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Background: Abnormalities of functional and structural connectivity in the amygdala-
prefrontal circuit which involved with emotion processing have been implicated in adults
with major depressive disorder (MDD). Adolescent MDD may have severer dysfunction of
emotion processing than adult MDD. In this study, we used resting-state functional
magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) to examine the
potential functional and structural connectivity abnormalities within amygdala-prefrontal
circuit in first-episode medication-naïve adolescents with MDD.

Methods: Rs-fMRI and DTI data were acquired from 36 first-episode medication-naïve
MDD adolescents and 37 healthy controls (HC). Functional connectivity between
amygdala and the prefrontal cortex (PFC) and fractional anisotropy (FA) values of the
uncinate fasciculus (UF) which connecting amygdala and PFC were compared between
the MDD and HC groups. The correlation between the FA value of UF and the strength of
the functional connectivity in the PFC showing significant differences between the two
groups was identified.

Results: Compared with the HC group, decreased functional connectivity between left
amygdala and left ventral PFC was detected in the adolescent MDD group. FA values
were significant lower in the left UF within the adolescent MDD group compared to the HC
group. There was no significant correlation between the UF and FA, and the strength of
functional connectivity within the adolescent MDD group.

Conclusions: First-episode medication-naïve adolescent MDD showed decreased
functional and structural connectivity in the amygdala-prefrontal circuit. These findings
suggest that both functional and structural abnormalities of the amygdala-prefrontal circuit
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may present in the early onset of adolescent MDD and play an important role in the
neuropathophysiology of adolescent MDD.
Keywords: adolescent major depressive disorder, functional connectivity, magnetic resonance imaging, diffusion
tensor imaging, amygdala, ventral prefrontal cortex
INTRODUCTION

Major depressive disorder (MDD) is characterized by emotional
dysregulation, implicating abnormalities of frontal-limbic neural
circuits involved in emotional processing as the core feature.
Convergent studies provide consistent evidence for functional
and structural abnormalities in the prefrontal cortex (PFC) and
amygdala, the key components of frontal-limbic neural circuits
in adult MDD. Adolescent MDD is associated with the
prominence of irritability, mood reactivity, and fluctuating
symptoms (1), reflecting possible severer emotional processing
dysfunction than adult MDD. Furthermore, as its strong links
with recurrence later in life (2), investigation of depression in
adolescence may help us to further understand the role of
abnormal developmental process leading to adult MDD.

Dysfunction of amygdala-prefrontal circuits has been
implicated in MDD through functional magnetic resonance
imaging (fMRI) . Hyperact ivat ion of amygdala and
hypoactivation of PFC were shown in task-related fMRI
studies within adult MDD, as well as adolescent MDD.
Recently, resting-state fMRI (rs-fMRI) was used to investigate
resting state functional connectivity (rsFC), the correlation of
low frequency blood oxygen level-dependent signal fluctuations
between brain regions in MDD (3). Our previous study
demonstrated decreased amygdala-PFC functional connectivity
in adult MDD (4). Other researchers also reported similar
findings (5, 6), suggesting that dysfunction of these circuits
may play an important role in the neuropathophysiology of
MDD. Correspondingly, few studies detected functional
connectivity between amygdala and other brain regions in
adolescent MDD. Connolly et al’s study reported decreased
amygdala-dorsolateral prefrontal cortex (DLPFC) functional
connectivity and amygdala-ventromedial prefrontal cortex
(VMPFC) functional connectivity in adolescent MDD patients
(7). Cullen et al’s two studies failed to find amygdala-PFC
functional connectivity abnormalities, but find decreased
functional connectivity in amygdala-limbic networks and
anterior cingulate cortex (ACC)-based networks (8, 9). Luking
et al.’s another study reported reduced amygdala functional
cortex; AC–PC, anterior–posterior
iffusion tensor imaging; FA, fractional
onance imaging; HAMD-17, The 17-
, healthy control subjects; KSADS-PL,
hizophrenia for School-Age Children;
ontreal Neurological Institute; PFC,

fMRI; rsFC, resting state functional
C,ventral prefrontal cortex.
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connectivity with dorsal frontal/parietal and limbic regions in
children with MDD history (10). Taken together, inconsistent
findings suggest that functional connectivity of amygdala-related
circuits need to be further investigated in adolescent MDD.

As white matter fibers structural connecting brain regions
into neural circuits, disconnection of white matter fibers may
provide the structural basis of functional connectivity
abnormalities in the brain (11). Diffusion tensor imaging (DTI)
is a MRI technique for detecting white matter microstructure
integrity in vivo. Fractional anisotropy (FA) which measures the
principal directionality of water diffusion is the commonly used
parameter to assess whiter matter integrity in DTI studies.
Decreased FA values were detected in the uncinate fasciculus,
the superior longitudinal fasciculus, the cingulum, the corpus
callosum (12), the genu and UF (13) in adult MDD, indicating
abnormalities of white matter fiber integrity. In the recent studies
of adolescent MDD, Cullen et al. reported lower FA in the tract
connecting subgenual ACC to amygdala (14), Bessette et al.
reported lower FA in corpus callosum, midbrain white matter
tracts, and corticospinal tracts (15), while Aghajani et al. reported
lower FA in the body of the corpus callosum, as well as higher FA in
the uncinate fasciculus (16), Taken together, these findings support
the hypothesis that white matter deficits of frontal-limbic neural
circuits may present in the early stage of depression.

The relationship between structural and functional
connectivity has been noticed. Kim et al. reported a positive
relationship between amygdala reactivity and white matter
integrity of the uncinate fasciculus in healthy controls,
suggesting the relationship between functional and structural
connectivity in amygdala-prefrontal circuits (17). Furthermore,
negative relationship between amygdala volume and activity
during emotional processing tasks in MDD (18). The positive
correlations between FA values of left UF and resting state
functional connectivity of the left vlPFC-amygdala and the left
vlPFC-hippocampus in late life depression (19). One previous
study reported that amygdala volume changes is negative to the
age of on set, and younger MDD adults (< 30 years old) show
more abnormal FC changes in left amygdala, while older MDD
adults (≥30 years old) are in right amygdala (20). However, the
relationship between functional and structural connectivity in
adolescent MDD is not fully explored. Hence, we combined rs-
fMRI and DTI in the current study to examine the functional and
structural connectivity and their relationship within amygdala-
prefrontal circuits in first-episode medication-naïve MDD
adolescents. In our hypothesis, functional and structural
connectivity abnormalities would be detected between amygdala
and PFC within adolescent MDD, as well as an association between
the functional and structural connectivity in this circuitry.
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MATERIALS AND METHODS

Participants
We recruited 36 medication-naïve adolescent outpatients with
MDD from the outpatient clinic of the Department of Psychiatry
and 37 healthy control subjects (HC) matched for sex, age and
education by advertisements in the Frist Affiliated Hospital of
China Medical University. A trained psychiatrist individually
diagnosed all participants using the Schedule for Affective
Disorders and Schizophrenia for School-Age Children
(KSADS-PL). All MDD patients met the following inclusion
criteria: fulfilling KSADS-PL criteria for MDD; first depressive
episode; onset age between 13 and 17; no comorbid diagnosis of
other affective and psychotic disorders; We used the 17-item
Hamilton Depression Rating Scale (HAMD-17) (21) to score the
severity of depression. All HC adolescents were confirmed the
absence of psychiatric disorders. Any HC was excluded if he/she
had any family history of psychiatric disorders in their first- or
second-degree relatives. Any participant with the following
additional criteria was excluded: history of head injury or
neurological disorder; history of drug abuse or dependence;
contraindications for MRI. All participants were scanned
within 24 h of initial contact, and rated on the HAMD-17 at
the time of scanning.

The study was approved by the Institutional Review Board of
the China Medical University. All participants and their parent/
legal guardian received a detailed description of the study, after
that, they provided written informed consent to make sure they
fully understand and agree their involvement of the study.

Mri Data Acquisition
A GE Signa HDX 3.0T MRI scanner (General Electric,
Milwaukee, USA) with a standard head coil at the First
Affiliated Hospital of China Medical University was used to
perform the magnetic resonance imaging scan. Restraining foam
pads and ear plugs were used for each participant to minimize
the head motion and reduce the noise interference during the
scan. Participants were asked to remain awake throughout the
scan and keep their eyes closed. We used a gradient-echo planar
imaging sequence to collect the rs-fMRI data with the following
scan parameters: TR 2,000 ms, TE 30ms, 35 contiguous axial
slices, 3 mm thickness, without gap, matrix 64 × 64, FOV 240 ×
240mm2, flip angle 90°. We used a spin-echo planar imaging
sequence to collect the DTI data with the following scan
parameters: 25 non-collinear directions, b = 1,000 s/mm2, TR
17,000 ms, TE 85.4 ms, 65 contiguous axial slices, 2 mm
thickness, without gap, imaging matrix 120 × 120, FOV = 240
× 240 mm2.

Rs-fMRI Data Processing
We used Resting-State fMRI Data Analysis Toolkit (REST) with
Statistical Parametric Mapping 8 (SPM8) to processed the rs-
fMRI data. The first 10 volumes of scanned data of each
participant were deleted due to magnetic saturation effects. The
remaining images were preprocessed with the following steps:
First, slice timing and head motion correction: head motion
parameters were computed by estimating translation in each
Frontiers in Psychiatry | www.frontiersin.org 3
direction and the angular rotation about each axis for each
volume. The rs-fMRI data was excluded if their head motion
was >2 mm maximum displacement in any of the x, y, or z
directions or 2° of any angular motion throughout the course of
the scan (no participants were excluded). Second, spatial
normalization image to the standard Montreal Neurological
Institute (MNI) space and resampled voxel size into 3 × 3 × 3
mm3 voxels then smoothing with a Gaussian filter of 6 mm full-
width at half-maximum (FWHM). Then REST software was
used to remove linear drift through linear regression and
temporal band-pass filtering (0.01–0.08 Hz) to reduce the
effects of low-frequency drifts and physiological high-frequency
noise. Linear regression of head motion parameters, global mean
signal, white matter signal and cerebrospinal fluid signal was
performed to remove the effects of the nuisance covariates.

The left and right amygdala ROIs were defined separately
according to the automated anatomical labeling (AAL) template
contained in REST (22). The time course for all voxels of each
ROI were averaged to calculate the mean time course for each
amygdala ROI. The time course of each amygdala ROI was then
correlated with the time course of each pixel in the brain, resulted
with a correlation map for each subject that contained the
correlation coefficient for each voxel with that of the amygdala
ROI. The resulting correlation coefficients were transformed into
z-scores. Subject-specific maps of resting state correlations to
each amygdala ROI were created.

DTI Data Processing
We processed DTI data using the PANDA toolbox (23) in FSL
diffusion toolkit and MRIcron. DICOM files were first converted
into NIfTI images, then estimate the brain mask, crop images,
correct for the eddy-current effect, average acquisitions, and
calculate DTI metrics. Finally, diffusion metrics were produced
ready for statistical analysis. The individual diffusion metric
images were transformed from native space into a standard
Montreal Neurological Institute (MNI) space (voxel size
1mm×1mm×1mm3) via spatial normalization. The ICBM-
DTI-81 WM labels atlas in the standard space allow for
parcellation of the entire white matter into multiple regions of
interest (ROI) (24). PANDA toolbox was used to calculate the
regional diffusion metrics by averaging the values within each
region of the WM atlases. These resultant ROI-based data was
statistically analyzed with SPSS and other statistical packages. In
our study, we selected left and right uncinate fasciculus (UF) as
the ROIs.

Statistical Analysis
We used the independent two-sample t tests and c2 tests
compare demographic data and HAMD scores between
the MDD and HC groups with SPSS 22.0. Two-tailed values
of P < 0.05 were considered statistically significant.

The subject-specific maps of resting state correlations from
the amygdala to all brain voxels of rs-fMRI data were combined
across subjects within the MDD group and within the HC group.
With age as covariate, Voxel-based 1-sample t-tests were used to
produce group whole-brain composite maps. Then we created
the contrast maps to assess between-group differences using
February 2020 | Volume 10 | Article 983
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voxel-based 2-sample (MDD vs. HC) t-tests. The contrast maps
were corrected for multiple comparisons using Monte Carlo
simulation within the PFC which was our hypothesized region.
We defined the PFC ROI including 20 labels of AAL template,
corresponding to Brodmann areas (BA) 9, 10, 11, 12, 24, 25, 32,
44, 45, 46, 47. The contrast map threshold was set at p < 0.05 for
each voxel, with cluster size of at least 32 voxels (864mm3),
corresponding to the p < 0.05 corrected by AlphaSim.

We used two sample t-tests to compare group differences in
the FA values separately for the atlas-based ROIs in SPSS. Two-
tailed values of p < 0.05 were considered statistically significant.

To further evaluate the relationship between functional and
structural connectivity, we investigated the correlations in MDD
and HC participants separately between the FA values of UF and
the strength of the functional connectivity in the regions showing
significant differences between the two groups. Pearson’s
correlation analysis was used, and statistical significance was
set at 0.05 (two-tailed).
RESULTS

Demographic and Clinical Scales
There were no significant differences in age (p = 0.972), gender
(p = 0.236),or education (p = 0.228) between the adolescent
MDD and the HC groups. MDD adolescents had significantly
higher HAMD scores than the HC (p < 0.001, Table 1).

Between-Group Differences in rsFC
and DTI
With age as covariant We found significantly decreased left
ventral PFC (VPFC, BA 47) rsFC from the left amygdala in the
adolescent MDD group, compared with the HC group [peak
MNI coordinates of the left VPFC region: x = -35, y = 21, z = -11,
45 voxels (1215mm3), T = 3.53] (Figure 1, Table 2). This finding
correspond to a corrected P < 0.05 by AlphaSim correction.
Compared with the HC group, the MDD group showed no
significant region in rsFC between the right amygdala and
PFC regions.

Compared with healthy controls, MDD group had significant
decreased FA values in the left UF. There were no significant
findings of right UF in MDD relative to controls (Table 3).

Correlation Between FA and the Strength
of Functional Connectivity
In post-hoc correlation analyses, no significant association was
detected between FA value of the left UF and the strength of rsFC
of VPFC from the left amygdala in the MDD group (r = -0.377,
P = 0.058). There was also no significant correlation in the HC
group (r = -0.118, P = 0.574).
DISCUSSION

In this study, we reported decreased rsFC between left amygdala
and left VPFC in adolescent MDD compared to HC.
Frontiers in Psychiatry | www.frontiersin.org 4
Furthermore, deficits of white matter integrity in the left
uncinate fasciculus, fiber tracts connecting VPFC to temporal
regions (including amygdala and hippocampus) were detected in
adolescent MDD compared to HC. To our knowledge, this is the
first study using differential MRI methods to explore functional
and structural connectivity abnormalities in the amygdala-
prefrontal circuits within adolescent MDD. Our findings
provide primary evidence implicating abnormalities of
amygdala-prefrontal circuits as the key components in the
pathophysiology of adolescent MDD.

Our results of decreased rsFC between left amygdala and left
VPFC in adolescent MDD (age 13–17) compared to HC are
consistent with our previous findings of both rs-fMRI and task-
fMRI in adult MDD (age 18–45) (4, 25). Amygdala-VPFC circuits
play an important role in emotion processing (26). Dysfunction
of amygdala and ventral frontal regions including VPFC and
subgenual ACC were widely reported in adult MDD. Recently,
several fMRI studies with adolescent MDD also focused on the
function of amygdala and related circuits mediating emotion
processing. Hyperactivation of amygdala and ACC were shown
during facial-emotion matching task within adolescent MDD
(27). In rs-fMRI studies, Cullen et al. reported decreased
functional connectivity in the subgenual ACC-based network
(8) and amygdala-hippocampus/brainstem circuits (9), but failed
to find amygdala-frontal functional connectivity abnormalities.
Taken together, our findings suggest that deficits of amygdala-
prefrontal functional connectivity may emerge in the early onset
of MDD and reflect the emotional dysfunction of adolescent
MDD as well as adult MDD.

In this study, adolescents with MDD showed decreased FA
values in the left UF compared to HC. The UF connects the
amygdala with inferior frontal regions including VPFC and
ACC, which are key components of the frontal-limbic neural
circuits involved in emotional processing (26, 28). Dysfunction
of the amygdala-VPFC circuit have proved to play an important
role in the pathophysiology of adolescent MDD (8, 27, 29, 30).
The prior study with adult MDD have demonstrated decreased
FA values in the dorsal part of the UF (31). In the recent DTI
studies with adolescent MDD, Cullen et al. reported reduced FA
TABLE 1 | Demographic and clinical data of participants.

Characteristic MDD HC Statistic p-value

Number 36 37
Age (year,
mean ± SD)

15.6 ± 1.27 15.6 ± 1.30 t = 0.03 0.972

Gender (male/
female)

12/24 18/19 c2 = 1.768 0.236

Education (year,
mean ± SD)

9.86 ± 1.46 10.03 ± 1.63 t = 1.217 0.228

HAMD-17 score
(mean ± SD)

23.19 ± 7.54 1.41 ± 1.64 t = 17.161 0.000*

Illness duration (month,
mean ± SD)

10.11 ± 10.61 NA NA NA
Feb
ruary 2020 | Vo
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values in the right UF (14), while LeWinn et al. reported lower
FA and higher RD in bilateral UF (32). As in the medication-
naïve adolescent MDD sample of our study, the current findings
of decreased FA values in the left UF provide preliminary
evidence that abnormal white matter structural integrity in
amygdala-VPFC circuit may be present early in the
unmedicated adolescent MDD and play an important role in
the pathophysiology of adolescent MDD.
Frontiers in Psychiatry | www.frontiersin.org 5
The major strength of our study is that multiple MRI methods
(rs-fMRI and DTI) were used to detect functional connectivity,
structural connectivity and their relationship in the same
adolescent MDD sample. Our present results of decreased
functional connectivity within amygdala-VPFC circuits as well
as reduced structural connectivity between amygdala and VPFC
in adolescent MDD suggest the potential association between
functional and structural connectivity. Our explanation is that
TABLE 2 | Regions with decreased rsFC from the amygdala in subjects with
major depressive disorder compared to health control subjects.

Regions BA Peak MNI coordinate Voxel
size

t value P value

X Y Z

Left
VPFC

47 -35 21 -11 45 3.53 <0.05
rsFC, Resting state functional connectivity.
VPFC, ventral prefrontal cortex.
BA, Brodmann areas.
MNI, Montreal Neurological Institute.
TABLE 3 | Two sample t test results for FA values of left and right UF.

Regions FA (mean ± SD) t value P value

MDD (n = 36) HC(n = 37)

Left UF 0.382 ± 0.02 0.392 ± 0.02 2.059 0.043*

Right UF 0.388 ± 0.03 0.392 ± 0.02 0.678 0.500
February 2
020 | Volu
me 10 | Ar
*t < 0.05UF, uncinate fasciculus.
SD, standard deviation.
MDD, major depression disorder.
HC, healthy controls.
FIGURE 1 | The images (MNI coordinate x = -35mm, y = 21mm, z = -11mm) display the regions in left ventral prefrontal cortex (VPFC) that show decreased
functional connectivity from the left amygdala in adolescents with major depressive disorder (MDD), compared to healthy controls (HC) at rest. The color bar
represents the range of T values. L, left brain; R, right brain.
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deficits of white matter integrity in the UF might contribute to
the decrease of functional connectivity between amygdala and
VPFC. We speculate that early abnormalities of brain
development may be present in some adolescent MDD patients
early in life, even before illness episodes. The unmaturation of
brain development in adolescent may cause the inadequate
compensatory mechanism, hence lead to the decrease of both
functional and structural connectivity in adolescent MDD. The
association between functional and structural disconnectivity in
the amygdala-VPFC circuit may reflect the early onset
mechanism of adolescent MDD, which need to be further
investigated in future longitudinal studies including adolescents
with high-risk of depression.

The limitation of our findings is that as no significant
correlation between strength of functional connectivity and
white matter integrity detected, the direct relationship between
functional and structural connectivity in the amygdala-VPFC
circuit within adolescent is still unclear. Since a borderline
significant correlation was detected in the MDD group, our
speculation is that the relative small sample size may limit our
ability to detect the statistical significance in current study.
Future studies with large sample size is important to further
understand the relationship between functional and structural
connectivity and the neurodevelopmental mechanism of
adolescent MDD.
CONCLUSIONS

Our study present the primary evidence of both functional and
structural connectivity abnormalities of amygdala-VPFC circuit
in the sample offirst-episode medication-naïve adolescent MDD.
The abnormal white matter structural integrity in adolescent
MDD may reflect the unmaturation of early brain development
in adolescent, which may cause the functional dis connectivity in
the same circuit. Both functional and structural abnormalities of
amygdala-VPFC circuit may present in the early onset of
adolescent MDD and play an important role in the
neuropathophysiology of adolescent MDD.
Frontiers in Psychiatry | www.frontiersin.org 6
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