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Objectives: Abnormal activity of the subgenual anterior cingulate cortex (sACC) is
implicated in depression, suggesting the sACC as a potentially effective target for
therapeutic modulation in cases resistant to conventional treatments (treatment-
resistant depression, TRD). We hypothesized that areas in the prefrontal cortex (PFC)
with direct fiber connections to the sACC may be particularly effective sites for treatment
using transcranial magnetic stimulation (TMS). The aim of this study was to identify PFC
sites most strongly connected to the sACC.

Methods: Two neuroimaging data sets were used to construct anatomic and functional
connectivity maps using sACC as the seed region. Data set 1 included magnetic
resonance (MR) images from 20 healthy controls and Data set 2 included MR images
from 15 TRD patients and 15 additional healthy controls. PFC voxels with maximum
values in the mean anatomic connection probability maps were identified as optimal sites
for TMS.

Results: Both right and left PFC contained sites strongly connected to the sACC, but the
coordinates (in Montreal Neurological Institute space) of peak anatomic connectivity
differed slightly between hemispheres. The left PFC site connected directly to the sACC
both anatomically and functionally, while the right PFC site was functionally connected to
the posterior cingulate cortex (PCC).
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Conclusions: Both left and right PFC are functionally connected to regions implicated in
depression, the sACC and PCC, respectively. These bilateral PFC sites may be effective
TMS targets to treat TRD.
Keywords: treatment-resistant depression (TRD), transcranial magnetic stimulation (TMS), anatomical
connectivity, subgenual anterior cingulated cortex (sACC), prefrontal cortex (PFC)
INTRODUCTION

Major depressive disorder (MDD) can be effectively treated in
the majority of cases by medication, psychotherapy, or a
combination of both, but more than one third of patients fail
to respond to these standard interventions and other treatments,
termed treatment-resistant depression or TRD cases (1). Chronic
depression is associated with reduced productivity and quality of
life as well as increased suicide risk, so alternative treatments for
TRD are required.

Transcranial magnetic stimulation (TMS), deep brain
stimulation (DBS), and vagus nerve stimulation (VNS) exert
antidepressant effects by modulating activity within specific
neural networks associated with emotional regulation and
cognition (2–5). Vagus nerve stimulation has been approved by
the United States Food and Drug Administration (FDA) for TRD
treatment, although not for management of acute illness (6).
Clinically significant antidepressive effects have also been
observed following chronic DBS of the subcallosal cingulate white
matter (4, 7) and subgenual anterior cingulate cortex (sACC) (8, 9)
with good patient tolerability. However, DBS treatment is invasive
and efficacy for TRD is still under investigation (10). Alternatively,
TMS is non-invasive and well tolerated, with no evidence of
cognitive impairment and few reports of medical complications.
While TMS has been approved by the FDA for TRD, its effect size is
generally modest compared to DBS (6). This lower efficacy may
result from uncertainty regarding therapeutic mechanisms and the
optimal regimens and target sites. For instance, while the prefrontal
cortex (PFC) is widely regarded as an effective stimulation site, the
precise subregions of left and right PFC evoking the optimal
therapeutic response are unclear (11–13).

Depression involves dysfunction in a distributed network of
cortical and limbic regions, including the ACC (2, 14–16).
Previous studies have suggested that DBS of the sACC can
effectively reverse symptoms of TRD (9), and is particularly
effective against the associated cognitive deficits (3, 9, 15, 16).
There is also evidence that functional connectivity of the sACC
may predict treatment response to TMS (15, 16). An early review
by Mayberg (3) suggested that normalization of sACC
hyperactivity was a prerequisite for symptom remission (3).
Indeed, reduced sACC activity has been reported following
successful treatment with a variety of methods, including TMS
(17, 18) and VNS (19). These studies suggest that the sACC acts
as a hub within a critical depression-related circuit and that
effects on activity within this circuit are strongly related to
antidepressant efficacy.

The sACC and rostral ACC (rACC) differ in anatomic
connectivity, cytology, and neurotransmitter receptor
g 2
organization (20, 21). Further, studies comparing different left
prefrontal cortex (PFC) stimulation sites found that
antidepressant efficacy was related to the functional
connectivity with deeper limbic regions, especially the sACC
(22, 23). Fox and colleagues found that the sACC and
dorsolateral PFC (DLPFC) are intrinsically anticorrelated, and
suggested that the functional link between these two regions is
strongly related to depression and treatment response (24). This
anatomic connectivity with the sACC suggests that the PFC may
be the optimal TMS site for neuromodulation. To our
knowledge, most TMS studies for MDD have applied stimuli
to the left dorsolateral PFC (DLPFC) (13, 25, 26). In present
study, we identified PFC regions of strongest anatomic and
functional connectivity to sACC as potential sites for optimal
TMS treatment response.
MATERIALS AND METHODS

Participants and Clinical Diagnosis
Two independent data sets were used in the present study. Data
set 1 consisted of twenty healthy, right-handed subjects (10 males
and 10 females, mean age=18.5 ± 1.5 years old) recruited by
advertisement from the University of Electronic Science and
Technology of China, Chengdu. None of the participants had a
history of psychiatric or neurological diseases, and none had any
contraindications for magnetic resonance imaging (MRI). All
participants signed a consent form approved by the Medical
Research Ethics Committee of the University of Electronic
Science and Technology of China after a full explanation of
study objectives and procedures. The Ethics Committee of the
First Affiliated Hospital of Jilin University (China) approved the
study protocol.

Data set 2 consisted of fifteen right-handed TRD patients (6
males and 9 females, mean age 29.7 ± 7.5 years old) and 15
healthy right-handed controls (8 males and 7 females, mean age
37.3 ± 8.5 years old). Healthy controls had no history of
psychiatric or neurological diseases. All patients were screened
independently by two psychiatrists to ensure that they met
criteria for TRD. All fifteen patients were diagnosed with a
major depressive episode of at least 2 years’ duration according
to Diagnostic and Statistical Manual of Mental Disorders-Fourth
Edition IV (DSM-IV) criteria, and all had a minimum score at
entry of 35 (37.4 ± 3.0) on the 17-item Hamilton Depression
Rating Scale (HDRS), indicating severe depression (27). A priori
exclusion criteria were a) other psychiatric disorders with the
exception of depression, such as schizophrenia, bipolar disorder,
and obsessive–compulsive disorder; b) organic causes of
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depression including heart, liver, and kidney diseases; c)
surgically implanted electronic devices or metal frame
supporting equipment precluding MRI scanning.

Data set 1 was used to construct a probabilistic tractography
map showing fibers directly connecting the PFC and sACC and
the x-y-z coordinates of peak connectivity as the optimal site for
TMS. Data set 2 was used for functional connectivity analysis to
test the reliability of the optimal TMS site generated from the
anatomic connectivity map.

Using probabilistic fiber tractography, we were able to infer
anatomic connectivity that progressed into gray matter, and
gained a comprehensive description of the connections
between the sACC and PFC. By comparing the pattern of
functional connectivity between TRD patients and healthy
controls, we then verified the rationality of the TMS sites.

Data Acquisition
All Data set 1 subjects were examined using a Signa HDx 3.0
Tesla MR scanner (General Electric, Milwaukee, WI, USA). The
diffusion tensor imaging (DTI) scheme of Data set 1 yielded 64
images with non-collinear diffusion gradients (b=1000 s/mm2)
and 3 non-diffusion-weighed images (b=0 s/mm2) using a single-
shot echo planar imaging sequence (SE-EPI). An integrated
parallel acquisition technique was used with an acceleration
factor of 2 to reduce acquisition time and image distortion
from susceptibility artifacts. From each participant, 75 slices
were collected with FOV = 256×256 mm, acquisition matrix =
128×128, flip angle (FA) = 90°, and slice thickness = 2 mm with
no gap. This method resulted in voxel-dimensions of 2×2×2 mm,
TE = 67.6 ms, and TR = 8500 ms. Sagittal 3D T1-weighted
images were also acquired with a brain volume (BRAVO)
sequence (TR/TE= 8.1/3.1 ms, inversion time = 450 ms, FA =
13°, FOV = 256×256 mm, matrix = 128×128, slice thickness = 1
mm with no gap, 176 sagittal slices, and voxel size = 1×1×1 mm).

In Data set 2, imaging was performed using a Siemens 3.0-T
MR system equipped with a SIEMENS MR HEADER coil. The
protocol (ep2d.bold.REST.2000/30.4M.6MIN.FAST.0.49)
included 64 phase encoding steps. The following acquisition
parameters were used in the fMRI protocol: echo time = 30 ms,
FOV = 256×256, field of view = 256 mm, acquisition matrix =
64×64, voxel size: 1×1×1 mm, slice thickness = 4 mm, no gap,
188 sagittal slices, TR = 2000 ms, TE = 30 ms, and FA = 90°.

Data Preprocessing and Analysis of
Data Set 1
Diffusion tensor and T1-weighted images from Data set 1 were
visually inspected independently by two radiologists for obvious
artifacts arising from subject motion and instrument
malfunction. Distortions in diffusion-weighted images caused
by eddy currents and simple head motions were corrected using
the FMRIB Diffusion Toolbox (FSL) 4.0 (http://www.fmrib.ox.ac.
uk/fsl). Skull-stripped T1-weighted images of each subject were
co-registered to the subject’s non-diffusion-weighted image
(b=0s/mm2) using the Statistical Parametric Mapping 8
(SPM8) package (http://www.fil.ion.ucl.ac.uk/spm), yielding a
set of co-registered T1 images (rT1) in DTI space. Then the
Frontiers in Psychiatry | www.frontiersin.org 3
rT1 images were transformed to Montreal Neurological Institute
(MNI) space. Seed masks and target masks were transformed
from MNI space to native DTI space using nearest-
neighbor interpolation.

Tractography was performed in diffusion space using the
FSLpackage. Voxel-wise estimates of fiber orientation
distribution were calculated using Bedpostx. Probability
distributions for two fiber directions at each voxel were
calculated using the multiple fiber extension (28) of a
previously published diffusion modeling approach (29). The
connection probability value was recorded for every seed voxel.
We also transformed the connection probability map to MNI
space and averaged the 20 individual connection probability
maps to obtain a mean probability connectivity map for the seed.
We then found the coordinate of maximum value in the mean
probability connectivity map. Fiber tracking was used to obtain
the fibers connecting the two areas. To map the anatomic
connections between the PFC and sACC, these brain areas
were defined in MNI space. The sACC was defined as that part
of the ACC located beneath the genu of the corpus callosum and
corresponds primarily to Brodmann’s area (BA)10 as well as the
caudal portions of BA32 and BA24 (20). The sACC was drawn by
hand based on BAs 10, 24, and 32. As the PFC as no clear
anatomic boundary, we defined a liberal mask including middle
frontal gyrus, superior frontal gyrus, and part of the orbitofrontal
region to map the connections between sACC and PFC. The PFC
was drawn on the structural template of MNI152. The inferior
boundary was the inferior frontal sulcus, and the posterior
boundary was the precentral sulcus.

Data Preprocessing and Analysis of
Data Set 2
We used Data set 2 to assess the accuracy of the anatomic
connectivity derived from Data set 1 and to reveal differences in
functional connectivity between TRD patients and healthy
controls. First, DTI analysis of Data set 2 was used to
demonstrate similar anatomical connectivity to normal subjects
in Dataset 1. To test the rationality of the TMS sites identified by
probabilistic tractography analysis of Data set 1, functional
connectivity preprocessing was conducted using SPM8 Data
Processing Assistant for Resting-State fMRI (DPARSF) V2.0
Advanced Edition (30) and Resting-State fMRI Data Analysis
Toolkit (REST, http://www.restfmri.net). For statistical analysis,
the contrast images of TRD patients and healthy controls were
analyzed using a two-sample t test to compare the differences in
functional connectivity between the right and left
stimulation site.
RESULTS

We used Data set 1 consisting of MRI scans from 20 healthy
subjects to examine the anatomical connectivity (probabilistic
tractography) between the sACC and PFC (Supplementary
Figure 1). A probability connectivity map was derived for both
hemispheres of each subject and mean probability connectivity
April 2020 | Volume 11 | Article 236
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maps obtained (Figure 1), yielded bilateral maximum
probability coordination (x-y-z in MNI space) as potential
TMS sites. Slight differences in connectivity were observed
between left and right PFC, with the right maximum anterior
to the left (left MNIxyz, −15, 65, 14; right MNIxyz, −15, 65, 5).
Potential PFC stimulation sites were identified as voxels with the
highest probability of connectivity to the sACC (Supplementary
Figure 2). Fiber tracking from the sACC to PFC indicated that
the inferior fronto-occipital fasciculus ran through the sACC and
the left PFC probability peak (Figure 2).

To explore the reproducibility of this PFC–sACC connectivity,
Data set 2 derived from another group of 15 healthy controls, as
well as 15 TRD patients using a different MRI scanner was
subjected to similar analysis. Again, the PFC region
demonstrated a strong probability of anatomic connectivity with
sACC. Further, while absolute values differed, the connectivity
map of TRD patients was similar to that of the healthy controls
(Figure 1), including near overlapping maximum value
coordinates. Thus, our tractography method was highly
reproducible among different populations.

Since resting state functional connectivity may differ from
anatomical connectivity, we constructed whole-brain functional
connectivity maps using the average MNI coordinates of
Frontiers in Psychiatry | www.frontiersin.org 4
maximum value in Data set 2 as ROIs. Peak functional
connectivity of the left PFC with the left sACC was located
exactly at the position of peak anatomic connectivity in both
patients and controls, but was significantly stronger among
healthy controls than TRD patients (Figure 3A). In contrast,
the right PFC was functionally connected to the posterior
cingulate cortex (PCC) (Figure 3B). Between-group
comparisons across the whole brains of Data set 2 at an
AlphaSim corrected p < 0.01 height threshold (t = 2.467, df =
28) confirmed reproducibility with anatomic connectivity
analysis across disease states and MRI scanners (Table 1).
DISCUSSION

In this study, we identified PFC sites with strong anatomical
connectivity to the sACC, and PCC that may be optimal targets
from TMS treatment of depression. Further, these sites were
reproducible across different data sets and closely mirrored
functional connectivity. In light of the strong evidence that
modulation of sACC and PCC activity can mitigate symptoms
of depression, we suggest that these PFC sites are optimal targets
for TMS treatment.
A

B

C

FIGURE 1 | Mean probabilistic anatomic connectivity maps derived from healthy controls (A, B) and treatment-resistant depression (TRD) patients (C) using the
subgenual anterior cingulate cortex (sACC) as the seed region. The connectivity map of each individual (a, n=20; b, n=15; c, n=15) was transformed to MNI space
and averaged. The prefrontal cortex (PFC) coordinate of maximum value in the mean connectivity map was identified as the optimal site for transcranial magnetic
stimulation (TMS) to modulate sACC activity. The results based on Data set 1 (A) were reproducible in Data set 2 (B, C).
April 2020 | Volume 11 | Article 236
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Depression is linked to reduced activity of the left PFC (26, 31,
32). Recently, Wang et al. (33) reported that the effective
connectivity from DLPFC to right angular gyrus predicts the
antidepressant effects of electroconvulsive therapy (ECT) for
MDD (33). Further, a recent functional connectivity study found
that dysfunctional communication between the medial PFC and
right ventral anterior insula is a major contributor to MDD
pathogenesis (34). The application of repetitive (r)TMS for
depression was initially driven by functional imaging data
showing reduced left PFC activity in depression (35, 36). Based
on empirical experience, the majority of the initial studies applied
high-frequency rTMS to the left PFC (13, 25, 37, 38). However,
low-frequency stimulation of the right PFC has also been used (17,
39) with clinically significant efficacy (37, 40). Grimm et al. (41)
found that depressed patients exhibited hypoactivity in the left
PFC during both unattended and attended emotional judgments
but hyperactivity in the right PFC during attended emotional
judgment (41), suggesting distinct forms of dysfunction in left and
right PFC–ACC pathways Our current study also provides
evidence that sites within both right and left PFC are strongly
connected to regions involved in TRD, consistent with previous
studies(13, 22, 23), and so may be effective TMS targets.

Repetitive TMS applied at a variety of sites and frequencies
has proven highly effective for inducing mood changes in healthy
controls and therapeutic effects in TRD patients. For instance,
concomitant high-frequency rTMS stimulation of the left PFC
Frontiers in Psychiatry | www.frontiersin.org 5
and low-frequency rTMS of the right PFC was reported to have
antidepressive effects. Alternatively, these regimens were
ineffective when the stimulation side was reversed (37, 40, 42),
suggesting an imbalance in frontal lobe activity (hypoactivity in
the left frontal lobe and excessive inhibitory activity in the right
frontal lobe) among MDD patients. Left and right PFC sites with
strongest anatomic connectivity also appear to have non-
overlapping functional targets, the sACC (left target) and PCC
(right target), both of which are involved in depression (41).
Therefore, analyzing the connectivity of sACC (43) and PCC
(44) could reveal the mechanisms underlying therapeutic
responses to TMS at these sites. Our study provides further
evidence that the left PFC connects directly to the sACC and the
right PFC connects to the PCC, consistent with previous studies
(22, 43, 44). Therefore, this study suggests that the antidepressant
mechanisms of TMS are mediated by modulation of left PFC–
sACC neural circuit activity and right PFC–PCC activity.

Multiple targets have been used for rTMS treatment (26) as
there is no current consensus on the optimal target for
antidepressant efficacy. Tracing direct fiber pathways from
deep regions implicated in depression, such as the ACC, to
cortical areas accessible to modulation by TMS is a novel
approach for targeting. We performed probabilistic
tractography in healthy controls and TRD patients to
determine the connectivity patterns of the sACC and PFC.
The subcallosal cingulate is connected to many ipsilateral
FIGURE 2 | Fiber tractography map, including the prefrontal cortex (PFC) and sACC (seed region). PFC targets are in red and the sACC seed region is in blue, while
fibers running through the seed region are in green. Fiber tracts connected mainly to the medial frontal areas, but also included a site of strong connectivity in the
left PFC.
April 2020 | Volume 11 | Article 236
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regions, such as the medial frontal cortex, ACC, and PCC (4),
but these regions have limited area for TMS. Here we
identified strong connection with specific sites of the left
and right PFC that may be superior targets for treating
Frontiers in Psychiatry | www.frontiersin.org 6
TRD. The left PFC site is located on the gyrus, while the
right PFC target is located on the sulcus, so the left PFC target
may be more readily activated by TMS. Nonetheless,
stimulation of both sides with distinct frequency patterns
may provide the best therapeutic effect (6, 37, 42–44).

The DLPFC position for TMS is often located using the
electroencephalography (EEG)-based “5-cm rule” or by
neuroimaging-based targeting of BA9 or BA46 (42, 45–47).
While the 5-cm rule is an easy low-cost option, it does not
account for individual differences in skull size. Further, targeting
based on BA9 or BA46 locations on neuroimages did not
substantially improve clinical efficacy compared to the 5-cm
rule (22). We suggest that the optimal target can be identified
using a TMS Navigation system and our MNI coordinates.

This study has several limitations. First, only 15 TRD patients
were examined and MDD is a heterogeneous disorder, so certain
abnormalities in anatomic or functional connectivity may have
been missed. Second, the sACC subregions connected
anatomically with the PFC were not examined.
A

B

FIGURE 3 | Whole-brain resting state functional connectivity differences between healthy controls and TRD patients. Functional connectivity ROIs were taken from
our anatomic connectivity results (coordinates shown in Figure 3). (A) Functional connectivity between the left target and sACC (seed region for the anatomic
connectivity, red circles in A) was significantly stronger in the healthy group. Only negative results are shown because a previous study reported that anticorrelation
between the PFC and subgenual cingulate (BA25) is related to depression networks (22). (B) Functional connectivity with the right PFC target. Only negative results
are shown. Red circles in Figure 3B illustrate PCC areas involved in depression (41).
TABLE 1 | Functional connectivity results in healthy controls versus depression
patients.

L/R Region cluster Peak MNI
coordinate

peak Z
score

Peak
intensity

x y z

L Limbic Lobe 60
L Anterior Cingulate 54 0 9 -12 3.62 -4.30
L Brodmann area 25 30
R Limbic Lobe 25
R Cerebelum_4_5_L (aal) 20
R Cerebelum_6_L (aal) 20 -15 -57 0 3.89 -4.30
R Calcarine_L (aal) 16
R Posterior Cingulate 14
Two sample t-test, Alphasim corrected, p < 0.01, cluster size = 19(left), cluster size = 11
(right).
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CONCLUSIONS

This study identifies sites in right and left prefrontal cortex that
may be optimal targets for transcranial magnetic stimulation
treatment of depression based on strong functional connectivity
with the posterior and subgenual anterior cingulate cortex.
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