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Schizophrenia is a severe mental disorder with often a chronic course. Neuroimaging
studies report brain abnormalities in both white and gray matter structures. However, the
relationship between microstructural white matter differences and volumetric subcortical
structures is not known. We investigated 30 long-term treated patients with schizophrenia
and schizoaffective disorder (mean age 51.1 ± 7.9 years, mean illness duration 27.6 ± 8.0
years) and 42 healthy controls (mean age 54.1 ± 9.1 years) using 3 T diffusion and
structural magnetic resonance imaging. The free-water imaging method was used to
model the diffusion signal, and subcortical volumes were obtained from FreeSurfer. We
applied multiple linear regression to investigate associations between (i) patient status and
regional white matter microstructure, (ii) medication dose or clinical symptoms on white
matter microstructure in patients, and (iii) for interactions between subcortical volumes
and diagnosis on microstructural white matter regions showing significant patient-control
differences. The patients had significantly decreased free-water corrected fractional
anisotropy (FAt), explained by decreased axial diffusivity and increased radial diffusivity
(RDt) bilaterally in the anterior corona radiata (ACR) and the left anterior limb of the internal
capsule (ALIC) compared to controls. In the fornix, the patients had significantly increased
RDt. In patients, positive symptoms were associated with localized increased free-water
and negative symptoms with localized decreased FAt and increased RDt. There were
significant interactions between patient status and several subcortical structures on white
matter microstructure and the free-water compartment for left ACR and fornix, and limited
to the free-water compartment for right ACR and left ALIC. The Cohen's d effect sizes
were medium to large (0.61 to 1.20, absolute values). The results suggest a specific
pattern of frontal white matter axonal degeneration and demyelination and fornix
demyelination that is attenuated in the presence of larger structures of the limbic
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system in patients with chronic schizophrenia and schizoaffective disorder. Findings
warrant replication in larger samples.
Keywords: psychosis, brain abnormalities, subcortical structures, gray matter, white matter microstructure, free-
water imaging, diffusion tensor imaging, magnetic resonance imaging
INTRODUCTION

Schizophrenia is a severe and often debilitating mental disorder
with largely unknown disease mechanisms. It is well established
that patients with schizophrenia, across different disease states,
demonstrate white matter microstructural (1) and gray matter
structural (2, 3) differences when compared to healthy controls,
as well as progressive differences (4–6) related to the
pathophysiology of the disorder and possibly medication use.

Diffusion magnetic resonance imaging (dMRI) and T1-
weighted structural imaging are two widely used magnetic
resonance imaging (MRI) techniques that are often used to
study schizophrenia. dMRI, using its popular analysis method—
diffusion tensor imaging (DTI) (7)— yields in vivo indirect
measures of white matter microstructure (8) such as fractional
anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD).
The FA measure can decrease both due to axonal degeneration
and demyelination (6, 9), indicated by reduced AD and increased
RD, respectively (8). However, the FA measure may not provide a
good representation of white matter integrity due to several
methodological issues (10), including partial volume effects e.g.
from extracellular water contamination and crossing fibers (8).
The bi-tensor free-water imaging model (11) accounts for
extracellular free-water, yielding improved tissue specificity of
white matter measures compared to the DTI model (11). The
method also provides a free-water fractional volume measure that
is affected by extracellular processes e.g. neuroinflammation,
atrophy, and cellular membrane breakdown (12).

The largest DTI meta-analysis to date showed that patients
with schizophrenia have widespread white matter FA reductions
compared to controls, with regionally more severe differences
with increasing illness duration (1). Cross-sectional free-water
imaging studies in schizophrenia corroborate increasing tissue
change with illness duration; At schizophrenia onset, reports
indicate limited tissue change together with widespread increase
in free-water (13, 14), while with chronicity there is evidence of
widespread tissue changes together with limited free-water
increase (12, 15) when compared to healthy controls. These
findings could indicate a severity gradient and that the temporal
disease state needs to be considered in schizophrenia studies of
microstructural white matter.

Cross-sectional structural MRI studies have shown alterations
of subcortical volumes, including smaller hippocampus and
amygdala, and larger basal ganglia volumes in schizophrenia
patients when compared to healthy controls (2, 16, 17). Further,
enlargement of the putamen and pallidum volumes with age and
illness duration has been reported (2). Studies also report cortical
thinning in patients compared to controls (3, 16, 18, 19), which
g 2
has been linked to microstructural white matter alterations in
patients with schizophrenia as indicated by reduced FA (20, 21).
Recently cortical thinning was also inversely associated with
infracortical white matter anisotropy in adult patients (< 50
years of age) (22). This could indicate patterns of associations
between brain regions that are limited to patients with
schizophrenia. Although a single study have shown increased
mean diffusivity of the left accumbens, and the hippocampus and
thalamus bilaterally, in patients (23), the putative link between
white matter microstructure and subcortical structures
remains understudied.

In the present study we investigated white matter diffusion
properties using the free-water imaging method. Based on prior
free-water imaging studies, we expected microstructural white
matter alterations in patients with chronic schizophrenia and
schizoaffective disorder together with limited evidence of
increased free-water (12, 15), and clinical symptoms to be linked
with microstructural white matter in patients (15). Further, based
on prior studies using the standard DTI method, we hypothesized
that white matter microstructure could be associated with
medication use (24, 25), and that patient white matter
microstructure could be differently associated with volumetric
subcortical measures than in controls, similar to prior cortical
findings (20, 21). The aims of this study were to (i) identify
differences in microstructural white matter diffusion properties
between long-term treated patients with schizophrenia and
schizoaffective disorder, and healthy controls, (ii) investigate
putative associations between medication or clinical symptoms
on white matter microstructure in patients, and (iii) investigate
whether volumetric measures of subcortical brain structures were
associated with observed patient-control differences in white
matter microstructure.
MATERIALS AND METHODS

Study Population
The subject sample consisted of 30 patients [schizophrenia (n =
22), schizoaffective disorder (n = 8)] and 42 controls, recruited
among participants from the Human Brain Informatics Project
(HUBIN) study at the Karolinska Hospital (18, 26), and
investigated between 2011 and 2015. Exclusion criteria for all
participants were age <18 or >70 years, IQ < 70, or previous
severe head injury. All participants received oral and written
information about the study and signed a written informed
consent. The study was approved by the Regional Ethical
Review Board of Stockholm, Sweden (Dnr 2009/1465-31/3),
and was conducted in accordance with the Helsinki declaration.
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Clinical Assessment
Patients and controls were assessed by a psychiatrist (EGJ) using
the Structured Clinical Interview for DSM-III-R axis I disorders
(27). Diagnosis was based on DSM-IV (28). Symptoms were
assessed according to the Scale for the Assessment of Negative
Symptoms (SANS) (29) and the Scale for the Assessment of
Positive Symptoms (SAPS) (30). Psychosocial functioning was
assessed using the split version of the Global Assessment of
Function (GAF-S and GAF-F) scale (31). Age at onset was
defined as the age of first verified positive psychotic symptom
experience and duration of illness was calculated in years from
age at onset to age at MRI. Chlorpromazine equivalent
antipsychotic dose (CPZ) was computed (32).

Data Acquisition
Patients and controls underwent MRI on the same 3 T General
Electric Healthcare Discovery MR750 Sigma scanner (General
Electric Company, Milwaukee, Wisconsin, USA) equipped with
an 8-channel head coil at the Karolinska Institutet and Hospital.
Axial diffusion MRI data were acquired with anterior-to-posterior
phase-encoding direction, 10 b0 volumes and 60 diffusion
weighted volumes with b = 1,000 s/mm2. The scanning
parameters were: 128 × 128 acquisition matrix, repetition time
(TR) = 6.0 s, echo time (TE) = 82.9 ms, field of view = 240 mm,
flip angle = 90° and spatial resolution 0.94 × 0.94 × 2.9 mm3. A
sagittal T1-weighted BRAVO sequence was acquired with TR =
7.9 s, TE = 3.06 s, inversion time (TI) = 450 ms, flip angle = 12°,
field of view = 240 mm and voxel size = 0.94 × 0.94 × 1.2 mm3.
There was no major scanner upgrade or change of instrument
during the study period.

MRI Processing
All dMRI's were processed as follows: Brain masks of the first b0
volume were manually edited to remove non-brain tissue. The
dMRI's were corrected for eddy current induced distortions and
subject head motion using FSLs EDDY (33). We enabled
automatic detection and correction of motion induced signal
dropout (34), previously shown to enhance signal-to-noise ratio
(35). EDDY outputs rotated b-vectors used in subsequent
processing and total per-volume-movement used to calculate
the average motion. Following EDDY correction, a bi-tensor
diffusion model was fitted using a nonlinear regularized fit to
obtain a free-water corrected diffusion tensor representing the
tissue compartment and the fractional volume of an isotropic
free-water compartment (11). From the diffusion tensor, a tissue
specific scalar measurement of fractional anisotropy (FAt) was
derived using FSLs dtifit. FAt depends on two independent
measures, radial diffusivity (RDt) and axial diffusivity (ADt),
and they were derived for an additional level of investigation.
The scalar measurements of each subject were projected onto a
standard FA skeleton using Tract-Based Spatial Statistics (TBSS)
(36). To do so, the FA images were registered to the ENIGMA-
DTI FA template (37) that aligns with the Johns Hopkins
University DTI atlas (38) following the ENIGMA-DTI
processing protocols (http://enigma.ini.usc.edu/protocols/dti-
protocols/). Forty-four regions of interests (ROIs; Table 1)
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were extracted. Further, we derived the standard DTI measures
of AD, RD, and mean diffusivity (MD) and projected them onto
the FA skeleton for an extra level of investigation, as
recommended in a recent review (39).

All T1-weighted MRI scans were processed using FreeSurfer
(40) version 6.0.0. The processing steps include motion
correction, bias field correction, brain extraction, intensity
normalization and automatic Talairach transformation, with
optimized 3 T bias field filtration (41). Subcortical volumes
were obtained through the subcortical segmentation stream
(42), except for the hippocampus and amygdala structures
obtained through joint segmentation in FreeSurfer version
6.0.0, development version (43, 44). The extracted subcortical
structures were: hippocampus, amygdala, thalamus, nucleus
accumbens, caudate, pallidum, putamen and lateral ventricle.

MRI Quality Control
Only dMRI's and volumetric structures passing quality control
were included in the analyses. Initially there were 80 participants
in the study.

All DWIs were visually inspected in three orthogonal views
for severe visible artifacts (45), leading to the exclusion of 4
participants. Additionally, we excluded 4 subjects with an EDDY
estimated average motion above two standard deviations from
the mean. After quality control there were 72 participants in
the study.

All T1-weighted images were visually inspected for
movement and cortical parcellation errors. No participants
needed to be excluded at this stage. The segmentation quality
of the subcortical volumes was assessed by manual inspection of
TABLE 1 | Overview of the investigated white matter regions of interest.

Abbreviation Full name

ACR* Anterior corona radiata
ALIC* Anterior limb of internal capsule
Average Average of diffusion measure
BCC Body of corpus callosum
CC Corpus callosum
CGC* Cingulum
CGH* Cingulum (hippocampal portion)
CR* Corona Radiata
CST* Corticospinal tract
EC* External capsule
FX Fornix
FXST* Fornix stria terminalis
GCC Genu of corpus callosum
IC* Internal capsule
IFO* Inferior fronto occipital fasciculus
PCR* Posterior corona radiata
PLIC* Posterior limb of internal capsule
PTR* Posterior thalamic radiation
RLIC* Retrolenticular part of IC
SCC Splenium of corpus callosum
SCR* Superior corona radiata
SFO* Superior fronto-occipital fasciculus
SLF* Superior longitudinal fasciculus
SS* Sagittal stratum
UNC* Uncinate
Febru
*Bilateral structures.
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outlier volumes (defined as: ≥1.5 times interquartile range).
Outlier volumes were excluded if the segmentation was
inaccurate. This led to the exclusion volumes from four
participants, namely: one volume each for the left amygdala,
left thalamus, left putamen, right putamen, right accumbens, and
right caudate.

Statistical Method
The demographic variables of patients and controls were
compared using c2-test for categorical variables, two-sample t-
test/two-sided Wilcoxon rank-sum test for normally/non-
normally distributed continuous variables. Normality was
assessed using the Shapiro–Wilk's normality test (46).

In the main analyses, we applied multiple linear regression to
assess the effect of patient-control differences on each white
matter ROIs using the lm-function in R (version 3.5.0). For
comparison, we included analyses using both the free-water
imaging and standard DTI method. In patients, we further
investigated free-water imaging metrics for the effects of
medication and clinical symptoms on each ROI using similar
models. For all models we adjusted for sex, age, and
average movement.

We conducted follow-up analyses for ROIs showing
significant patient-control differences to assess potential
associations between white matter microstructure and
volumetric measures of subcortical structures. To do so, we
extended the main model to include a term for the subcortical
volumes and its interaction with patient status. We did not adjust
for the intracranial volume since we investigate diffusion
properties of white matter microstructure as the dependent
variable, and we wanted to capture associations between
diffusion properties and subcortical volumes, without also
adjusting for the intracranial volume.

We computed Cohen's d effect size from the t-statistics for
categorical variables, and via the partial correlation coefficient, r,
for continuous variables (47). We corrected for multiple
comparisons using the false discovery rate (FDR) at a = 0.05
(48) across planned analyses, yielding significance threshold p ≤
0.0109. For follow-up analyses, a separate FDR threshold was
computed at p ≤ 0.0116.
RESULTS

Demographic and Clinical Data
Patients had an average age at onset of 23.5 ± 4.6 years and an
average duration of illness of 27.6 ± 8.0 years. Of the patients,
93.3% received antipsychotic medication (8 first generation, 13
second generation, 7 first and second generation) with an average
CPZ dose of 409.8 ± 325.2 mg. Compared to the controls,
patients had significantly fewer years of education (p =
0.0011), and decreased functioning as assessed by GAF
symptom (p = 6.2e-13) and GAF function (p = 1.4e-13) score.
During diffusion MRI, the patients moved significantly more
than the controls (p = 0.0298). There were no significant
differences in the other clinical or demographic data (Table 2).
Frontiers in Psychiatry | www.frontiersin.org 4
Patient–Control Differences in
Diffusion Properties
FAt was significantly lower in patients compared to controls in the
right anterior corona radiata (ACR) (d = -0.96, p = 0.0002), left
ACR (d = -0.74, p = 0.0040) and left anterior limb of internal
capsule (ALIC) (d = -0.69, p = 0.0069) (Figure 1; Table S1). In
those regions, FAt reductions were driven by significantly lower
ADt (right ACR: d = -0.94, p = 0.0003; left ACR: d = -0.75, p =
0.0035; and left ALIC: d = -0.71, p = 0.0058) and significantly
higher RDt (right ACR: d = 0.94, p = 0.0003; left ACR: d = 0.71,
p = 0.0055; and left ALIC: d = 0.70, p = 0064). Furthermore, the
RDt of the fornix was significantly higher for patients (d = 0.82,
p = 0.0015) without any corresponding significant or nominal-
significant differences in FAt or ADt. There were nonsignificant
patient-control differences in free-water.

For comparison, running the same analysis using the
standard DTI model showed significant differences between
patients and controls only for the right ACR (FA: d = -0.88,
p = 0.0007; RD: d = 0.66, p = 0.0100) (Table S2).
Effects of Medication
Analyses in patients did not show any significant CPZ
medication effects on white matter microstructure (Table S3).
Effects of Clinical Symptoms
Analyses in patients showed that total SAPS scores were
significantly associated with increased free-water on the right
TABLE 2 | Demographics and clinical variables.

Clinical information Patients
(n = 30)

Healthy
Controls
(n = 42)

c2-test/
Wilcoxon
rank sum
test/t-test

p-value

Women, N (%) 8 (26.7) 13 (30.9) 0.02 0.8954
Age (years) 51.1 ± 7.9 54.1 ± 9.1 -1.43 0.1581
Education (years) 12.9 ± 2.2 15.1 ± 3.1 -3.40 0.0011
Handedness (R/L/A)a 21/4/2 37/3/1 2.10 0.3506
AAO (years) 23.5 ± 4.6
DOI at MRI (years) 27.6 ± 8.0
AP Medicated, N (%) 28 (93.3)
FGA/SGA/mixed, N 8/13/7
CPZ (mg) 409.8 ± 325.2
Clinical
measurements
SAPS total 9.2 ± 7.9
SANS total 27.1 ± 13.8
GAF-Sb 46.5 ± 10.0 81.7 ± 9.0 -35.00 6.2e-13
GAF-Fb 45.5 ± 8.9 86.7 ± 7.6 -40.00 1.4e-13
February 202
0 | Volume 11 | A
Significance threshold p < 0.05 indicated in bold. Two-sample t-test/two-sided Wilcoxon
rank-sum test applied for normally/non-normally distributed continuous data. c2-test
applied for categorical data. A, Ambidextrous; AAO, age at onset; AP, antipsychotic
medication; CPZ, chlorpromazine equivalent antipsychotic dose; DOI, duration of illness;
FGA, first generation antipsychotics; GAF, Global Assessment of Functioning; GAF-F,
GAF function scale; GAF-S, GAF symptom scale; L, Left; MRI, magnetic resonance
imaging; Patients, schizophrenia patients; R, Right; SAPS, Scale for the Assessment of
Positive Symptoms; SANS, Scale for the Assessment of Negative Symptoms; SGA,
second generation antipsychotics.
aThree patients and one control had missing data on handedness.
bData not normally distributed.
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posterior thalamic radiation (PTR: d = 1.20, p = 0.0061) and the
left sagittal stratum (SS: d = 1.16, p = 0.0078), respectively (Table
S4). Total SANS scores were for the right ALIC significantly
associated with decreased FAt (d = -1.14, p = 0.0088) and
increased RDt (d = 1.20, p = 0.0061) (Table S5).

Association Between Diffusion Measures
and Subcortical Volumes
In ROIs with significant diagnostic differences, we conducted
follow-up analyses for association between free-water imaging
diffusion metrics and subcortical volumes identified as
significant interaction between subcortical volumes and
patient status.

For the left ACR, the FAt reduction in patients was attenuated
in the presence of larger measures of hippocampus (left: d = 0.77,
Frontiers in Psychiatry | www.frontiersin.org 5
p = 0.0028; right: d = 0.69, p = 0.0068), right amygdala (d = 0.67,
p = 0.0084), and right thalamus (d = 0.68, p = 0.0076). Similarly,
ADt reduction and RDt increase were attenuated for larger left
hippocampus (ADt: d = 0.72, p = 0.0048; RDt: d = -0.7, p =
0.0064) and right thalamus (ADt: d = 0.67, p = 0.0084; RDt: d =
-0.66, p = 0.0098). For the free-water compartment, despite non-
significant main effect of diagnosis, free-water was attenuated in
the presence of larger caudate (left: d = -0.69, p = 0.0069; right: d
= -0.71, p = 0.0057) and left thalamus (d = -0.69, p = 0.0075)
(Figure 2; Table S6).

For the right ACR and left ALIC, despite non-significant
main effect of diagnosis, we found associations between free-
water and caudate in patients; the free-water compartment was
reduced for the right ACR in the presence of larger caudate (left:
d = -0.67, p = 0.0091; right: d = -0.85, p = 0.0012), and for the left
FIGURE 1 | (A) shows ROIs with significant patient-control differences are illustrated on the MNI 152 T1 atlas. (B) shows Cohen's d effect sizes for each ROI and
free-water diffusion metric of patient-control differences, ordered by ascending effect sizes for FAt. ROIs that pass the FDR threshold of p ≤ 0.0109 are indicated with
*. ACR, anterior corona radiata; ADt, FW adjusted axial diffusivity; ALIC, anterior limb of internal capsule; Average, average of diffusion metric; BCC, body of corpus
callosum; CC, corpus callosum; CGC, cingulum; CGH, cingulum hippocampal portion; CR, corona radiata; CST, corticospinal tract; EC, external capsule; FAt, FW
adjusted fractional anisotropy; FW, free-water; FX, fornix; FXST, fornix stria terminalis; GCC, genu of corpus callosum; IC, internal capsule; IFO, inferior fronto occipital
fasciculus; L, Left; PCR, posterior corona radiata; PLIC, posterior limb of internal capsule; PTR, posterior thalamic radiation; R, Right; RDt, FW adjusted Radial
diffusivity; RLIC, retrolenticular part of IC; ROI, region of interest; SCC, splenium of corpus callosum; SCR, superior corona radiata; SFO, superior fronto-occipital
fasciculus; SLF, superior longitudinal fasciculus; SS, sagittal stratum; UNC, uncinate.
February 2020 | Volume 11 | Article 56
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ALIC for larger right caudate (d = -0.65, p = 0.0111) (Figure 3;
Table S7 and S8).

For the fornix, RDt was reduced for larger left nucleus
accumbens (d = -0.73, p = 0.0044) and hippocampus (left: d =
Frontiers in Psychiatry | www.frontiersin.org 6
-0.68, p = 0.0083; right: d = -0.66, p = 0.0100). The free-water
compartment was, despite non-significant main effect of
diagnosis, significantly associated with right ventricle (d =
-0.69, p = 0.0071) in patients (Figure 4; Table S9).
FIGURE 2 | Scatterplots of the left anterior corona radiata with the subcortical structures that have significant interaction with diagnosis. Fitted lines were created
using a generalized additive model. ADt, Free-water adjusted axial diffusivity; ACR, anterior corona radiata; FAt, Free-water adjusted fractional anisotropy; L, Left;
RDt, Free-water adjusted radial diffusivity; R, Right.
FIGURE 3 | Scatterplots of the (A) right anterior corona radiata and (B) left anterior limb of internal capsule with the subcortical structures that have significant interaction
with diagnosis. Fitted lines were created using a generalized additive model. ACR, anterior corona radiata; ALIC, anterior limb of internal capsule; L, Left; R, Right.
February 2020 | Volume 11 | Article 56
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DISCUSSION

In this study we investigated the relationship between free-water
imaging measures and subcortical volumes in patients with long-
term treated chronic schizophrenia and schizoaffective disorder.
The main findings were localized lower white matter FAt in
patients compared with healthy controls, but no differences in
free-water. White matter microstructure was linked with
subcortical volumes in differing patterns for patients
and controls.

The observed reduction in FAt, driven by a combination of
ADt reduction and RDt increase, could indicate a pattern of
axonal degeneration and demyelination in the frontal white
matter in long-term treated patients with chronic
schizophrenia and schizoaffective disorder when compared
to controls. In the fornix, the increased RDt without
s imul t aneous reduced FAt and ADt cou ld imp ly
demyelination without axonal degeneration in the patients.
The free-water imaging method was more sensitive to patient-
control differences in white matter microstructure than the
standard DTI model. Our findings were similar to and partly
overlapping with previous free-water imaging studies
indicating reduced FAt in cross-hemisphere frontal white
matter in patients with schizophrenia (12–15), and no free-
water increase in the chronic state (12, 15). The FAt changes
were more pronounced than the reported changes in first
episode patients (13, 14). However, the FAt changes were not
as widespread as the previously reported changes in chronic
schizophrenia (12, 15). The differences could be due to the
limited sample size in the current study, or the inclusion of
patients diagnosed with schizoaffective disorder, but could
also reflect that our long-term treated patient sample on
average had been ill for 27 years. This is longer than the
previous studies, and it is not known how the disorder
progress with age and illness duration as captured by dMRI
and compared to healthy controls.

The observed interactions between patient status and
subcortical structures on white matter microstructure for
both the left ACR and the fornix, indicate patterns of
association between the structures that are different in
Frontiers in Psychiatry | www.frontiersin.org 7
patients with chronic schizophrenia and schizoaffective
disorder compared to healthy controls. This is in line with
previous studies that show cortical thinning in relation to
white matter changes in patients with schizophrenia (20–22).
The results may suggest that volumetric properties of brain
anatomical structures are related to disrupted white matter
microstructure in schizophrenia and schizoaffective disorder.
The findings were in the direction of larger subcortical
structures being associated with less severe white matter
changes in patients with chronic schizophrenia and
schizoaffective disorder, or vice versa. This could point
towards a severity gradient in structural changes where less
pronounced microstructural changes in patients have weaker
diagnosis specific links to subcortical structures. They could
also indicate disease specific patterns of associations between
subcortical structures and microstructural white matter
properties in chronic schizophrenia and schizoaffective
disorder, and of disrupted functioning of the limbic system
(49) and prefrontal connections (50). The reported findings
are in line with the hypothesis of schizophrenia being a
disorder of dysconnectivity (51–53). It is well established
that the limbic system plays a role in schizophrenia, and
subcortical structures of the limbic system have previously
been reported as reduced in schizophrenia (2). The current
study provides further support for limbic system involvement
in the disorder together with links to white matter structures.

We did not find any general patient-control differences in
free-water. Despite this, in the follow-up analyses we found
evidence of diagnosis specific involvement between free-water
and some subcortical structures, and particularly larger caudate.
Thus, there could be diagnosis specific association patterns
between free-water and subcortical structures, but the
implication of this is unknown. We can only speculate that the
associations could be linked to e.g. better functioning or reduced
inflammatory state.

Among patients, positive symptoms were significantly
associated with increased free-water in the right PTR and
left SS. Similarly, negative symptoms were associated with
reduced FAt and increased RDt in the right ALIC. This is in
line with a prior study indicating that positive symptoms are
FIGURE 4 | Scatterplots of the fornix with the subcortical structures that have significant interaction with diagnosis. Fitted lines were created using a generalized
additive model. L, Left; RDt, Free-water adjusted Radial diffusivity; R, Right.
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associated with increased free-water and negative symptoms
with reduced FAt (15). Furthermore, negative and positive
symptoms were recently linked to changes in white matter
microstructure using standard DTI (1). The association
between microstructural white matter and clinical symptoms
needs further investigation.

We did not observe any CPZ medication effects on white
matter microstructure, which is in line with prior research (1).
However, given the long-term treatment of the patients in the
current study we cannot rule out that the observed effects on brain
structure are due to antipsychotic medication, although here not
captured by CPZ. First and second generation antipsychotic
medication could be differently involved with brain
microstructure as previously shown for basal ganglia structures
(54), but this could not be addressed in the current study.

This study had some limitations. The cross-sectional design
makes it difficult to distinguish cause from effect. We did not adjust
for handedness which could be associated with laterality differences.
Moreover, although the effect sizes were strong, the results were only
partially overlapping with prior free-water imaging studies in
chronic schizophrenia (12, 15). The limited sample size implies
higher uncertainty in the effect size estimate (55), and the results
need replication in larger independent samples. Further, we limited
our study sample to schizophrenia and schizoaffective disorder, and
did not investigate psychosis across the broader psychosis spectrum.
Strengths of the study includes a well characterized patient sample
that has been characterized with research assessment by one
psychiatrist for 12 years, 3 T dMRI acquisition of good quality,
detailed description of analysis pipeline, validated and robust
analysis methods, FDR correction for multiple comparison, and
medium to strong effect sizes.

To conclude, this study provides further evidence for white
matter abnormalities, as well as evidence for altered involvement
of subcortical structures with white matter microstructure, in
patients with chronic schizophrenia and schizoaffective disorder
when compared to healthy controls. The microstructural white
matter differences indicate a process of frontal axonal
degeneration and demyelination, and fornix demyelination in
the patients. Positive and negative psychosis symptoms were
associated with free-water and microstructural tissue properties,
respectively. The observed interaction between subcortical
structures and patient status on white matter microstructure
could indicate disease specific patterns of associations between
the structures, limited to patients. To fully capture the linkage
between gray and white matter tissue in chronic schizophrenia
and schizoaffective disorder, future studies in larger samples
are needed.
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