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Background: Individuals with post-traumatic stress disorder (PTSD) have a heightened 
sensitivity to subsequent stressors, addictive drugs, and symptom recurrence, a form of 
behavioral sensitization. N-methyl-D-aspartate receptors (NMDARs) are involved in the 
establishment and activation of sensitized behavior.

Objective: We describe a protocol of a randomized placebo-controlled Phase 1b proof-
of-mechanism trial to examine target engagement, safety, tolerability, and possible efficacy 
of the NMDAR antagonist lanicemine in individuals with symptoms of PTSD (Clinician 
Administered PTSD Scale [CAPS-5] score ≥ 25) and evidence of behavioral sensitization 
measured as enhanced anxiety-potentiated startle (APS; T-score ≥ 2.8).

Methods: Subjects (n = 24; age range 21–65) receive three 60-min intravenous infusions 
of placebo or 100 mg lanicemine over 5 non-consecutive days. Primary endpoint is change 
in APS from pre-treatment baseline to after the third infusion. NMDAR engagement is 
probed with resting state EEG gamma band power, 40 Hz auditory steady state response, 
the mismatch negativity amplitude, and P50 sensory gating. Change in CAPS-5 scores 
is an exploratory clinical endpoint. Bayesian statistical methods will evaluate endpoints to 
determine suitability of this agent for further study.

Conclusion: In contrast to traditional early-phase trials that use symptom severity to 
track treatment efficacy, this study tracks engagement of the study drug on expression 
of behavioral sensitization, a functional mechanism likely to cut across disorders. This 
experimental therapeutics design is consistent with recent NIMH-industry collaborative 
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INTRODuCTION
With few exceptions, the explosion in basic neuroscience 
knowledge over the past two decades has not led to the development 
of mechanistically novel treatments for serious psychiatric 
disorders. It has been argued that the traditional approach to 
psychiatric clinical trials, which solely rely on symptom rating 
scales as endpoints, has stymied progress. To address this problem, 
the United States National Institute of Mental Health (NIMH) has 
adopted an experimental therapeutics approach to early-phase 
clinical trials, which require proof-of-mechanism (POM) studies 
to determine whether an experimental intervention is viable for 
testing in larger randomized controlled trials (www.nimh.nih.gov/
about/strategic-planning-reports/strategic-research-priorities/
index.shtml). The experimental therapeutics approach mandates 
(i) a functional mechanism that is likely to be associated with both 
clinical phenotype and therapeutic response, (ii) an intervention 
that is likely to act on a target that engages the functional 
mechanism [target specificity], (iii) a biomarker to show that the 
intervention engages the hypothesized target [target engagement], 
and (iv) a biomarker to show that the intervention engages the 
hypothesized functional mechanism [POM] (1, 2). Selection of the 
functional mechanism can be guided by Research Domain Criteria 
(RDoC). RDoC regards psychiatric disorders not as DSM-defined 
clinical phenotypes but as disease-overlapping functional domains 
associated with neuroscience-inspired neural circuitries that are at 
the crossroads of genotype and clinical phenotype (3, 4).

In this paper we describe the rationale and protocol 
for an NIMH-funded POM study to determine whether 
the N-methyl-D-aspartate receptor (NMDAR) antagonist 
lanicemine (BHV-5500) engages the NMDAR to block 
expression of behavioral sensitization underlying symptoms 
of post-traumatic stress disorder (PTSD).

POST-TRAuMATIC STRESS DISORDER
PTSD is a trauma-induced condition marked by intrusive 
thoughts about and re-experiencing of trauma (life-like 
flashbacks, nightmares), avoidance of trauma-associated 
stimuli and thoughts, negative cognitions and mood 
(anhedonia, hopelessness), and hyperarousal (anger outbursts, 
hypervigilance, exaggerated startle) (5). An estimated 6% of the 
U.S. population has a lifetime history of PTSD (6, 7), with a 
higher prevalence among first responders (8), military veterans 
(9–12), and women (6, 7, 12). An additional 6% of U.S. adults 
could have a lifetime history of partial PTSD defined as fewer, 
but not less frequent, intense or severe, PTSD symptoms (13). 

Mean age of PTSD onset is 24 (7), although about half of the 
individuals with lifetime PTSD meet criteria before age 18 
(6). While there are several evidence-based psychotherapies 
for PTSD, there remain only two U.S. Food and Drug 
Administration (FDA)-approved drugs for PTSD, the selective 
serotonin reuptake inhibitors paroxetine and sertraline. Both 
of these approved medications have only low to moderate 
efficacy for improving PTSD symptoms (14). This highlights 
the importance of finding novel targets for intervention.

FuNCTIONAL MECHANISM
Behavioral sensitization refers to a process whereby trauma-
associated stress (but also repeated use of substances of 
abuse, mood or anxiety episodes, and suicide attempts) 
sensitize behavioral, motivational and stress systems, thereby 
increasing the behavioral and physiological reactivity to 
subsequent stressors or other sensitizing agents even after a 
prolonged absence of those agents (15–18). Consistent with 
findings in animals, research in humans showed at least 
three different aspects of behavioral sensitization: induction, 
the development of behavioral sensitization to a sensitizing 
agent, including uncontrollable stressors (19), substances of 
abuse (18, 20, 21), and, in PTSD, repeated illness episodes 
(22); expression, exaggerated behavioral or physiological 
responses to a sensitizing agent even after prolonged absence 
of that agent (18, 21, 23); and cross-sensitization, the process 
by which sensitization to one agent results in sensitization to 
other agents (e.g., facilitation of behavioral sensitization to 
psychostimulants after exposure to uncontrollable stress) (24). 
Animal research showed that all three aspects of behavioral 
sensitization require activation of NMDARs albeit via 
different neural pathways. Repeated cocaine administration 
increased NMDAR sensitivity only in rats that developed a 
sensitized motor response (25). Blockade of NMDARs by 
non-competitive NMDAR antagonist ketamine or MK-801 
prevented induction of behavioral sensitization to ethanol (26, 
27), apomorphine (28), stimulants (29–36), stress (36), and 
nicotine (37, 38), blocked expression of behavioral sensitization 
to alcohol (39), stimulants (29–32, 35, 40), stress (41), and 
nicotine (38), and blocked cross-sensitization between ethanol 
and stimulants (40, 42) and between stress and stimulants (36, 
43, 44). Administration of MK-801 in the nucleus accumbens 
prevented induction but not expression of behavioral 
sensitization to stimulant administration (45), consistent with 
involvement of different neural pathways in induction and 
expression of behavioral sensitization.

studies, and could serve as a template for testing novel pharmacological agents 
in psychiatry.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03166501.

Keywords: behavioral sensitization, NMDA receptor, hyperarousal, neurophysiology, post-traumatic stress 
disorder, anxiety potentiated startle
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Our premise for this study is that PTSD symptoms are 
associated with behavioral sensitization (46–48). We further 
propose that this type of sensitization could be blocked 
rapidly with an NMDAR antagonist (36, 43, 44) to relieve 
PTSD symptoms.

PRIMARy OuTCOME MEASuRE: 
BIOMARKER OF FuNCTIONAL 
MECHANISM
Behavioral sensitization in PTSD is associated with hyperarousal 
of the extended amygdala—the basolateral amygdala (BLA), 
central amygdala, medial amygdala, bed nucleus of the stria 
terminalis (BNST), shell of the nucleus accumbens, and their 
interconnectivity (48, 49). In animals, uncontrollable stressors, 
including trauma, enhanced sensitivity of the extended amygdala 
to future, milder, stressors (19, 50). In humans, enhanced 
reactivity of the amygdala could predispose to development of 
PTSD symptoms (51, 52) and is associated with less resilience 
to stressors of everyday life (53). Sensitization of the extended 
amygdala cuts across all RDoC functional domains (49) and has 
been associated with most PTSD symptom clusters (48).

NMDARs antagonists may improve PTSD symptoms 
by affecting behavioral sensitization. In preclinical models, 
NMDAR antagonists blocked induction (36) and expression 
(41) of behavioral sensitization by stress, and blocked cross-
sensitization between stress and stimulants (36, 43, 44). In 
humans, intraoperative administration of NMDAR antagonist 
ketamine may reduce PTSD risk (54, 55), and a single infusion 
of 0.5 mg/kg ketamine compared to midazolam in patients with 
PTSD resulted in rapid (within 24 h) and sustained (at least 7 
days) improvement in PTSD symptoms (56, 57). Finally, the low-
affinity NMDAR antagonist memantine improved hyperarousal 
and depressive symptoms in individuals with PTSD (58).

In this study we operationalize expression of behavioral 
sensitization as an aversion-potentiated startle amplitude 
expressed as T-score obtained on the No-threat, Predictable-
threat, Unpredictable-threat (NPU) test (59–61). Sudden intense 
stimuli elicit an eye blink startle reflex that can be potentiated 
in negative emotional states (62, 63). Phasic negative emotional 
states potentiate startle via activation of the central amygdala in 
response to an explicit cue that signals threat of an uncontrollable 
aversive stimulus, assessing fear [fear-potentiated startle (FPS)]. 
Tonic negative emotional states potentiate startle primarily via 
activation of the BNST in response to a context, not a specific 
cue, that signals threat of an uncontrollable aversive stimulus, 
assessing anxiety [anxiety-potentiated startle (APS)] (62, 63). 
PTSD is associated with an enhanced APS but not FPS (64, 65), 
which could be related to increased activation of BNST excitatory 
glutamatergic neurons relative to BNST inhibitory GABA 
neurons (66) or with decreased regulation of the prefrontal cortex 
over the amygdala (67) associated with diminished prefrontal 
glutamate concentration (68).

We propose a POM study using lanicemine 100 mg in patients 
with symptoms of PTSD with evidence of behavioral sensitization 

operationalized as an enhanced APS. Using air puffs to the 
forehead as startle probes and loud acoustic sounds as aversive 
stimuli, the NPU-threat test discriminated between patients with 
PTSD (n = 16; APS T-score mean ± SD = 6.5 ± 1.4) and healthy 
controls (n = 34; APS T-score = 0.6 ± 1.1) (65). For this trial, 
we select participants with at least moderate symptoms of PTSD 
operationalized as a CAPS-5 score ≥25, and a state of behavioral 
sensitization operationalized as an APS T-score at least two 
standard deviations above the mean among healthy volunteers 
(APS T-score ≥2.8). We anticipate approximately 60% of PTSD 
patients to meet APS entry criteria (Grillon, unpublished data). 
The primary endpoint of this study is change in APS T-score 
from pre-treatment baseline to that following the last of three 
lanicemine infusions. Paradigm specifics are described in 
Supplemental Materials.

EXPERIMENTAL DRuG
Lanicemine is an intravenously administered NMDAR antagonist 
that crosses the blood-brain barrier, binding within channel 
pores (Ki 0.5–3 μM) of NR2A and NR2B NMDAR complexes 
(IC50 4–40 μM) to block the flow of charged cations. In contrast 
to other NMDAR antagonists such as ketamine and MK-801, 
lanicemine has a fast off-rate and is low-trapping, properties 
associated with favorable safety and tolerability profiles (69). In 
addition, ketamine’s actions include effects on systems beyond 
NMDAR channel blockade, including at opiate, sigma, and 
muscarinic receptors (70), whereas lanicemine has negligible 
off-target pharmacological effects and provides a more selective 
NMDAR probe. Lanicemine has been examined in preclinical 
and early-phase clinical studies in patients with stroke, sleep 
apnea, and treatment-resistant depression (TRD) and is 
considered safe in humans. A recently completed phase 2b trial 
found that lanicemine 100 mg dose was effective in individuals 
with TRD who had the most severe depression or suicidal 
ideation at the start of the study (71), potentially suggestive of 
effects on behavioral sensitization.

Prior studies exposed healthy individuals and patients with 
treatment resistant depression to single or repeated infusions of 
lanicemine 50 mg or 100 mg (69, 71, 72). At least one adverse 
event (AE) was reported by 77.1% of subject in the lanicemine 
arms, compared to 70% of subjects in the placebo arm. Although 
most AEs were of mild or moderate intensity, a greater proportion 
of subjects discontinued the trials due to an AE for lanicemine 
100 mg (9.0%) than lanicemine 50 mg (2.0%) or placebo (4.0%). 
Dizziness was the most common AE and appeared to be dose-
related. Other reported side effects included: changes in balance, 
feeling drunk, blurred vision, headache, sleepiness, weakness, 
impaired concentration, abnormal sensations (tingling of hands, 
feet, feelings of crawling ants within body), nausea, and vomiting. 
Lanicemine has been associated also with dose-dependent 
transient mild elevations in blood pressure with no evidence 
of sustained changes in blood pressure or pulse rate. There 
were no clinically meaningful differences between lanicemine 
and placebo groups for mean changes in clinical chemistry, 
hematology, or urinalysis. Treatment with lanicemine was not 
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associated with any decline in psychomotor function, attention, 
working memory, learning, or general cognitive function. 
An important difference between lanicemine and ketamine 
concerns dissociative side effects. Although 8% of patients with 
treatment resistant depression in the lanicemine 100 mg arm 
spontaneously reported dissociative symptoms compared to 4% 
in both the lanicemine 50 mg and placebo arms, only 1.1% of 
patients in both lanicemine groups had a Clinician-Administered 
Dissociative States Scale (CADSS) score classified as high (11–
25) at any time point. In contrast, 50% of patients with treatment 
resistant depression showed high dissociation with a 40 minute 
subanesthetic infusion of ketamine (73).

SECONDARy OuTCOME MEASuRES

Biomarkers of NMDAR Target 
Engagement
NMDAR target engagement is examined with neurophysiological 
measures that are translatable between animal and human studies.

Subanesthetic doses of NMDAR antagonist ketamine increased 
resting-state gamma band (30–100 Hz) power in animals (74–76) 
and humans as a function of time since start of ketamine infusion, 
rapidly normalizing after end of infusion (69, 77, 78). This response 
has been associated with activation of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPAR) (79) or 
activation of fast-spiking gamma-aminobutyric acid (GABA)-
ergic parvalbumin interneurons (80) following a ketamine-driven 
increase in prefrontal glutamate (81). Lanicemine 75 mg and 
150 mg increased midline electrodes gamma band activity in a 
dose-response fashion in healthy volunteers (69). This increase 
was unrelated to increased motor activity, separating it from 
ketamine-increased gamma band power that did correlate with 
enhanced motor activity (69). Ketamine-increased gamma band 
power was unrelated to treatment response in patients with TRD 
(78). We hypothesize that resting state gamma band power will 
increase with lanicemine 100 mg compared to placebo.

The 40 Hz auditory steady state response (40 Hz ASSR) 
measures stimulus-evoked gamma band (40 Hz) power and 
phase synchronization. In awake rats, a single intravenous 
bolus of 1, 3, 10, and 30 mg/kg ketamine increased intracranial 
frontocentral 40 Hz power, but the time was delayed or duration 
prolonged linearly with increase in dose (82). Phase synchrony 
decreased at the lowest dose and increased at the highest dose, 
with changes correlating negatively with ketamine NMDAR 
occupancy (82). A single dose of MK-801 increased intracranial 
40 Hz phase synchrony but did not affect power (83). In healthy 
humans and humans with schizophrenia, memantine 20 mg 
increased frontal 40 Hz power and phase locking; memantine 10 
mg had no effects (84). We expect lanicemine 100 mg to increase 
40 Hz ASSR power and phase synchrony.

The auditory Mismatch Negativity (MMN) is evoked 
between 100 and 250 ms after an unexpected auditory event, 
and is measured as the difference between (frequent) expected 
and (infrequent) unexpected stimuli in a passive oddball task 
(85). MMN amplitude could be increased in PTSD (64, 86, 
87), although this has not been found uniformly (88). MMN 

in healthy volunteers was increased under threat of an aversive 
stimulus (89) suggesting it could be sensitive to behavioral 
sensitization. Ketamine suppressed MMN amplitude (90–92), 
perhaps via blockage of NR2B receptor units (93), without 
affecting temporally overlapping ERP components (92). This 
effect is sustained for at least 30 min after end of infusion 
(92). Memantine could increase MMN amplitude (94). MMN 
amplitude is included as a measure of target engagement as 
well as a measure associated with functional mechanism. 
We expect suppression of MMN amplitude with lanicemine 
compared to placebo, potentially associated with change 
in APS.

P50 auditory sensory gating measures P50 amplitude 
suppression following presentation of the same auditory 
stimulus in short temporal proximity, reflecting pre-attentional 
information filtering (95–98). P50 gating is impaired in PTSD 
compared to trauma controls (99), and after acute stress in healthy 
individuals (100, 101). Lanicemine may normalize P50 gating if 
lanicemine attenuates stress reactivity. However, ketamine 0.3 
mg/kg (bolus) in healthy volunteers impaired P50 gating through 
ketamine-induced increases in gamma band activity for the 
second stimulus of the repetition (102) which was also found in 
rats (76). Thus, lanicemine may normalize or worsen P50 gating. 
We study effects of lanicemine on P50 gating to examine this 
apparent discrepancy and in order to characterize its effects on 
aspects of information filtering.

Further specifics of the paradigms can be found in 
Supplemental Materials.

Symptom Severity Rating Scales
The Clinician Administered PTSD Scale (CAPS-5) (103) is a 
structured interview to assess intensity and frequency of DSM-5 
PTSD symptoms. The CAPS-5 is administered at screening to 
determine subject eligibility (104), before the first infusion, and 
3 days after the last infusion (day 8) to preliminarily examine 
treatment efficacy (105). Further specifics of the CAPS-5 and 
of other clinical measures can be found in the accompanying 
Supplemental Materials.

SAMPLE SIZE
The primary statistical contrast is lanicemine compared to 
placebo on APS from baseline to the end of the third infusion. 
Assuming an observed posterior probability of at least 0.75 of 
Cohen’s d < -0.4 in the active condition relative to placebo and 
a correlation r = 0.5 due to repeated measures, K = 500 Monte 
Carlo simulations indicated that a sample size of 20 allows an 
82% chance of detecting superiority of lanicemine. Allowing for 
attrition, we will recruit 24 subjects. To date, we randomized 23 
of the 24 subjects.

STuDy DESIGN
This study is funded by the NIMH under an R61/R33 Phased 
Innovation Award (5R61MH110540). Biohaven Pharmaceutical 
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Holding Company LTD provided material support. The study 
drug is administered as an intravenous solution under FDA IND 
number 134304; the trial is registered at ClinicalTrials.gov under 
NCT03166501. All study-related procedures and materials have 

been approved by the Baylor College of Medicine Institutional 
Review Board, and the MEDVAMC Office of Research and 
Development. An NIMH-appointed data and safety monitoring 
board (DSMB) provides oversight.

TABLE 2 | Study procedures during infusion 1 (day 1) and infusion 3 (day 5) a.

Time (hours from start of infusion)

T0 (-3) T1 (-1.5) T2 (+0.5) T3 (+1.5) T4 (+3.5) T5 (+4)

Urine pregnancy test X
CAPS-5 X b

NPU-threat test X X
MMN X X X X
Resting state EEG X X X X
40 Hz ASSR X X X X
P50 auditory sensory gating X X X
PK sample X X X X X

aOrder of procedures is fixed; bCAPS-5 is assessed only before infusion 1.

TABLE 1 | Schedule of events.

Screeninga Treatment periodb Telephone
follow-up

EOS/ETc

Day -42 to -1 Day 1 
(1st infusion)

Day 3 
(2nd infusion)

Day 5 
(3rd infusion)

Day 8 ± 2 Day 19 ± 4

Informed consent X
Eligibility criteria X X
Demographics X
Psychiatric and family history X
Medication history X X X X X
Medical history X
Alcohol and drug history X
MINI X
CAPS-5 X X X X
PCL-5 X X X X
CGI-Sd X X X X X X
CGI-Id X X X X X X
C-SSRSd X X X X X X
Vital signs (supine)e X X X X X
Orthostatic BPf X X X X
Physical examination X X X
Weight, height, BMI X X
Digital 12-lead ECGg X X X X X
Metabolic panel X X X
HgbA1c X
Serum pregnancy test X X
Urine pregnancy testh X X X
Urinalysis X X X
Urine drug screen X X X X X
Adverse events X X X X X X
PK sampling X X
NPU-threat test X X
Mismatch negativity (MMN) X X
Resting state EEG X X
40 Hz ASSR X X
P50 auditory sensory gating X X

aScreening visit can be completed over 2–3 days; bInfusions must occur on non-consecutive days within a 6 day maximum period; cEnd of study (EOS)/early 
termination (ET) visit conducted at the time of discontinuation; dMeasures administered prior to any infusion; eMeasured at time 0 (within 1 h before infusion is 
acceptable) and at the end of infusion; fOrthostatic blood pressure (BP) will be measured at time 0 (within 1 h before infusion is acceptable) and either at least 1 
or 3 h after the end of infusion; gMeasured at time 0 (within 1 h before infusion is acceptable) and at the end of each infusion; hA negative result is required prior to 
each infusion.
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This study uses a randomized, double-blind, parallel-arm, 
placebo-controlled fixed dose design to test lanicemine (100 
mg) compared to saline placebo in up to 24 male and female 
outpatients between the ages of 21 and 65 who have significant 
PTSD symptoms (CAPS-5 score of at least 25, and a Clinical 
Global Impression of Severity [CGI-S] score of at least 4), and 
physiological manifestations of behavioral sensitization (APS 
T-score of at least 2.8). Inclusion and exclusion criteria are 
displayed in Supplemental Material.

To qualify for randomization, entry criteria must be met 
at screening and the morning of the first lanicemine infusion. 
Subjects are randomized in a 1:1 ratio to receive three 60-min 
intravenous infusions of lanicemine or placebo on non-
consecutive days over a 5-day period. Table 1 provides the 
timeline of all study procedures. Table 2 provides the timeline 
of study procedures at the first infusion (day 1) and third 
infusion (day 5).

DATA ANALySIS PLAN

Primary Endpoint
We expect that relative to placebo, three infusions of lanicemine will 
normalize the APS response after the last infusion. The primary 
analysis for this endpoint is regression of the APS measured on the 
fifth day of treatment (third infusion) onto treatment group after 
controlling for APS measured at baseline of the first day of treatment 
(first infusion).

Secondary Endpoints
We expect that relative to placebo, lanicemine will demonstrate 
effects on neurophysiology measured on the fifth day of 
treatment, and on the CAPS-5 measured 3 days after the last 
infusion (day 8). The primary analyses for these endpoints are the 
regression of neurophysiology measures, measured after infusion 
3, and CAPS-5, measured on day 8, onto treatment group after 
covariation for the respective baseline values. Secondary analyses 
will use multilevel models to evaluate changes as a function of 
stratification variables, treatment, time and the interaction of 
treatment and time. In addition, Bayesian Structural Equation 
Modeling will be used to test the hypothesis that treatment effects 
on day 5 APS or neurophysiology mediate treatment effects on 
day 8 CAPS-5.

Analysis Sets
Analyses will be performed on a:

Modified intent-to-treat (mITT) analysis set: this analysis 
set will include all randomized patients who took study 
medication, and who have a baseline APS and at least 1 post-
baseline behavioral rating. The mITT analysis set will be used for 
exploratory efficacy analyses.

Per-protocol (PP) analysis set: This analysis set will include 
only those mITT patients without significant protocol deviation, 
and who received the treatment to which they were randomized. 
The analysis of the primary efficacy variable will be repeated 

on this set, and additional analyses of efficacy variables may 
be performed using this set to assess the robustness of the 
treatment effects.

Safety analysis set: This analysis set will include all 
randomized patients who were given at least one dose of study 
medication, on whom any post-dose data are available, and 
who are classified according to the treatment actually received 
(i.e., erroneously treated patients will be accounted for in their 
actual treatment group). This set will be used to assess safety 
and tolerability variables.

Specific Analytic Strategies
Efficacy and safety variables will be summarized using 
descriptive statistics and graphs. Continuous variables will be 
summarized by descriptive statistics. Categorical variables will 
be summarized in frequency tables. Pharmacokinetic variables 
will be summarized by the geometric mean and coefficient of 
variation. Lanicemine will be compared with placebo. Where 
appropriate, we will report model-based point estimates together 
with their 95% credible intervals.

Preliminary data analyses examining group differences for 
demographic and baseline variables will use cross-tabulation, 
ANOVA’s, and examination of correlations between baseline 
variables and specified outcomes. For the purposes of evaluating 
the comparability of groups, posterior probabilities of ≥95% 
will constitute evidence for statistically reliable differences. 
Baseline or demographic variables on which group differences 
are detected, and which are correlated with outcomes meet the 
definition of confounders (106, 107), and will result in two 
sets of analyses: one in which the relevant variable is included 
as a covariate and one in which it is not. This will permit 
determination of the degree to which any covariate might 
confound conclusions regarding treatment. The data analytic 
strategy will use generalized linear modeling (GLM) and 
multilevel models for both continuous and discrete outcomes. 
Cross-sectional continuous, count, dichotomous and time 
to event data will be evaluated using GLM and proportional 
hazards regression, respectively. All analyses will be conducted 
on a mITT analysis set.

Bayesian approaches will implement joint modeling of 
observed outcomes and the missing data which is robust to 
ignorable missingness (108). Sensitivity analyses will evaluate 
robustness of analytic conclusions to missing data. Non-ignorable 
missing data patterns will be addressed through pattern-mixture 
modeling methods (109). Evaluation of posterior distributions 
will permit statements regarding the probability that effects of 
varying magnitudes exist, given the data. Specification of diffuse, 
neutral priors will reflect the initial uncertainty regarding effect 
sizes. For all generalized linear mixed models, priors for regression 
coefficients will be specified as ~Normal (µ = 0, σ2 = 1 x 106); level 
one error variances will be specified as ~Folded t-distribution 
(ν = 3, μ = 0, σ = 1000). Prior distributions for level-two variances 
in multilevel models will follow ~Folded t-distribution (ν = 3, 
μ = 0, σ = 1000). Priors for the comparison of proportions will 
be specified as ~Beta (α = 0.5, β = 0.5). Sensitivity analysis using 
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optimistic and pessimistic, skeptical priors will evaluate prior 
assumptions (110). Decisions regarding the degree to which 
treatment confers benefit, and whether further confirmatory 
trials are warranted will be based on the posterior distribution of 
effect sizes. If the observed posterior probability of a Cohen’s d < 
-0.4 is at least 0.75, this will be sufficient evidence to proceed to a 
larger POC clinical trial.

Assessing the convergence of Bayesian analyses on the 
posterior distributions via Monte-Carlo Markov chain 
(MCMC) will use graphical (Trace Plot, Autocorrelation Plot) 
and quantitative (Gelman-Rubin Diagnostics and Effective 
Sample Size) evidence. Mediational modeling will permit 
estimates of the indirect effects of treatment on primary and 
secondary endpoints using the product coefficient method 
(111). Bayesian Structural Equation Modelling (BSEM) prior 
specification will adapt recommendations from Muthén and 
Asparouhov (112). A Bayesian estimate for the indirect effect 
employs the posterior distribution of the parameter (i.e. the 
product coefficient): a density denoting the probability that 
the different values of the parameter obtain given the observed 
data. This posterior distribution may be further partitioned to 
evaluate the probability that the true parameter falls within a 
specific range of values. This will facilitate decision-making 
regarding the relative merits of continued investigation of the 
compound. Use of the MCMC approach in Bayesian analyses 
has demonstrated superiority for small sample performance 
compared to maximum likelihood-based approaches in 
continuous, normally distributed data (111). These properties 
are likely due to the MCMC approach’s lack of reliance on 
large sample size assumptions (113). Sensitivity analysis using 
optimistic and pessimistic, skeptical priors evaluates prior 
assumptions (110).

CONCLuSION
This POM clinical trial examines a novel target—trauma-induced 
behavioral sensitization—hypothesized to be associated with 
PTSD symptoms. The expression of behavioral sensitization is 
measured as an exaggerated APS reflecting enhanced reactivity 
of the BNST, a component of the extended amygdala, to 
uncontrollable stressors. Behavioral sensitization in general, and 
BNST reactivity specifically, may be under the control of NMDARs 
(66). Lanicemine potentially addresses the interaction between 
behavioral sensitization and acute behavioral and cognitive 
disturbances that characterize PTSD through its interaction 
with NMDAR that we will test using neurophysiological 
measures sensitive to NMDAR agents. If lanicemine engages 
the functional target and is safe and efficacious in this difficult-
to-treat population, there is genuine translational potential for 
this compound or similar agents in treatment of PTSD and of 
other disorders potentially involving behavioral sensitization, 
such as bipolar disorder or substance use disorders. This study 
does have limitations that limit the generalizability of outcomes. 
The outcomes are limited to individuals with high APS. In 
addition, we exclude individuals with disorders that frequently 

co-exist with PTSD, and with medications that are frequently 
used for PTSD. Finally, studies with lanicemine and placebo in 
individuals with treatment resistant depression have revealed a 
more pronounced placebo response for individuals with fewer 
symptoms of depression, absent or milder suicidal ideation, 
and no treatment with antipsychotic medication (71). Our 
decision to enroll individuals with symptoms of PTSD instead 
of individuals who meet full PTSD criteria may benefit the 
placebo arm over the lanicemine arm. However, the findings 
regarding placebo apply to effects on symptoms of depression 
and may not generalize to symptoms of PTSD, and findings may 
not generalize to biomarkers of functional mechanisms or to 
biomarkers of target engagement.

This study is funded under an R61/R33 Phased Innovation 
Award (R61 MH10540-01). This award consists of an R61 
POM study followed by an R33 phase to test clinical efficacy 
of a study drug. The R33 study would only commence if the 
POM study shows evidence of engagement by lanicemine of 
the functional mechanism (change in APS) and the biological 
target (change in neurophysiological measures). The go/
no-go framework for the R61 study is operationalized such 
that if there is significant symptom improvement without a 
clear effect of functional mechanism and evidence of target 
engagement, the drug would not be tested further in an R33. 
A potential risk of this approach is that the measures of 
functional mechanism and of target engagement selected may 
not be appropriate even if the drug does engage the proposed 
mechanisms. This approach is in marked contrast to usual 
industry-supported early phase trials in which early signals 
of clinical efficacy drive the decision to move forward with 
larger Phase 2 studies, irrespective of information gleaned 
from biomarkers.

In conclusion, this study tracks engagement of the 
study drug on a functional mechanism likely to cut across 
disorders, which is consistent with recent NIMH-industry 
collaborative studies (114) and “Fast-Fail” trials (2, 115), and 
could serve as a template for testing pharmacological agents 
in psychiatry.
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