinal designs and 
would be beneficial.

COnClUSIOn

In this study, we employed a semi-multimodal fusion framework 
by integrating complementary information from structural and 
resting-state neuroimaging data for distinguishing individual 
patients with BD from HCs. The convergent findings of the 
semi-multimodal fusion framework and traditional univariate 
analyses evidenced the aberrant connectivity between ACC and 
sMPFC in BD. Further, we allowed more fine granular groups 
and observed the ACC–sMPFC decoupling exhibited across 
depression, mania, and remission episodes in BD patients, 

Frontiers in Psychiatry | www.frontiersin.org October 2019 | Volume 10 | Article 788

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Abnormal Anterior Midline Area in BDYang et al.

10

although the decoupling in mania episodes did not survive 
after the Tukey–Kramer post hoc comparison. Our findings 
shed light on the decoupling within the anterior midline brain 
in the pathophysiology of BvD, and this decoupling may serve 
as a trait marker for this disease.
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