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Increasing evidence shows that telomere length shortening is associated with the risk for 
Alzheimer’s disease (AD), pointing to a potential modifiable target for prevention. However, 
the causality of this association is still not clear. To investigate the causal relationship 
between telomere length and AD, we use two-sample Mendelian randomization (MR) to 
assess potential causal inference. We used summary-level data for telomere length (9,190 
participants) and AD (71,880 cases and 383,378 controls). We performed two-sample 
MR analysis with single nucleotide polymorphisms previously identified to be associated 
with telomere length. The MR analyses were conducted using the inverse-variance-
weighted method and complemented with the maximum likelihood, weighted median, 
weighted mode approaches. MR evidence suggested that shorter telomere length was 
causally associated with a higher risk for AD (inverse-variance weighted estimate of 
odds ratio (OR): 1.03 per SD decrease of telomere length, P=1.21×10−2). The maximum 
likelihood, weighted median, weighted mode yielded a similar pattern of effects. The 
results were similar in sensitivity analyses. Using genetic instruments identified from large-
scale genome-wide association study, robust evidence supports a causal role of telomere 
length shortening with increased risk of AD.

Keywords: telomere length, Alzheimer’s disease, genome-wide association study, genetic instrument, Mendelian 
randomization

INTRODUCTION
Alzheimer’s disease (AD) is the most common neurodegenerative disorder characterized by 
cognitive and behavioral impairment, social and occupational dysfunction and, ultimately, 
death. Advancing age is a major risk factor for AD, both the prevalence and global burden of 
AD increase with age, especially between the ages of 50 and 80 years (1). AD, accounting for 
50–70% of all dementia cases, is the main cause of dementia, which is the fifth leading cause of 
death worldwide (1, 2). The aetiology of AD is not well understood, it is well recognized that 
both environment and genetic factors are contribute to the development of AD (3). Telomeres, 
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capping the ends of chromosomes, are DNA–protein complexes 
consist of repetitive nucleotide sequences (TTAGGG) repeats 
protecting the DNA from damage and are important for 
chromosomal stability and cellular integrity (4). Telomeres 
are shorten progressively over time during each cell division, 
thus, they are recognized as physiological markers of aging 
(5). Alterations of telomere length are proposed as epigenomic 
markers associated with a wide range of diseases, including 
cancer, cardiovascular diseases, neurological disorders, and 
psychiatric diseases (6–10).

Meta-analysis studies have indicated that shorter telomeres 
is associated with AD (11, 12), telomere shortening may be an 
indicator of AD progression (13, 14). However, longitudinal 
studies did not find the association between shorter telomeres 
and AD (15). Telomere shortening was reported to slow down 
the progression of AD in mouse model (16). In addition, AD 
was reported to accelerate telomere loss (17, 18), indicating 
AD might be a risk factor for telomere shortening. As a result, 
the findings are inconsistent or even contradictory, and it is 
difficult to make sure the causality between telomere length 
shortening and AD because of residual confounding or 
reverse causation.

The aim of the present study was to perform a Mendelian 
randomization (MR) study, using germline genetic variants 
as proxies for telomere length, to test the causality between 
an exposure (telomere length) and an outcome (AD) (19). 
Because alleles inherited from both parents are randomly 
distributed to offspring, and single nucleotide polymorphisms 
(SNPs) associated with telomere length used as instrumental 
variables randomly distributed throughout an unbiased 
general population, the approach can estimate the causality 
association of telomere length and risk of AD. Two MR studies 
have suggested that SNPs associated with telomerase length 
shortening as causative for AD (20, 21), however, the selected 
number of risk SNPs for telomerase length is only seven. Herein, 
we leverage summary genetic associations from genome-wide 
association study (GWAS) data of telomerase length and AD to 
assess the causal relationship of telomerase length with the risk 
for AD.

METhODS

genetic Instrumental Variables
To select genetic instrumental variables, we used 16 SNPs (P < 
5×10−8) previously identified to be genome-wide associated with 
telomere length, which were curated by the GWAS catalog on 
January 15, 2015 (9). We also searched the GWAS catalog on July 
23, 2019, and found that there was no update of telomere length 
GWAS in European population (22). The summary data for all 
16 SNPs (i.e., allele frequency, beta value, standard error, and P 
values) were acquired from a meta-analysis of GWASs of telomere 
length, involving 9,190 participants of European ancestry (23). 
This method for selecting genetic instruments has been used in 
the previous MR research when more potential instruments are 
needed (9).

Alzheimer’s Disease genome-Wide 
Association Study Data
We used summary-level data from a recent large-scale AD GWAS 
(24). To reduce potential bias from population stratification, 
we only drew on summary-level data for AD from European-
descent individuals, consisting of 71,880 AD cases and 383,378 
controls (24). The cases were clinically diagnosed or by-proxy. 
The AD case diagnosed by proxy status is based on parental 
AD diagnosis. Previous study showed that AD-by-proxy was 
significantly correlated with clinically diagnosed AD (24). 
Summary data were downloaded from the website (https://ctg.
cncr.nl/software/summary_statistics). More details about sample 
description, genotyping, and statistical analyses can be found in 
the original paper (24).

Statistical Analysis
MR analyses were conducted in the R computing environment 
using the TwoSample MR package (25). The genome-wide 
significantly (p < 5×10−8) associated SNPs for telomere length or 
AD were selected. To selected the independent SNPs (r2 > 0.001 
and window size = 2 Mb), we performed linkage disequilibrium 
(LD) clumping using PLINK v1.9 (26). The 1,000 Genomes 
Project Phase 3 European datasets were used to calculate LD 
between the variants. The inverse-variance weighted (IVW) 
method was adopted to combine SNP-specific causal estimates 
for AD (27), complementing with the maximum likelihood, 
weighted median, weighted mode approaches (25). We used a 
weighted median function (28) and MR-Egger regression (29) 
to detect heterogeneity and directional pleiotropy of the genetic 
instruments. To examine robustness of significant results, we 
performed horizontal pleiotropy through meta-analytic methods 
to detect heterogeneous outcomes, such as leave-one-SNP-out 
analyses, the modified Cochran Q statistic, and the MR Egger 
intercept test (25). To detect pleiotropy and outlier SNPs, 
we also used the MR-Pleiotropy RESidual Sum and Outlier 
(MR-PRESSO) (30). These tests could essentially capture the 
extent to which the effect for one or more instrument SNP is 
exaggerated in magnitude. All statistical analyses were performed 
using R (v 3.5.0) and the related packages (TwoSample MR and 
MR-PRESSO) (25, 30). Additionally, we also compared our MR 
results with a meta-analysis of traditional observational studies of 
telomere length in AD (11) using Cochran Q statistic. To explain 
the workflow of the study, a flow chart about the analytical 
methods and how the MR analysis were performed step-by-step 
was shown in Figure 1.

RESULTS
We first selected 16 SNPs identified to be associated with telomere 
length in Europeans as instrumental variables (9,  23). After 
clumping (r2 > 0.001 and window size = 2 Mb), 10 SNPs were used 
as instrumental variables for telomere length (Supplementary 
Table 1). Summary data for the genetic instruments were 
available for telomere length (Table 1). In MR analysis, we 
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found evidence of a causal relationship between telomere length 
shortening and AD (IVW estimate of odds ratio (OR): 1.03 per 
1-SD decrease in genetically determined telomere length, 95% 
confidence interval (CI): 1.01–1.05, P = 1.21×10−2; Figure 2 
and Table 2). The maximum likelihood, weighted median and 
weighted mode yielded a similar pattern of effects (Figure 2 and 
Table 2). To investigate the consistency and directional effect of 
the SNP association with telomere length and AD, we plotted the 
effect and standard error of SNPs on telomere length with their 
corresponding effect, and standard error on the risk of AD for 
each data set (Figure 3). Furthermore, analyses leaving out each 
SNP revealed that no single SNP drove these results but rather 
reflected an overall combined pattern of opposite relationships 
with telomere length shortening and AD (Figure 4). Similarly, 
we observed no heterogeneity in the effect estimates for the 10 
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FIgURE 1 | Flow chart of the present study. First, we selected 16 single 
nucleotide polymorphisms (SNPs) associated with telomere length as 
genetic instrumental variables. After linkage disequilibrium-based clumping 
(r2 0.001 and window size = 2 Mb), 10 SNPs were used as instrumental 
variables. Then, we used the inverse-variance weighted method to combine 
SNP-specific causal estimates for AD, complementing with the maximum 
likelihood, weighted median, weighted mode approaches. Finally, we 
detected heterogeneity and directional pleiotropy of the genetic instruments, 
performed horizontal pleiotropy to detect heterogeneous outcomes, and 
detected outlier SNPs.
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independent telomere length associated SNPs in Europeans (IVW: 
P = 0.41; MR Egger: P = 0.32). The MR-PRESSO test also showed 
outlier pleiotropy and suggested no SNP outliers (P = 0.29). 
Additionally, there was no evidence of directional pleiotropy in 

the MR-Egger analysis (P = 0.98). Furthermore, our MR results 
were generally similar in direction and magnitude to estimates 
based on observational prospective studies of telomere length and 
AD (heterogeneity test, P = 0.97; Supplementary Figure 1).

DISCUSSION
Using large-scale GWAS data for telomere length (N = 9,190) and 
AD data (71,880 AD cases and 383,378 controls), we performed 
MR analysis to assess the causal relationship between telomere 
length and AD using a two-sample MR analysis. With genetic 
variants as proxies for the telomere length, the MR analysis 
supports the evidence from conventional analyses that telomere 
length shortening is associated with increased risk of AD. Our 
study confirms and extends previous findings by applying 
complemented MR analyses and several sensitivity analyses.

FIgURE 2 | Mendelian randomization (MR) plots for relationship of telomere length with Alzheimer’s disease (AD). Analyses were conducted using the conventional 
inverse-variance-weighted MR method and complementary methods, including maximum likelihood, weighted median, weighted mode approaches. Scatterplot of 
SNP potential effects on telomere length with AD, with the slope of each line corresponding to estimated MR effect per method.

TABLE 2 | Mendelian randomization results for the relationship between telomere 
length and Alzheimer’s disease.

Method OR (95% CI)a P-value No. of 
SNPs

Inverse variance-weighted 1.03 (1.01–1.05) 1.21E−02 10
Maximum likelihood 1.03 (1.01–1.05) 1.13E−03 10
Weighted mode 1.01 (0.96–1.05) 7.66E−01 10
Weighted median 1.01 (0.98–1.04) 5.25E−01 10

aIndicates odds for AD per 1-SD decrease in genetically determined risk of 
telomere length.
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Comparison With Previous Studies
Our MR findings are generally consistent with those conventional 
observational studies, which tend to report associations of telomere 
length shortening with increased risk of AD. A multiethnic 9-year 
followed up study found that shortened leukocyte telomere length 
is associated with risk for AD, and the risk for AD increased 21% 
for each kilobase pair of decreased telomere length (31). Likewise, 
another 2-year follow-up study showed reduced telomere length 
significantly correlated with dementia in stroke patients (32). 
Longitudinal investigations did not support the association 
between shorter telomeres and AD (15, 33). However, the recent 
meta-analyses with large sample size provided evidence for shorter 
telomere length and increased risk of AD (11, 12), and most 
studies have found shorter telomere length in the leukocytes of 
AD patients (34). In our analysis, shorter telomere length, proxied 
by 16 genetic variants, was significantly associated with risk of AD.

Underlying Mechanisms of Telomere 
Length Shortening in Alzheimer’s Disease
The genetic variants used as instrumental variables contain 
11 genes, most of which were reported to be involved in 
telomere biology (35), and some of them may play a role in the 
pathophysiology of AD (21, 36). Telomerase RNA component 
(TERC) gene, encoding one of the main components of 
telomerase, provides as a template for addition of multiple 
“TTAGGG” repeats. While telomerase reverse transcriptase 
(TERT) gene, encoding the catalytic subunit of telomerase (37). 
SNPs in the two genes shown in the Table 1 were all significantly 
associated with telomere length and carriers of the reference 
alleles of these SNPs had significantly longer telomeres, and 
these common variants were reported to be implicated in AD 
susceptibility (38). The oligonucleotide/oligosaccharide-binding 
folds containing one (OBFC1) gene encodes a protein specifically 

FIgURE 3 | Forest plot for genetic and causal effects of telomere length on Alzheimer’s disease (AD). The effects of telomere length associated variants on AD using 
genome-wide association study data. The OR could be interpreted as changes in odds per telomere length decreasing allele for AD.
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participating in the replication and capping of telomeres (39).  
The gene telomere maintenance complex component 1 (CTC1) 
maintains telomere and is required for telomere integrity (40). 
NAF1, one of subunit of the tetrameric complex of dyskerin, 
which is an essential component of the telomerase enzyme 
(41). The ZNF676, ZBTB46, and ZNF208 genes encode zinc 
finger proteins directly binding to DNA. They may modify 
telomere length through altering the expression of genes 
engaged in telomere maintenance or inhibiting telomere 
elongation by binding specifically to G-quadruplex at the 3’ end 
of the telomeres (23). However, how ACYP2, DHX35, and PXK 
genes are implicated in telomere length regulating is not clear, 
but it has reported the family member of DHX35 is required 
for telomere protection (42). All the SNPs are significantly 
associated with telomere length (P < 5 × 10−8), and the reference 
alleles of these SNPs in the 11 genes are significantly related 
with longer telomeres (Table 1). Moreover, few other zinc finger 

proteins have been found to contribute to the pathogenesis of 
AD (43, 44). ACYP2, encoding an acylphosphatase regulating 
Ca2+ homeostasis, dysregulation of which is a key step in the 
pathogenesis of AD (45, 46).

Clinical Relevance of Findings
Our findings support a causal link between telomere attrition and 
AD, providing potential clinical applications. First, as telomere 
length is largely inherited (47), individuals who inherit shorter 
telomere length may be predisposed to AD, making leukocyte 
telomere length an appealing candidate for AD prediction. 
Second, factors affecting telomere length at birth, such as sex (48), 
paternal age at conception (49), environmental factors during 
gestation (50), will have substantial health impact on postnatal 
life, suggesting telomere length may be the mediator of in utero 
exposures on the onset of AD later in life. Third, telomere length 

FIgURE 4 | Leave-one-out sensitivity analysis for the final instrument variable set. The solid lines represent 95% confidence intervals.
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may provide as an intervention target for AD prevention, because 
shorter telomere length is widely accepted as an indicator of 
poorer health status (4), measurement of telomere length services 
to the public to motivate healthy lifestyle choices in individuals.

Study Limitations
There were also some limitations in our study. First, our results 
might be confounded by pleiotropy, population stratification. The 
majority of our results are consistent in sensitivity analyses that 
made allowance for violations of MR assumptions. Population 
stratification was reduced in our study because both telomere 
length and AD GWAS were restricted to individuals of European 
ancestry. Second, the AD GWAS studies had the limitation that 
the diagnosis of AD was partly based on proxy. The AD case 
diagnosed by proxy status is based on parental AD diagnosis, 
however, AD-by-proxy has been demonstrated to be predictive 
of AD diagnosis. Previous study showed that AD-by-proxy was 
significantly correlated with clinically diagnosed AD (24). Third, 
the telomere length from the GWAS was from leukocyte, but not 
the brains of AD patients. Considering brain samples are not 
easily accessible and there is little cell turnover between leukocyte 
telomere length and other tissues (51). Telomere length was 
reported to reduce with the rate of 29–60 bp/year in most tissues 
except cerebral cortex, owing to the limited cell proliferation in 
brain (52). Very few studies have examined telomere length in 
brain tissues of AD patients, and the associations between telomere 
length in different brain tissues and AD are contradictory (53, 54), 
but leukocyte telomere length was significantly correlated with 
both brain telomere length and structural brain changes (54–56), 
as a result, it is proposed that telomere length in leukocyte can be 
a proxy of neuronal telomere length.

In summary, our findings provide evidence in support of the 
causal role of telomere length shortening in the risk of AD.
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