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Introduction: It has been shown that Alzheimer’s disease (AD) is accompanied by marked
structural brain changes that can be detected several years before clinical diagnosis via
structural magnetic resonance (MR) imaging. In this study, we developed a structural MR-
based biomarker for in vivo detection of AD using a supervised machine learning approach.
Based on an individual’s pattern of brain atrophy a continuous AD score is assigned which
measures the similarity with brain atrophy patterns seen in clinical cases of AD.

Methods: The underlying statistical model was trained with MR scans of patients and
healthy controls from the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1 screening).
Validation was performed within ADNI-1 and in an independent patient sample from the
Open Access Series of Imaging Studies (OASIS-1). In addition, our analyses included data
from a large general population sample of the Study of Health in Pomerania (SHIP-Trend).

Results: Based on the proposed AD score we were able to differentiate patients from
healthy controls in ADNI-1 and OASIS-1 with an accuracy of 89% (AUC = 95%) and 87%
(AUC = 93%), respectively. Moreover, we found the AD score to be significantly
associated with cognitive functioning as assessed by the Mini-Mental State Examination
in the OASIS-1 sample after correcting for diagnosis, age, sex, age·sex, and total
intracranial volume (Cohen’s f2 = 0.13). Additional analyses showed that the prediction
accuracy of AD status based on both the AD score and the MMSE score is significantly
higher than when using just one of them. In SHIP-Trend we found the AD score to be
weakly but significantly associated with a test of verbal memory consisting of an
immediate and a delayed word list recall (again after correcting for age, sex, age·sex,
and total intracranial volume, Cohen’s f2 = 0.009). This association was mainly driven by
the immediate recall performance.

Discussion: In summary, our proposed biomarker well differentiated between patients
and healthy controls in an independent test sample. It was associated with measures of
g January 2020 | Volume 10 | Article 9531

https://www.frontiersin.org/article/10.3389/fpsyt.2019.00953/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00953/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00953/full
https://loop.frontiersin.org/people/831988
https://loop.frontiersin.org/people/858835
https://loop.frontiersin.org/people/682531
https://loop.frontiersin.org/people/148015
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles
http://creativecommons.org/licenses/by/4.0/
mailto:stefan.frenzel@uni-greifswald.de
adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.3389/fpsyt.2019.00953
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2019.00953
https://www.frontiersin.org/journals/psychiatry
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2019.00953&domain=pdf&date_stamp=2020-01-14


Frenzel et al. Atrophy Patterns in Alzheimer’s Disease

Frontiers in Psychiatry | www.frontiersin.or
cognitive functioning both in a patient sample and a general population sample. Our
approach might be useful for defining robust MR-based biomarkers for other
neurodegenerative diseases, too.
Keywords: Alzheimer's disease, machine learning, dementia, magnetic resonance imaging, FreeSurfer
INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder and
accounts for an estimated 60 to 80 percent of cases of dementia
(1, 2). Dementia is characterized by memory impairments,
disordered cognition, language problems, and changes in
behaviour, which seriously impair a person’s ability to live
independently. In advanced AD the person loses basic body
functions like walking and swallowing and requires around the
clock-care. According the World Health Organization (WHO)
the incidence of dementia worldwide will reach about 135
million people in 2050 and will become a major challenge for
health-care systems of western countries (3).

The hallmark pathology of AD is the progressive
accumulation of amyloid beta protein and tau protein in the
brain which is accompanied by death of neurons (1, 4).
Macroscopically this is reflected in atrophy of specific brain
regions which can be assessed via structural magnetic resonance
(MR) imaging. At an early stage, the mild cognitive impairment
phase, there typically is an atrophy only of the temporal lobe.
With progression of the disease other cortical and subcortical
regions, notably the hippocampus, become affected too (5–7).
These structural changes have been shown to be detectable
several years before the clinical diagnosis of AD (8, 9) which
led to the development of imaging-based biomarkers of AD
based on machine learning (10–16). Biomarkers based on
structural MR imaging have been shown to differentiate well
between cases of AD and cognitively healthy controls (17) and
some of them have been shown to be sensitive at the preclinical
stage (18). However, most of these biomarkers have been
investigated in single cohorts only.

Since structural brain changes are detectable several years
before clinical diagnosis MR-based biomarkers for AD are
highly relevant for general population studies, too. However,
the investigation of such biomarkers has gained attention only
recently within the context of general brain ageing (19–21). In
this study, we developed an MR-based biomarker for the in vivo
assessment of AD based on a supervised machine learning
approach. Based on an individual’s pattern of brain atrophy a
continuous score is assigned which measures the similarity with
brain atrophy patterns seen in clinical cases of AD. The
underlying statistical model is trained using data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (22)
and validation is performed in an independent patient sample
from the Open Access Series of Imaging Studies (OASIS) (23).
Finally, our proposed biomarker is investigated in general
population data from the Study of Health in Pomerania
(SHIP-Trend) (24).
g 2
MATERIALS AND METHODS

Sample Description
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance (MR) imaging, positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org. T1-weighted structural MR scans from
413 participants of the ADNI-1 screening sample were
considered in this study. Images were acquired using multiple
scanners with a field strength of 1.5T (25, 26). The detailed MR
protocol can be found in the supplement. Since the ADNI scans
were used to train the AD classifier additional quality control of
the image processing was performed as explained below. The
final sample comprised N = 374 individuals with 165 diagnosed
with AD and 209 cognitively healthy controls (CN) (see Table 1).

Open Access Series of Imaging Studies (OASIS)
To validate the AD classifier we used data from the Open Access
Series of Imaging Studies (OASIS-1) which is a cross-sectional
collection of MR scans of N = 416 individuals aged 18 to 96 (23)
(see Table 1). One hundred of the participants older than 60
have been clinically diagnosed with very mild to moderate AD.
More information can be found at www.oasis-brains.org. Details
of the MR protocol can be found in the supplement. All images
were screened for artefacts, acquisition problems, and processing
errors and images with severe flaws were excluded by the OASIS
investigators. No additional quality control was performed by the
authors. 235 participants (100 AD, 135 CN) completed the Mini-
Mental State Examination (MMSE). The MMSE is a 30-point
questionnaire that is used extensively to screen for
dementia (27).
TABLE 1 | Basic demographic characteristics of all three samples.

ADNI-1 screening OASIS-1 SHIP-Trend

N 374 416 1,973
Females 186 (49%) 254 (61%) 1,038 (53%)
AD 165 (44%) 100 (24%) –

Age [y] 75.7 (6.3) 52.9 (25.0) 51.3 (14.0)
Intracranial Volume [dl] 15.4 (1.7) 14.8 (1.6) 15.9 (1.6)
January 20
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Study of Health in Pomerania (SHIP-Trend)
The Study of Health in Pomerania (SHIP) was designed to assess
the prevalence of common risk factors and diseases in a
population of northeast Germany randomly drawn from local
registers (24). 4,308 subjects participated at baseline between
1997 and 2001. In parallel to the original SHIP study a new
independent sample was drawn and examinations of similar
extent were undertaken (SHIP-Trend). In this study, T1-
weighted structural MR images of the head from 2,154
participants of SHIP-Trend were considered (28). Details of
the MR protocol can be found in the supplement. Scans with
very poor technical quality, (e.g. frontal darkening) were
excluded (N = 84). In addition, scans showing structural
abnormalities (e.g. tumors, cysts) and cases of cerebral stroke
were excluded as well (N = 93). The image processing pipeline
(see below) failed to process 4 scans. The final sample comprised
N = 1973 individuals (see Table 1).

Of those, 1,955 participants completed a word list recall
(WLR) test during the face-to-face interview as part of the
standard SHIP-Trend protocol. The WLR test consists of eight
items which needed to be recalled immediately (immediate
WLR, 0 to 8 points) and after a 20 min delay (delayed WLR
with distractor words, -8 to 8 points). The total WLR score was
computed as sum of both tests. The WLR is part of the
Nuremberg Gerontopsychological Inventory (29).

MR Image Segmentation With Freesurfer
Cortical reconstruction and volumetric segmentation of all three
data sets were performed with the FreeSurfer image analysis suite
version 5.3 (“recon-all”), which is documented and freely available
for download online (http://surfer.nmr.mgh.harvard.edu).

Briefly, this processing includes removal of non-brain
tissue using a hybrid watershed/surface deformation procedure
(30), automated Talairach transformation, segmentation of
Frontiers in Psychiatry | www.frontiersin.org 3
subcortical white matter and deep gray matter volumetric
structures (including hippocampus, amygdala, caudate, putamen,
ventricles) (31–33), intensity normalization (34), tessellation of the
gray matter white matter boundary, automated topology
correction (35, 36), and surface deformation following intensity
gradients to optimally place the gray/white and gray/cerebrospinal
fluid borders at the location where the greatest shift in intensity
defines the transition to the other tissue class (37–39).

Once the cortical models are complete, individual images are
being registered to a spherical atlas which is based on individual
cortical folding patterns to match cortical geometry across
subjects (40), and the cerebral cortex is being parcelled into 68
units with respect to gyral and sulcal structure (41, 42). Cortical
white matter, i.e. white matter up to 5mm below the gray matter
boundary, is also being parcelled into 68 units by assigning each
white matter voxel the label of the closest cortical voxel (43).
FreeSurfer also gives an estimate of the total intracranial volume
(eTIV) which was not used to train the AD classifier but as a
covariate in subsequent statistical analyses.

Although being part of the standard FreeSurfer output several
brain regions were excluded from the analyses. The 5th ventricle
was excluded because it was not detected in all scan (zero
volume). In addition, the brain stem and optic chiasm were
excluded as well. In total, 169 out of 172 brain regions of gray
matter, white matter, and the ventricular system were considered
(see Figure 1). The complete list of regions can be found in the
Supplementary Material.

Alzheimer’s Disease Classifier
Based on the ADNI-1 screening sample a binary classifier was
trained with diagnoses as dependent variable. In order to
minimize the influence of image segmentation errors on the
classifier, we performed an additional statistical quality control of
each feature. More specifically, we removed all scans with brain
FIGURE 1 | In total, 169 features of gray matter, white matter, and the ventricular system were used for training a binary classifier which distinguishes between
individuals with Alzheimer’s disease and cognitively normal ones.
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measurements deviating more than four standard deviations
from the mean value after adjusting for age, sex, age·sex, eTIV,
and diagnosis (N = 39). All features were standardized to zero
mean and unit variance. We then used L2-penalized (ridge)
logistic regression to train the binary classifier which optimally
separates individuals with AD from CN (44). The AD score was
defined as the linear predictors of the logistic model, i.e. it is
given by log[p/(1-p)] with p denoting the probability of
having AD.

Prediction of AD scores in OASIS-1 and SHIP-Trend were
based on a classifier trained on the whole ADNI-1 sample. The
corresponding model coefficients can be found in the supplement.
The penalization parameter l was selected from the set {2-8, 2-7,
…, 2} by 20-fold cross-validation with 20 repetitions (l = 0.125)
anduni-modality of the tuning curve was checked by visual
inspection (see Supplementary Material). In order to assess the
classification accuracy within ADNI-1 we used leave-one-out
cross-validation, i.e. each individual’s AD score was calculated
using a model trained on all others. The optimal l was estimated
within a second loop in order to strictly separate training and test
data (again by 20-fold cross-validation with 20 repetitions).

Voxel-Based Morphometry
For SHIP-Trend we additionally performed voxel-based
morphometry (VBM) analyses with SPM12 (Welcome Trust
Centre for Neuroimaging, University College London) and
CAT12 [developed by Christian Gaser, University of Jena,
Germany, http://www.neuro.uni-jena.de, e.g. (45)] in order to
map the contribution of distinct brain regions to the AD score.

All images were bias-corrected, spatially normalized by using
the high-dimensional DARTEL normalization, segmented into
the different tissue classes, modulated for non-linear warping
and affine transformations, and smoothed by a Gaussian kernel
of 8 mm FWHM. The homogeneity of gray matter images was
checked using the covariance structure of each image with all
other images (outliers ≥3 standard deviations from the mean), as
implemented in the check data quality function in the CAT12
toolbox. To mask irrelevant brain areas of the smoothed gray and
white matter segmentations we used the Masking Toolbox from
Gerard Ridgway to define explicit masks for the gray and white
matter VBM analyses. Specifically, we used the MATLAB script
“make_majority_mask.m” to generate a gray matter mask with
an absolute threshold of 0.1 and a consensus fraction of 80% and
a white matter mask with an absolute threshold of 0.2 and a
consensus fraction of 90%.

The statistical threshold for significant voxels was set to a family-
wise error (FWE) corrected peak-level p-values Ppeak,FWE < 0.025 as
we conducted a two-sided test and looked at positive and negative
associations with the FSAD score while correcting for age, sex,
age·sex, and total intracranial volume. Again, age was modeled by
restricted cubic splines with four knots located at the 0.05, 0.33, 0.66,
and 0.95 age quantiles.

Statistical Analysis
All statistical analyses were performed with R 3.6 (46). The
classifier was implemented using the glmnet package (47).
Association analyses of the AD score with the basic covariates
Frontiers in Psychiatry | www.frontiersin.org 4
age, sex, age·sex, eTIV, and diagnosis were performed by ordinary
least-squares multivariable regression. For SHIP-Trend we used
restricted cubic splines (48) with four knots located at the 0.05,
0.33, 0.66, and 0.95 quantile in order to account for the non-
linear dependency of the AD score on chronological age. Effects
of single variables were assessed either by t-tests with robust
variance estimates or ANOVA of type 2.
RESULTS

Prior to training the AD classifier we checked the ADNI-1 screening
sample for possible imbalances with respect to age, sex, and
intracranial volume. We did not find significant differences
between patients and controls with respect to age (t = -0.55, P =
0.58), sex (Fisher’s Exact Test, P = 0.84), and estimated intracranial
volume (t = 0.15, P = 0.88).

Prediction of Diagnoses in ADNI-1 and
OASIS-1 Based on the AD Score
At first, classification performance within the ADNI-1 screening
sample was investigated. Classification accuracy was assessed by
leave-one-out cross-validation, i.e. each individual’s AD score
was calculated using a model trained on all others. The resulting
scores are shown in Figure 2A. Individuals with an AD score
larger than zero and smaller than zero were classified as AD and
CN, respectively, and these classifications were compared with
the known diagnoses. The overall accuracy was 89% with the
95% confidence interval (CI) (85.7%, 92.2%). Sensitivity (true
positive rate) and specificity (true negative rate) was 91% and
87%, respectively. The receiver operating characteristic (ROC)
curves were obtained by systematic variation of the classification
threshold and area under the curve (AUC) was calculated as 95%
with 95% CI (93.5%, 97.6%).

Using the ADNI-1 sample a model was trained and AD scores
were calculated for the OASIS-1 sample. The resulting scores are
shown in Figure 2B, left panel. Again, individuals with an AD
score larger than zero and smaller than zero were classified as AD
and CN, respectively. The overall accuracy was 87% with 95% CI
(83.2%, 90.0%). Sensitivity and specificity were 89% and 79%,
respectively. The AUC was calculated as 93% with 95% CI
(90.0%, 95.7%).

Association Analyses in ADNI-1 and
OASIS-1
We performed association analyses of the AD score with the basic
covariates diagnosis, age, sex, age·sex, and intracranial volume by
means of multivariable regression. For the ADNI-1 sample the
percentage of variation explained (R2) was 72%. As expected, the
AD score was significantly larger in those diagnosed with AD (t =
30, P < 2·10-16, see Figure 2A). In addition, there was a significant
effect of age (t = 2.5, P = 0.012). No significant effects of sex (t = 1.1,
P = 0.29), age·sex (t = -0.89, P = 0.37), or intracranial volume (t = 1.4,
P = 0.17) were found.

For the OASIS-1 sample the multivariable regression of the AD
score yielded R2 = 55%. Again, we found a significant effect of
diagnosis of AD (t = 9.7, P < 2·10-16), and age (t = 8.5, P = 4.9·10-16).
January 2020 | Volume 10 | Article 953
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In addition, there was a significant effect of sex with females having
slightly larger AD scores (t = 2.2, P = 0.025). No significant effects of
age·sex (t = -0.75, P = 0.45), or intracranial volume (t = 0.55, P =
0.57) were found.

When analyzing the OASIS-1 subsample with MMSE scores
available (N = 235, 100 AD, 135 CN) we again found significant
effects of diagnosis (t = 9.3, P < 2.2·10-16), and age (t = 5.7, P =
3.9·10-8). No significant effects were found for sex (t = 0.97, P =
0.33), age·sex (t = -0.61, P = 0.54), and intracranial volume (t =
0.80, P = 0.42). The total R2 was 45%. Adding the MMSE score to
the model increased the R2 to 51% and the corresponding
marginal effect was significant (t = -4.1, P = 4.9·10-5, Cohen’s
f2 = 0.13), i.e. on average individuals with low MMSE scores had
larger AD scores when correcting for all basic covariates
including diagnosis.

Prediction of Diagnoses Using Both the
AD Score and the MMSE Score in OASIS-1
In order to compare the diagnostic utility of the AD score with the
MMSE we aimed to predict diagnoses in the OASIS-1 subsample
with MMSE scores available. For this we used standard logistic
regression models with different sets of predictors and compared
the corresponding classification accuracies. Note that we did not
separate the training and test set since we aimed to compare
different sets of predictors rather than obtaining objective accuracy
estimates. Using a basic model containing age, sex, and its
interaction, we were able to predict AD diagnoses with an
accuracy of 61% (AUC = 70%). Adding either the MMSE score
or the AD score improved the accuracy to 82% (AUC = 91%) and
82% (AUC = 90%), respectively. When adding both the MMSE
score and the AD score the resulting accuracy improved even
further to 87% (AUC = 94%). The accuracy of the combined
model was significantly better than one of the two previous ones
(c12 = 29, P = 8·10-8; c12 = 53, P = 3·10-13).

General Population Data From the SHIP
Sample
AD scores were calculated for the SHIP-Trend sample (N = 1973,
see Table 1) using a model trained on the whole ADNI-1
screening sample. Again, we performed association analyses of
the AD score with the basic covariates age, sex, age·sex, and
Frontiers in Psychiatry | www.frontiersin.org 5
intracranial volume by means of multivariable regression. Since
the AD score was clearly non-linearly related to age (see
Figure 3A) we decided to include age by restricted cubic
splines. ANOVA of type 2 was used to assess the effects of
each variable. We found significant associations with age (F =
170, P < 2·10-16) and age·sex (F = 3.7, P = 0.010). No significant
effects of sex (F = 0.40, P = 0.53), or intracranial volume (t = 2.5,
P = 0.11) were found. The R2 was 22%.

The AD score was significantly associated with the total WLR
score (F = 4.1, P = 0.037, Cohen’s f2 = 0.009, adjusted for all basic
covariates, see Figure 3B). Additional analyses showed that the
AD score was more strongly associated with the immediate WLR
score (F = 4.9, P = 0.026) than the delayed WLR recall (F = 1.8,
P = 0.17).

In order to map the contributions of distinct brain regions to
the AD score in greater detail we performed VBM analyses with
both gray and white matter segmentations in SHIP-Trend. The
results are visualized in Figure 4. Using the gray matter
segmentation we found a large cluster that was negatively
associated with the AD score. The peak voxel was located in
the left medial temporal gyrus. The cluster stretched over the
medial temporal gyrus, the inferior temporal gyrus, the fusiform
gyrus, and the precuneus in both hemispheres, among others.
Using the white matter segmentation we also found a large
cluster that was negatively associated with the AD score. It
comprised the medial temporal lobe, the periventricular area,
and the corpus callosum, among others. Interestingly, it also
includes a large portion of the brain stem which was not included
in the feature set used for constructing the AD score.
DISCUSSION

In this study, we developed a structural MR imaging-based
biomarker for the in vivo detection of Alzheimer’s disease. It
was based on 169 regional brain features of gray matter, white
matter, and the ventricular system derived from the image
processing pipeline FreeSurfer. L2-penalized logistic regression
was used to define a binary classifier which optimally separates
individuals with AD from cognitively normal ones. For the
ADNI-1 screening sample the cross-validated classification
FIGURE 2 | The AD score differentiated well individuals with Alzheimer’s disease from cognitively normal ones both in ADNI-1 (A) and OASIS-1 (B). Moreover, it was
significantly associated with cognitive functioning as assessed by the Mini-Mental State Examination within both groups in OASIS-1.
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accuracy was 89% and AUC was 95%. These results are on par
with other classification studies involving structural MR images
(17). However, most classification studies were based on only one
sample. Here, the classifier was trained using the ADNI-1
screening sample and AD scores were predicted in the
independent sample OASIS-1. We found our classifier to also
perform well with an accuracy of 87% and AUC being 93%.

For obtaining regional brain features we used the freely
available image segmentation pipeline FreeSurfer. FreeSurfer
has been shown to give reliable volumetric estimates
independent of scanner platforms and protocols with the
exception of the magnetic field strength which has been found
to introduce additional bias (49). In our study, however, all scans
were acquired with 1.5T. Since FreeSurfer is available under
an open source license for the GNU/Linux operating system it
can be run within typical high performance computing
environments with little to no additional adaptations.
This facilitates the application to large imaging data sets
which are being used increasingly for the investigation of
neurodegenerative disorders. Moreover, future improvements
of the image processing algorithms used within FreeSurfer will
likely improve any derived biomarkers, too.

On the other hand there is strong evidence for at least three
distinct subtypes of AD with respect to regional brain atrophy
(50, 51). Hence, it is unclear whether further improvements of
the classification accuracy of structural MRI markers with
respect a single diagnostic category (AD diagnosis) can be
expected. Instead, the relation of MRI markers measures and
measures of cognitive functioning, which ultimately impairs the
affected individual’s quality of life, seems to be more appropriate.
Here, we studied the association of the AD score with MMSE
scores in a subsample of OASIS-1. We found a significant
association after correcting for diagnosis, age, sex, age·sex, and
total intracranial volume (Cohen’s f2 = 0.13, see Figure 2B). The
AD score was associated with cognitive functioning in AD
Frontiers in Psychiatry | www.frontiersin.org 6
patients (adjusted for age, sex, and intracranial volume) which
indicates it to be a measure of the progression of AD.
Interestingly, it was also associated with the MMSE in
cognitive normal individuals after correcting for age, sex, and
intracranial volume, indicating that it captures subclinical
pathology (atrophy), too.

This was supported by the association analyses in the general
population sample SHIP-Trend where we found the AD score to
be significantly associated with the WLR consisting of an
immediate and a delayed recall (again after correcting for age,
sex, age·sex, and total intracranial volume, Cohen’s f2 = 0.009).
This association was mainly driven by the immediate recall.
Indeed, there seems to be a deficit in semantic memory years
before AD diagnosis while AD patients show impairments in
multiple cognitive domains (52). Such a deficit in semantic
memory could explain the association with the WLR
performance in SHIP-Trend.

However, the association between the AD score and cognitive
functioning in non-demented individuals could also be partially
driven by other psychiatric diseases. One example for this is
depression which is known to be associated with decreased
hippocampal volume and impaired memory. Since depression
has a much higher life-time prevalence than AD it is potentially
highly relevant for population-based studies. Whether the AD
score proposed here is indeed associated with a specific profile of
cognitive dysfunction in non-demented individuals needs to be
investigated in future studies.

One limitation of our method is that AD scores of single
individuals can only be interpreted within populations after
adjusting for confounding variables like age. In all data sets
the AD score was positively associated with age. In SHIP-Trend
this association was non-linear with the slope increasing around
the age of 60 (see Figure 3A). However, this should not be
interpreted as progression of some sort of AD-related subclinical
pathology, but rather statistical artefact of the spatial overlap of
FIGURE 3 | AD scores for the SHIP-Trend sample plotted against chronological age (A) and the overall word list recall score (B).
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general age-related atrophy and AD-related atrophy. Even if the
model coefficients of the AD classifier were randomly drawn
there would still be a significant association of the resulting
AD score with chronological age. Since age is a potential
confounding variable thorough adjustment of the analyses is
needed. Most of the time this requires non-linear modelling with
polynomials or splines.

In summary, our proposed AD score well differentiated
between patients and healthy controls in an independent test
sample. It was associated with measures of cognitive functioning
both in a patient sample and a general population sample. Thus,
our approach might be useful for defining robust MR-based
biomarkers for other neurodegenerative diseases, too.
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