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Background: The active alkaloid in Betel quid is arecoline. Consumption of betel quid is
associated with both acute effects and longer-term addictive effects. Despite growing
evidence that betel quid use is linked with altered brain function and connectivity, the
neurobiology of this psychoactive substance in initial acute chewing, and long-term
dependence, is not clear.

Methods: In this observational study, functional magnetic resonance imaging in a resting-
state was performed in 24 male betel quid-dependent chewers and 28 male controls prior to
and promptly after betel quid chewing. Network-based statistics were employed to determine
significant differences in functional connectivity between brain networks for both acute effects
and in long-term betel users versus controls. A support vector machine was employed for
pattern classification analysis.

Results: Before chewing betel quid, higher functional connectivity in betel quid-dependent
chewers than in controls was found between the temporal, parietal and frontal brain regions
(right medial orbitofrontal cortex, right lateral orbital frontal cortex, right angular gyrus, bilateral
inferior temporal gyrus, superior parietal gyrus, and right medial superior frontal gyrus). In
controls, the effect of betel quid chewing was significantly increased functional connectivity
between the subcortical regions (caudate, putamen, pallidum, and thalamus), and the visual
cortex (superior occipital gyrus and right middle occipital gyrus).

Conclusion: These findings show that individuals who chronically use betel quid have higher
functional connectivity than controls of the orbitofrontal cortex, and inferior temporal and
angular gyri. Acute effects of betel quid are to increase the functional connectivity of some
visual cortical areas (which may relate to the acute symptoms) and the basal ganglia and
thalamus.
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INTRODUCTION

Betel quid (BQ) is a psychotropic substance, extensively consumed
by more than 600 million people worldwide (1). Right after
consumption, users of BQ have reported experiencing decreased
thinking ability, disturbed mental processes, increased vigilance,
body relaxation, enhanced motor responses, and a boosted sense
of wellness (2). Substance dependence features including tolerance,
craving, and drug-seeking behaviors aswell aswithdrawal symptoms
have been acknowledged by habitual users of BQ (3). Many
psychoactive substances act on the brain's reward pathway during
acute administration, an effect thatmay be different in habitual users
(4). The basal ganglia, extended amygdala, and the prefrontal cortex
have been implicated in the initial stages, development, and habitual
use of addictive substances (5). During the initial stages, the
individual engages in voluntary substance use behaviors (6). Such
behaviors may be accompanied by intense feelings which once
experienced, may enhance recurrent substance use (7). Arecoline
is the principal active component inBQ (8). It facilitates the release of
dopamine (DA) (9) by binding to M5 muscarinic acetylcholine
receptors on GABA terminals on DA neurons in the ventral
tegmental area (VTA) (10). DA concentration is increased in the
VTA and other projection areas through a series of mechanisms
carried out by the mesocorticolimbic system [VTA, nucleus
accumbens (NAc), and prefrontal cortex (PFC)], which is
considered to be a principal pathway of drug reward (11).
Additionally, cholinergic and inhibitory GABA'ergic inputs greatly
regulate the mesolimbic dopaminergic neurons (12), which are
known for their important role in processing rewards,
reinforcement learning, (13) and dependence (14). Moreover,
acute administration of psychoactive drugs has been found to
activate brain areas connected to the mesocorticolimbic neural
networks, implicated in drug rewards (15). Therefore, the need to
use psychoactive substances repetitively and the compulsivity that is
demonstrated in individuals addicted to drugs may be elucidated by
the involvement of the reward and habit pathways in the brain (5). In
contrast to the increased dopaminergic transmission in the NAc
during acute exposure to drugs, chronic drug use is linked with less
rewarding effects which result from reduced DA levels (16, 17).
Chronic drug use is known to diminish the ability of the brain to
control drug use behaviors, leading to increased risk for compulsive
behavior that characterizes addiction (6). At first, it was believed that
losing control over drug use stemmed from impairment in the
subcortical reward brain region. However, findings from addiction
studies have demonstrated the crucial role of the PFC inmodulating
the limbic reward regions and executive functions. Disruption of the
PFC has been associated with loss of inhibitory control observed in
drug-addicted individuals who have relapsed (18).

Resting-state functional connectivity (FC) studies have found
that the majority of addictive drugs lead to reward, emotional and
Abbreviations: BQ, Betel quid; BQD, Betel quid dependence; HC, Healthy
controls; FC, Functional connectivity; DA, Dopamine; OFC, Orbitofrontal
cortex; CAU, Caudate; THA, Thalamus; PUT, Putamen; SOG, Superior
occipital gyrus; MOG, Middle occipital gyrus; SPG, Superior parietal gyrus;
SFG, Superior frontal gyrus; ITG, Inferior temporal gyrus; ACC, Anterior
cingulate cortex.
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cognitive dysregulation (19). The mesocorticolimbic (MCL) system
has been implicated to play an important role in drug addiction. The
interaction among and between the MCL regions and other
subcortical and cortical structures that manifests as circuit-level FC
alterations have been observed in the reward circuit of drug addicts
(19). The principal reward network is connected to other reward
brain areas encompassing the subgenual anterior cingulate cortex
(ACC), medial orbitofrontal cortex (mOFC), and medial PFC
(mPFC) (20). For instance, increased resting-state FC was
observed between NAc and the ventral mPFC (vmPFC) (rostral
ACC andmPFC) of heroin addicts (21). Likewise, abstinent cocaine-
users displayed greater resting-state FC between the ventral striatum
and the vmPFC (22). Apart from increased striatal-PFC FC, a study
investigating FC in prescription opioid users found reduced FC
between NAc and the subcortical (hippocampus and amygdala) and
cortical (cingulate, parietal, prefrontal) regions (23).

Drugs of addiction are also characterized by emotional
dysregulation emanating from altered FC between the
amygdala and PFC regions (19). Interaction of the amygdala
with mPFC, hippocampus, cingulate, and insula regions has been
linked with emotional processing and regulation, and generation
of affective states (24). The hippocampus (involved in memory
and learning) and the dorsal ACC (involved in cognitive control)
are thought to be impaired in addiction, where a greater saliency
value of drugs accompanied by a weaker inhibitory control leads
to compulsive drug-seeking behavior (25, 26). The amygdala and
its connections are fundamental elements perpetuating drug use,
and previous studies propose that aberrant amygdala-mPFC FC
may play a crucial role in emotional dysregulation frequently
observed in drug addicts (19). Reduced FC strength was reported
between the amygdala and regions of mPFC (including vmPFC
and rostral ACC) in individuals addicted to cocaine (27), and
heroin abusers (28). Similarly, extensive reduction of FC was
displayed between the amygdala and several regions, including
ventrolateral, medial, and dorsolateral PFC (dlPFC) regions in
individuals addicted to prescription-opioid (23). In this study,
longer periods of opioid use were linked with greater amygdala-
vmPFC (specifically the subgenual ACC) FC reductions.

Apart from reward and emotional deficits, individuals addicted
to psychoactive drugs are known to display neural dysfunction
linked with cognitive control (29). The cognitive control network
includes the ACC, lateral PFC, and parietal areas (19). For instance,
decreased resting-state FC was observed between the ACC and
dlPFC of heroin users relative to controls (21). Moreover,
substantially decreased FC was observed within and between
lateral PFC and parietal regions, such that decreased
interhemispheric connectivity between lateral PFC areas was
associated with a greater frequency of self-reported cognitive
deficits (30) in cocaine addicts. A similar characteristic was
displayed in abstinent heroin users such that FC was reduced
between the lateral PFC and parietal regions. The observed
reduction in FC matched a reduction in gray matter density in the
same regions, with a longer duration of use predicting a greater
reduction in both parameters (31).

A number of psychoactive substances have been linked with FC
alterations in addicts. Specifically, compared to healthy controls,
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cocaine users displayed decreased FC within corticostriatal reward
circuitry (27, 32), which has been associated with compulsive use of
drugs and relapse (32). Apart from the reward circuitry, users of
cocaine demonstrated altered FC between vital regions in the
salience network and cortical regions (involved in decision
making) (33); and within cortical brain areas involved with
executive control (such as the cognitive control and attentional
salience networks) (30, 33). Similarly, cocaine dependence has been
associated with disruption among the default mode, salience and
emotional networks where cocaine-dependent individuals displayed
decreased connectivity between rostral ACC and salience network;
posterior cingulate cortex (PCC) and executive control network
(ECN); and bilateral insula and default mode network (DMN) (34).
Moreover, compared to controls, the ventral striatum of individuals
with cocaine dependence exhibited reduced FC with the
hippocampal, parahippocampal gyrus, vmPFC, and increased FC
with the visual cortex (35). In alcohol dependence, individuals are
often characterized by an impulsive drive to consume alcohol and a
lack of self-control towards its consumption despite negative
consequences (36). Evidence shows that individuals with alcohol
dependence showed increased within-network FC in the salience
network (SN) (including insula, hippocampus, and temporal lobe);
anteriorDMN (including superior frontal gyrus (SFG), ACC,medial
frontal gyrus (MFG), and superior medial gyrus); posterior DMN
(involving middle cingulate cortex, PCC, precuneus, insula, caudate,
superior temporal gyrus (STG), and thalamus); orbitofrontal cortex
(OFCN) (including middle and superior orbital gyrus, insula,
amygdala); amygdala-striatum (ASN) (including putamen,
amygdala, caudate, hippocampus, and inferior temporal gyrus
(IFG); and left executive control (LECN) networks (consisting of
the angular gyrus) (36). Relative to controls, cannabis abusers
demonstrated increased resting-state FC of subcortical regions.
Specifically, the cannabis abusers displayed greater local functional
connectivity density (lFCD) than controls in the ventral striatum
(NAc location), midbrain (SN/VTA location), brainstem, and
thalamus (37). Results from a study investigating FC of the DMN
revealed increased FC in the right hippocampus, while reduced FC
was found in the right dorsal ACC and left caudate of chronic heroin
users relative to controls (21). Increased FC was observed between
dorsal ACC (dACC)-right anterior insula (AI), the dACC-thalamus,
the dACC-left AI, and the right AI-left AI of nicotine addicts.
Increased FC was associated with risky decision making (38).

The effect of BQ use on brain functional connectivity during
acute administration is not well understood. Studies investigating
the acute effects of BQ have largely focused on the frontal and
default mode networks, giving subcortical regions less attention.
For instance, based on previous findings from independent
component analysis (ICA), acute use of BQ among naïve
chewers was associated with increased and decreased FC in the
frontal and default mode networks respectively (39). Evidence
from addiction studies has linked initial drug use with activation
of the reward pathway which primarily involves the interaction
between subcortical and frontal cortical structures (6).
Additionally, resting-state fMRI studies investigating chronic
effects of BQ in the brain have yielded inconsistent results. For
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instance, compared to controls, individuals with betel quid
dependence (BQD) had decreased FC in the DMN (40, 41),
parietal network (42), and between the anterior cingulate cortex
(ACC) and DMN (43); while increased connectivity was mostly
displayed in networks including the visual (41), frontoparietal,
occipital/parietal, frontotemporal, temporal/limbic, and
frontotemporal/cerebellum (42), and between the ACC and
regions of the reward network (41). The different FC results
may have been influenced by differences in subjects across
studies (sample size, age, gender, variations in BQ preparation,
dependence level, duration of BQ exposure and the use of other
substances, e.g., alcohol and tobacco) and use of different analysis
methods, such as ICA (39, 40, 42), functional connectivity
density mapping (44), graph theoretical analysis (GTA), and
network-based statistics (NBS) (41).

Persistent psychoactive substance use has been linked with
impaired brain function which disrupts the ability to wield self-
control over drug use behaviors that typifies addiction (6).

Previous neuroimaging studies have investigated separately
the acute and chronic effects of BQ on brain functional
connectivity. Specifically, acute and chronic effects of BQ were
mostly explored in the DMN and different parts of the brain
respectively. This is the first study to examine both the acute and
chronic effects of BQ concurrently. We explored the whole brain
rather than predefined systems, with the aim of elucidating the
impact of both initial and chronic BQ use on brain FC.
Specifically, our first aim was to examine functional
connectivity during initial BQ use among naïve chewers.
Second, we aimed to explore the differences in FC between the
naïve and BQ dependent chewers. We used NBS to identify FC
differences (45). The results may provide further evidence and
understanding of the neural mechanisms involved during initial
BQ chewing and BQD.
MATERIALS AND METHODS

Aim, Design, and Setting of the Study
This is an observational neuroimaging study that aimed to
examine the effects of both acute and chronic BQ chewing in
the whole brain. Recruitment of participants and data collection
was carried out between January 2015 and March 2016 at the
Second Xiangya Hospital of Central South University, located in
Changsha city, Hunan Province, China.

Characteristics of Participants
All participants in this study were male. The following criteria for
inclusion and exclusion of participants have been described in
our previous papers (39, 42). Twenty-five individuals with BQD
had to meet the following inclusion criteria: (1) 18–40 years of
age; (2) Han Chinese ethnicity; (3) accomplished nine or more
years of education; (4) right-hand dominant; (5) diagnosed with
BQD as individuals using BQ at least 1 day at a time for more
than 3 years and with a score of 5 or higher on the Betel Quid
Dependence Scale (BQDS). The BQDS is a 16-item self-
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administered tool made up of three parts: physical and
psychological urgent need, increasing dose and maladaptive
use (46). Exclusion criteria included: (1) a history of
neurological disorder or other serious physical illness; (2) a
history of any mental disorders; (3) a history of substance
abuse other than BQ; (4) a contraindication to MRI.

Thirty healthy controls were enrolled from the community in
the Changsha City area. The inclusion and exclusion criteria for
controls corresponded to those of the BQD group. The only
exception was that controls would not have a diagnosis of BQD
or have a family history of psychiatric illness amongst their first-
degree relatives. All study participants were asked not to use any
psychoactive substance during the 24-h period prior to scanning.

BQ can induce some physiological and psychological changes
to users. But a half fruit of BQ is unlikely to induce severe adverse
effects in healthy young men, even if used for the first time. We
recorded the participants' heart rates and blood pressures just
before the first scan and right after the second scan (about 30 min
after using the betel quid) so as to monitor and rule out any
physiological changes to users. Statistical analysis showed that
there were no significant differences between the first and second
measures of heart rate or blood pressure (Table 1 below). It has
been reported that “The onset (of physiological effect) was within
2 min after chewing, peak effect was reached within 4–6 min and
the effect lasted for an average of 16.8 min (47).” The absence of
changes in heart rate or blood pressure may have resulted from
the long interval (about 30 min) between the betel quid chewing
and the recording. We also administered behavior questionnaires
including the Beck Depression Inventory and Beck Anxiety
Inventory before betel quid chewing to assess the participants'
emotional status.

This study was conducted in accordance with recommendations
of the Helsinki Declaration established in 1964, and its later
amendments or comparable ethical standards. Approval to
conduct this study was obtained from the Ethics Committee of the
Second Xiangya Hospital of Central South University. Before
inclusion in the study, written informed consent was provided by
each participant.

Image Acquisition and Preprocessing
HC1 and BQD1 were defined as controls and participants with
BQD respectively, who were scanned before BQ chewing. HC2
Frontiers in Psychiatry | www.frontiersin.org 4
and BQD2 were defined as controls and participants with BQD
respectively scanned after BQ chewing. In theory, we can
compare any pair of conditions. However, in the main text, we
describe the results for HC1 versus HC2 and HC1 versus BQD1.
The results for other comparisons are shown in the
supplementary materials. The following explanation about
image acquisition and preprocessing parameters have also been
described in our previous papers (39, 42). Resting-state fMRI
scans were carried out for all participants before and after BQ
chewing. HC1 and BQD1 were asked to chew the dried BQ along
with its husk and swallow the saliva quickly in no more than 3
min. The BQ was an industrially wrapped product that has been
described before by (48). Subsequently, the residual BQ was spat
out, and 3 min later participants underwent the second fMRI
scan which resulted in HC2 and BQD2.

Resting-state images were obtained from a Philips Gyroscan
Achieva 3.0-T scanner in the axial direction. The following
imaging parameters were used for the gradient-echo echo-
planar imaging sequence: matrix size = 64 × 64, repetition
time = 2,000 ms, echo time = 30 ms, flip angle = 90°, gap = 0
mm, field of view = 24 cm × 24 cm, number of slices = 36, and
slice thickness = 4 mm. Earplugs and foam pads were utilized to
lessen scanner noise and head motion respectively. Participants
were asked to lie flat on their back motionless with their eyes
closed. The maximum time for each resting-state fMRI scan was
500 s, and generally, 250 image volumes were acquired.

TheData Processing Assistant for Resting-State fMRI (DPARSF)
toolbox (49) was utilized to preprocess the fMRI imaging data by
way of Statistical Parametric Mapping (SPM8) (50). The first 10
images were removed to allow for scanner adjustment and for
participants to gain familiarity with the scanner environment.
Slice-timing correction and realignment for the head motion were
performed to the residual 240 image volumes. The following
measures were taken to minimize the effect of head motion on
functional connectivity: First, the following criteria had to bemet for
realignment (1): amaximumdisplacement in the x, y, or z-axis of less
than 2 mm and (2) angular rotation about each axis of less than 2°.
Initially, the scan was performed among 25 BQD and 30 HCs,
nevertheless, 1 BQD participant and 2 HCs had to be excluded from
the study owing to greater than 2° and 2mm of rotations and
translations respectively during fMRI scanning. Second, we utilized
the Friston 24-parameter model (51) to regress out head motion
effects from the realigned data (i.e., 6 head motion parameters, 6
head motion parameters one-time point before, and the 12
corresponding squared items) based on recent reports that higher-
order models demonstrate benefits in removing head motion effects
(52). Third, the headmotionwas also controlled at the group-level by
using the mean framewise displacement (FD) as a covariate. These
measures were strict enough to control artifacts caused by head
movements. We compared head motion between the BQD1-2 and
HC1-2, which was measured by mean FD derived from Jenkinson's
formula (53), and no difference was detected between the groups. A
scrubbing procedure was performed, where we calculatedDVARS (a
temporal derivative of time courses and variance across voxels) (54)
to measure the rate of change of the BOLD signal across the entire
brain for each frame of data. This revealed only a very small
TABLE 1 | Demographics and clinical characteristic of participants.

BQD
(Mean ± SD)

HC
(Mean ± SD)

t/c2 P-value

Age (years) 23.50 (3.88) 24.93 (2.60) −1.58a 0.12
Gender (male/female) 24/0 28/0
Education (years) 15.13 (1.73) 16.26 (1.32) −2.66a 0.01*
Betel Quid Dependence Scale 7.58 (2.17) N/A
Duration of Betel Quid (years) 7.13 (3.79) N/A
Beck Depression Inventory 10.38 (6.75) 3.75 (4.60) 4.20a 0.00*
Beck Anxiety Inventory 28.588(6.25) 23.11 (2.64) 4.45a 0.00*
SD, standard deviations; N/A, not applicable.
aIndependent-samples t-test.
*P < 0.05.
March 2020 | Volume 11 | Article 198

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Sariah et al. Acute and Chronic States of BQ Chewing
proportion of our data had movement contamination. When we
compared the results obtained from the original data and the
movement scrubbed data, there were no notable differences. Thus,
all the results are obtained from the original data in this paper.

The data were spatially normalized into standard coordinates
using the Montreal Neurological Institute echo-planar imaging
template in the SPM package and was then resampled into
3 mm × 3 mm × 3 mm voxels. The preprocessed images were
smoothed using a 4mm Gaussian kernel before the statistics.
Subsequently, the BOLD signal of each voxel was first detrended
to eliminate any linear trend. These signals were then passed
through a band-pass filter of 0.01–0.08 Hz to decrease low-
frequency drift and high-frequency physiological noise. Lastly,
nuisance covariates (Friston 24-head motion parameters, white
matter and cerebrospinal signals) were regressed out from the
BOLD signals.

Whole-Brain Functional Network
Construction
The revised automated anatomical labeling atlas (AAL2) (55) was
used to parcellate the brain into 94 regions of interest (ROI) (47 in
each hemisphere). The mean time courses were obtained from
each ROI by extracting the signal average of all voxels within the
region. The AAL2 atlas provides an upgraded parcellation of the
orbitofrontal cortex for the automated anatomical labeling atlas
(56). The new parcellation of the orbitofrontal cortex is based on
anatomical evidence (57). The anatomical regions defined in each
hemisphere and their labels in the AAL2 are provided in the
supplementary materials (Table S4).

Acute Impact of BQ
The acute impact of BQ was estimated by comparing HC1 versus
HC2. Pearson correlation coefficients were calculated between all
pairs of ROIs, to acquire 94 × 94 correlation matrices rij,i, j = 1,
2….,94, indicating the FC strength for each pair (connectivity
between any two brain regions) of regions for each participant.
Then, the FC with significant differences (p-value of less than
0.05) before and after chewing BQ were selected by performing a
paired t-test and the difference network was constructed. The
number of all FCs for each node in the different network was
defined as the degree of this brain region.

Differences of Functional Connectivity in
Chronic BQ Users and Controls
These differences were estimated by comparing the difference
between HC1 vs BQD1. The 94 × 94 Pearson correlation
coefficients were initially calculated between all pairs of ROIs.
Then, FCs with significant differences (p-value of less than 0.05)
between HC1 and BQD1 were selected by performing a two-
sample t-test and the difference network was constructed. The
number of all FCs for each node in the difference network was
defined as the degree of this brain region.

Network-Based Statistics
At present, studies using neuroimaging data to construct
functional or structural networks are many, and most of them
Frontiers in Psychiatry | www.frontiersin.org 5
are aimed at finding different connections between the two
groups of networks. When we test each connection in the
graph of the network at the same time, the family-wise error
rate is generated. The network-based statistic is an effective way
to control the family-wise error rate, depending on the degree of
association between the connections of interest (45). The specific
steps are as follows. First, a Fisher's r to z transform for each
connection in the network was performed, and a t-test was
performed for the differences between the two groups for each
connection. The test statistic computed for each pairwise
association was then thresholded to formulate a set of
suprathreshold links. Components present in the set of
suprathreshold links were ascertained using a breadth-first
search, and the number of links they comprise (or size) was
stored. Thereafter, permutation testing was used to assign a p-
value controlled for the FWE to each connected component
based on its size. A total of M random permutations was created
independently, where for each permutation, a random exchange
was done for the group to which every participant belongs. The
required test statistic for each permutation was recalculated, then
the same threshold was applied to define a set of suprathreshold
links. The maximal component size in the set of suprathreshold
links extracted from each of the M permutations was ascertained
and stored, thereby earning an empirical estimate of the null
distribution of maximal component size. Lastly, to estimate the
p-value of an observed component of size k, the total number of
permutations was detected showing a greater maximal
component size than k and normalizing by M. Networks with
significant inter-group differences were detected if the p-value
was smaller than the given 0.05 threshold.

Support Vector Machine (SVM) Classifier
In order to study how much difference there is between the
different groups, we employed a widely used SVM classifier. SVM
is a learning machine for two-class problems for pattern
classification analysis.

We used an SVM toolkit called libsvm composed by Chih-Jen
Lin from Taiwan University (58) (http://www.csie.ntu.edu.tw/
~cjlin/libsvm/). Specifically, the whole brain FC was applied to
the raw input matrix. Features that appeared statistically
significant (a smaller p-value than the threshold for a two-
sample t-test) were picked. Various types of kernel (linear, t=0;
polynomial, t=1; radial basis function, t=2) and different trade-
off parameter C (0.001, 0.01, 0.1, 1, 10, 100, 1,000, 10,000) were
tried to attain the highest accuracy rate. A leave-one-subject-out
cross-validation technique was applied to ascertain how the test
performs as well as to validate the classifier, where the classifier
was trained on all subjects except one, who was then used for the
test data. The mean discrimination accuracy, sensitivity,
specificity and AUC (area under ROC curve) were obtained for
the entire sample.

Selecting the generalization rate as the statistic, permutation
tests were employed to estimate the statistical significance of the
observed classification accuracy. In the permutation testing, the
class labels of the training data were randomly permuted prior to
training. Cross-validation was then performed on the permuted
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training set, and the permutation was repeated 100 times. The p-
value represents the probability of observing a classification
prediction rate in the permutation testing no less than the
discrimination accuracy. If the p-value is smaller than
the significance level, we reject the null hypothesis that the
classifier could not learn the relationship between the data and
the labels reliably and declare that the classifier learns the
relationship with a probability of being wrong of at most p.
RESULTS

The mean age for BQD chewers and HC was 23.5 ± 3.88 years
and 24.9 ± 2.60 years respectively. Individuals with BQD
displayed a mean BQDS score of 7.58 ± 2.17 and a mean
duration of BQ use of 7.13 ± 3.79 years (Table 1).

Acute Impact of BQ
We used the NBS method to assess specific network connections
for acute impact. Compared with HC1, HC2 displayed higher
functional connectivity strength between subcortical regions
including the basal ganglia and thalamus, and occipital brain
regions, after chewing BQ as shown in Figure 1A. The brain
regions comprised of 37 nodes and 55 connections that included
many connections involving the basal ganglia (corrected p value
< 0.001). The ROIs with the highest degree are shown in
Figure 1B including bilateral caudate (CAU), thalamus (THA),
left putamen (PUT), bilateral superior occipital gyrus (SOG) and
middle occipital gyrus (MOG). Because the right caudate has the
biggest degree in Figure 1, it was used as an example to calculate
the connectivity between the right caudate and the other voxels in
the whole brain. We performed this analysis to show whether the
voxel-wise analysis is consistent with the NBS analysis. We used a
pairwise t-test to compare the difference between HC1 and HC2.
The t map (link-wise FDR corrected, q=0.05) is shown in Figure 2.
A significant difference was detected with connectivity involving
the caudate and putamen. No association was found between the
baseline scores and FCs.

Differences of Functional Connectivity in
Chronic BQ Users and Controls
Using the NBS method, higher functional connectivity strength in
BQD1 compared with HC1 was found between the temporal,
parietal and prefrontal brain regions, as shown in Figure 3. The
regions comprised of 55 nodes and 79 connections (corrected p-
value is 0.035). The ROIs with the highest degree are shown in
Figure 3B including the rightmedialOFC, right lateralOFC, angular
gyrus, superior parietal gyrus (SPG), SFG, and bilateral ITG. There
was no association between the baseline scores and FCs.

Significant links during acute and chronic BQ chewing are
provided in supplementary materials 456 (Figure S1 and
Table S2).

Network-Based Classification
Receiver operating characteristic curves (ROC) were charted for
network classification analysis, so as to ascertain whether graph-
Frontiers in Psychiatry | www.frontiersin.org 6
based network metrics might act as biomarkers for
discriminating different groups. The ROC analysis was
performed for each metric (i.e., one-dimensional characteristic)
displaying significant differences between groups. For each
particular metric, a range of thresholds was employed to
allocate each participant into either the first or the second
group. An initial linear discriminant analysis was carried out
to yield an overall estimate of group separation. The highest
degrees of separability (AUC) were observed between HC1 and
HC2 (0.7551), as well as between HC1 and BQD2 (0.8646). HC2
versus BQD2 and BQD1 versus BQD2 portrayed the lowest AUC
(Table S3 and Figure S2 in supplementary materials).
DISCUSSION

This study identifies the neurobiological effects involved in the
initial acute effects of BQ chewing and in differences in those who
are BQ dependent from controls when BQ was not being
administered. For the purpose of this study, we only compared
HC1 versus HC2, and HC1 versus BQD1, because our interest
lies in the acute impact of BQ chewing, and in differences
between long-term BQ and non-BQ users. NBS was used
because it is a more sensitive approach than FDR.

The results from the SVM showed that the biggest difference
between groups was observed between healthy controls who did
not chew BQ and individuals who chewed BQ. For instance, HC1
versus BQD2 and HC1 versus HC2 have greater AUC values
compared to those who chewed BQ (HC2 versus BQD2 and
BQD1 versus BQD2). A small difference was detected between
those who chewed BQ. Previous studies have also reported the
difference in connectivity between BQ dependent chewers and
healthy controls (41–43), as well as between non-chewer healthy
controls and healthy controls who chewed BQ (39). This is
consistent with the hypotheses that BQ can alter the brain once it
is consumed; or with the hypothesis that there are differences
between individuals that lead some to consume BQ. AUC has
previously been suggested as the preferred measure of diagnostic
accuracy in psychiatry and forensic psychology, with reports
considering AUC values greater than 0.7 as having strong effects
in test performance (59).

Effects of Acute BQ Chewing on Brain
Functional Connectivity
Increased functional connectivity among naive BQ chewers was
mostly observed between subcortical regions including the basal
ganglia and thalamus (CAU, PUT.L, and THA) and the visual
cortex (SOG and MOG.R). This effect of BQ is consistent with
previous reports about increased activity in these regions during
acute cocaine administration (60). For the majority of
psychoactive drugs, the acute effects involve the activation of
reward pathways (6). The reward pathways in the brain include
the basal ganglia (including the striatum), the limbic system
(amygdala) and parts of the PFC (61). The basal ganglia are
known for modulating the rewarding effects of drug use and also
play a role in habit formation (dorsal striatum) (5). The striatum
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is involved in reward-related learning, as well as contributing to
the development and maintenance of addictive behaviors (62). In
particular, the putamen and caudate of naive BQ chewers
demonstrated significantly increased FC, portraying the role of
the striatum in the reward pathway during acute drug
administration (6). DA neurons in the VTA play an important
role in processing drug rewards (63), and increased DA in the
striatum has been linked with subjective feelings of pleasure,
euphoria, or a “high” resulting from drug use (64) and alcohol-
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associated cues (65). Our results agree with previous studies
where activation of the ventral striatum significantly correlated
with smoking motivation for pleasurable relaxation (66),
supporting the reported psychological effects experienced
immediately after BQ chewing (2). Similarly, acute alcohol
influences neuronal activity in the ventral striatum which is
known to project to regions believed to regulate motor responses,
motivation and executive functions (67). Compared to non-
users, individuals with substance use disorders displayed
FIGURE 1 | (A) Network-based functional connectivity differences after acute administration of betel quid to naive participants. Orange indicates an increase in
functional connectivity which was found between the subcortical and occipital brain regions. (B) The degree of different areas for acute use (ROIs with the highest
degree). CAU, caudate; L/R, left/right; MOG, middle occipital gyrus; PUT, putamen; SOG, superior occipital gyrus; THA, thalamus.
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reduced functional connectivity between the nucleus accumbens
and the frontal cortical regions responsible for controlling
cognition (68). Such findings provide evidence that differences
in the connections between the reward processing and cognitive-
behavioral control areas may play a crucial role in the
development of substance use disorders including betel
quid dependence.

Compared to the frontal and striatal brain areas, the visual
cortex (69) has received attention to a lesser degree in substance
use and addiction neuroimaging studies. Our study found
significantly increased FC involving the visual cortex of
controls immediately after BQ chewing, which is consistent
with results by Huang et al. (39) and also backing up the
reported heightened alertness experienced by BQ chewers (8).
Increased FC in the visual cortex has also been demonstrated
after acute alcohol consumption (70). We suggest that BQ may
enhance alertness which in turn activates the visual cortex,
however, this requires further investigation. Drug cue exposure
studies have also documented activation of the visual cortex in
substance abusers when presented with visual drug cues as
compared to neutral cues (71).

Differences of Functional Connectivity in
Chronic BQ Users and Controls
Our study found significantly higher FC in the networks
involving the right medial OFC, right lateral OFC, and right
Frontiers in Psychiatry | www.frontiersin.org 8
SFG of BQ dependent individuals. Analogous results have been
reported by (39). The OFC, whose disruption leads to
maladaptive and impulsive decision making (72), is known for
its function in signaling the value of expected outcomes or
consequences (73), motivational behavior (74), salience
attribution (75), emotional regulation, and decision making
(together with the amygdala and insula) (61, 76, 77). It has
numerous projections to the striatum (75), and each of its sub-
regions performs distinct functions; for example, the OFCmed is
known for its role in monitoring reward stimuli whereas the
lateral OFC evaluates punishing stimuli (78). For instance,
individuals carrying out a monetary decision-making task
exhibited activation of the OFCmed to positive reward
outcome whereas activation of the lateral OFC was observed
during monetary loss outcome (79). Addiction studies have also
shown that the enhanced expectation value of a drug in the
reward (ventral pallidum, NAc, and VTA), motivation (medial
OFC, VTA, ventral ACC, dorsal striatum, SN, and motor cortex),
and memory (medial OFC, amygdala, dorsal striatum, and
hippocampus) circuits overcomes the control circuit (dlPFC,
inferior frontal cortex, ACC, and lateral OFC) resulting in
compulsive drug use and loss of control (80). Furthermore,
compared to controls, individuals with cocaine dependency
showed significantly decreased interhemispheric resting-state
functional connectivity of the prefrontal cortex and the dorsal
attention network encompassing medial premotor and posterior
FIGURE 2 | The t map (link-wise FDR corrected, q=0.05) in Healthy Controls before and after acute betel quid chewing. A significant difference was detected with
connectivity between the caudate and putamen. The colorbar represents the t value for each region of interest (ROI).
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areas, as well as the bilateral frontal (30). Additionally, resting-
state studies have portrayed dysfunctional network connectivity
across the brain during both acute and chronic nicotine
exposure, where the effects mostly appeared to involve the
networks linked with attention, cognitive control, ACC, and
insula (81). This relates to the enhanced attention that is
commonly experienced by smokers (81) and continues to
support the notion that substance use is associated with
various alterations in connectivity between significant regions
of the brain. The brain reward system is not only activated by the
drugs, but also stimuli associated with the substance's rewarding
effects, such as drug-associated cues. These stimuli can trigger the
Frontiers in Psychiatry | www.frontiersin.org 9
urge to use drugs (incentive salience) by activating the DA
system on their own. The DA levels tend to persist even after
the rewarding effects of the drugs have declined (5). Imaging
studies of cocaine-addicted individuals have reported higher
activity in the PFC during drug expectation than during drug
administration (15, 60). This is in agreement with our hypothesis
that the expectation value of BQ after 24 h of abstinence in
dependent individuals was enhanced and may have contributed
to the observed increased FC found in this investigation. Our
study found increased FC in the amygdala whose key role is to
control stress reactions and negative emotions (82). Therefore,
the 24 h abstinence in BQ dependent individuals may have
FIGURE 3 | (A) Network-based connection differences for chronic betel quid users minus controls. Orange indicates an increase in functional connectivity which
was found between the frontal, parietal and temporal brain regions. (B) The degree of different areas for chronic use [regions of interest (ROIs) with the highest
degree] The right OFCmed is the combination of the sum degree of rectus, OFCmed, OFCant, and OFCpost). ANG, angular gyrus; ant/post, anterior/posterior; ITG,
inferior temporal gyrus; L/R, left/right; med/lat, medial/lateral; OFC, orbitofrontal cortex; SFG, superior frontal gyrus; SPG, superior parietal gyrus.
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triggered unpleasant feelings associated with withdrawal
symptoms which are believed to originate from reduced activation
in the reward network of the basal ganglia and increased activation
of the stress system including stress neurotransmitters
(corticotropin-releasing factor, norepinephrine, and dynorphin)
(83) in the amygdala (84). There is evidence that all abused
substances tend to disrupt the dopamine reward system when
used for a long time (6). For instance, addicts in imaging
studies have constantly demonstrated long-term decreased D2
dopamine receptor, compared with non-addicts (85). The overall
loss of reward sensitivity may explain compulsive drug use seen
in addicts as a way to experience the pleasurable feelings the
reward system formerly exerted (86). The desire to get rid of the
negative feelings accompanying withdrawal may therefore
reinforce continual drug use like the one demonstrated in
individuals with BQD. Additionally, compared to HC1 versus
HC2, the FC observed in the subcortex between HC1 and BQD1
groups was not significantly increased. This may be due to
reduced D2 dopamine receptors (85) in individuals with BQD,
which makes them less sensitive to BQ and therefore increases
their compulsivity.

We also found increased FC in the right medial SFG, which
mirrors a reduced efficiency of response inhibition processes in
the PFC (87). The SFG is involved in planning, and motivation,
as well as contributing to both stimulation and inhibition of
craving. Its activation during responding to smoking cues versus
neutral cues is highly correlated with participants' reports of
craving (88), suggesting that time spent without BQ may have
stimulated craving and thus activated the SFG in the BQD group.

Increased FC was observed in the right angular gyrus and
right SPG of BQ dependent individuals. Our results are similar to
other cocaine studies that have demonstrated increased FC
between frontal–temporal and frontal–parietal brain regions of
abstinent chronic cocaine users (89). Similarly, compared to
people who have never smoked and former nicotine smokers,
current smokers had greater connectivity in the right superior
parietal lobe located in the dorsal attention network (90). The
dorsal attention network has been linked with attention
processing, predominantly in employing top-down control
over fundamental sensory operations including visual
information and maybe a crucial location for distorting
attention (91). Therefore, greater connectivity in this area may
indicate an increased propensity to focus one's attention on
external signals (90), which may make it harder to abstain
from BQ. The angular gyrus plays a crucial role in
comprehension, reasoning (92), attention, language memory
and self-awareness as well as providing information about self-
awareness in the default mode network (DMN) (93). Addicts
with dysfunctional DMN may exhibit impairment in disease
awareness, need for professional help, and/or drug-seeking
behavior (94) which supports what is often depicted in
BQD behavior.

The results from this study also demonstrated increased FC in
the right ITG. The ITG and SPG are involved in visual and
Frontiers in Psychiatry | www.frontiersin.org 10
auditory processing (95), and the increased FC in these regions in
this study may relate to a perceived improvement in visual and
auditory abilities in chronic BQ chewers. Such experiences may
facilitate maintenance of BQ chewing, thus leading to
dependent behavior.

A number of limitations are noted. First, our study was cross-
sectional: we only observed functional connectivity differences in
naive and chronic BQ chewers, but cannot infer causality. Future
longitudinal neuroimaging BQ studies are crucial to consider the
mechanisms fundamental for the neuro-transition from initial
BQ use to dependence. Second, the use of other substances, such
as cigarettes or alcohol could have influenced the results even
though all recruited participants met the inclusion and exclusion
criteria. Third, for BQ dependent individuals, we did not take
into account the influence of craving on functional connectivity
and the duration since last BQ use; which might influence the
results. Fourth, for the investigation of the acute effects of
chewing betel, it would be useful in future studies to have a
control group that did not chew betel but was otherwise
scanned similarly.
CONCLUSION

This is the first study to examine the acute and chronic effects of
BQ concurrently. In controls the effect of acute BQ chewing
significantly increased functional connectivity between
subcortical regions (including the caudate, putamen, pallidum
and thalamus); and visual brain regions (including the bilateral
superior occipital gyrus and right middle occipital gyrus
networks). These increases may relate to the acutely rewarding
and visual effects of betel produced by its arecoline. In habitual
users of betel, networks comprising the right medial OFC, right
lateral OFC, bilateral inferior temporal gyrus, right angular
gyrus, superior parietal gyrus, and right medial superior frontal
gyrus had higher functional connectivity as compared to the
controls before BQ chewing. These differences may be related to
the craving for betel.
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