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Studies of brain mechanisms supporting social interaction are demanding because real
interaction only occurs when persons are in contact. Instead, most brain imaging studies
scan subjects individually. Here we present a proof-of-concept demonstration of two-
person blood oxygenation dependent (BOLD) imaging of brain activity from two
individuals interacting inside the bore of a single MRI scanner. We developed a custom
16-channel (8 + 8 channels) two-helmet coil with two separate receiver-coil pairs providing
whole-brain coverage, while bringing participants into a shared physical space and
realistic face-to-face contact. Ten subject pairs were scanned with the setup. During
the experiment, subjects took turns in tapping each other’s lip versus observing and
feeling the taps timed by auditory instructions. Networks of sensorimotor brain areas were
engaged alternatingly in the subjects during executing motor actions as well as observing
and feeling them; these responses were clearly distinguishable from the auditory
responses occurring similarly in both participants. Even though the signal-to-noise ratio
of our coil system was compromised compared with standard 32-channel head coils, our
results show that the two-person fMRI scanning is feasible for studying the brain basis of
social interaction.

Keywords: functional magnetic resonance imaging, touch, somatosensory, motor, two-person neuroscience
INTRODUCTION

Humans are embedded in complex social networks where individuals interact at different temporal
scales. Most social interactions, such as verbal and nonverbal communication, occur in dyads or
groups, where people constantly strive to predict, understand, and influence each other. During the
interaction, sensory, cognitive, and emotional information is constantly remapped in the observers’
brain and used for motor actions as responses attuned to the received input (1). Thus the
interlocutors’ minds are intertwined into a shared system facilitating reciprocation (2–4) as well
as anticipation of the other person’s acts, allowing distribution of neural processing across brains to
aid, for example, problem solving.

Some aspects of human social behavior—in particular perceptual and decision-making processes
—can be studied by measuring single brains in isolation. Conventional BOLD-fMRI experiments
allow to locate brain processes related to different social functions, while intersubject correlation
(ISC) analysis based on voxelwise temporal correlation of BOLD-fMRI time series (5–7) or
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neuromagnetic activity with higher temporal resolution (8)
across subject pairs can be used to index similarity of sensory
and socioemotional information processing across subjects (9,
10). Recently this approach has also been extended to
quantifying but also similarity of person preferences and social
relationships (11). Although such data-driven analyses can be
used to map brain basis of social perception with high-
dimensional stimulus spaces, they are still essentially based on
measurement of extrinsic, fixed stimuli and lack the very
definition of social interaction, as the subjects have no
influence whatsoever on other peoples’ minds during the
experiment. This is a critical limitation as social interaction
cannot be reduced to sequential, partially parallel processing of
the input of the interacting brains, because social interaction only
emerges when the two brains (via their owners) are hooked up
together (4, 8, 12). Simply put, real-time social interaction does
not exist when two or more individuals are not engaged in the
same physical or virtual space (13).

Reciprocal social cognitive processes cannot thus be
understood completely without studying the complete
interaction unit consisting of two individuals (14). Behavioral
work suggests that social interaction tunes the individuals into a
self-organizing, interactive state. For example, humans
automatically mimic other’s emotional expressions (15), gaze
direction (16), and postures (17). Social signals, such as laughter,
also automatically attune individual not just at the level of motor
responses, but also in terms of activation of specific
neurotransmitter systems (18). Moreover, many social
processes, such as gaze following (19, 20) and turn taking
during conversation (21), take place with gaps less than 250
ms, and social interaction may lead to episodes of two-person
flow without neither of them consciously leading or following
(22). Yet, most of what we know about human social brain
functions comes from “spectator” studies where the brains are
assumed to generate responses to pre-defined stimulation (8).
Even though this approach has been successful in delineating the
brain basis of social perception, and on some occasions of social
communication, it tells relatively little about the actual
mechanisms of dynamic social interaction. Consequently,
several researchers have suggested that the spectator paradigm
and offline social cognition studies should be complemented with
real-time two-person paradigms, where two interacting
individuals constantly generate “stimuli” for each other (1, 2, 4,
23, 24).

Some aspects of human communication can be investigated
using alternated scanning of the subjects sending and receiving
information. In such an approach, the senders convey some
social information via, for example, speech or gestures, while
their brain activity as well as the communicative information are
recorded. The communicative information can then be presented
to the receiver subjects as stimuli during brain imaging, allowing
joint analysis of the brain activity of the sender and receiver
subjects. This line of work has revealed how successful
communication via speech (25, 26), hand gestures (3, 27), and
facial expressions (28) enhances similarity of neural activation
patterns across the interlocutors in a task-specific manner. This
Frontiers in Psychiatry | www.frontiersin.org 2
approach however lacks any interactivity, as the receiver subjects
are essentially viewing pre-recorded stimuli, and need not to
generate any responses to them. Recently different neuroimaging
techniques have been proposed for studying dynamic “live”
interaction. In the hyperscanning approach, two individuals
are scanned with two MRI (29–31) or MEG (32) devices
connected with an audio-video link, thus enabling interaction
of two subjects in independent devices. Furthermore, with EEG
recordings real face-to-face to interaction can be achieved in
reasonably unconstrained social interaction tasks (33).

Such natural sense of presence of another individual might be
critical for understanding the brain basis of social interaction.
For example, resting-state brain activity in nonhuman primates
is different when conspecifics are present versus absent (34). In
humans, interaction with real rather than recorded persons
elicits stronger hemodynamic responses (35), and even early
electrophysiological responses such as the face-sensitive N170
responses are amplified for real human faces versus those of a
human-like dummy (36). These findings highlight the
importance of co-presence with other people, and the
consequent changes in the way the brain processes both
internal and external cues. Consequently, to understand the
intricacies of the brain basis of human social interaction and
communication, we need techniques that allow simultaneous
recording of two individuals in the same physical space. This has
already been technically achieved with simultaneous EEG (e.g.
37) and NIRS (e.g. 38, 39) recordings, as these devices can be
easily attached to subjects measured in a conventional face-to-
face settings. Nevertheless, neither of these techniques allows
volumetric measurements of the deep brain structures, many of
which are critical for human social processes (40–42).

The Current Study
One potentially powerful approach for studying brain basis of
social interaction involves simultaneous blood oxygenation
dependent (BOLD) imaging of two persons within one
magnetic resonance imaging scanner. Such an approach would
bring both subjects into the same physical space whilst allowing
tomographic imaging of hemodynamic brain activation.
Currently, one such solution has been published, based on
decoupled circular-polarized volume coil for two heads (43,
44). We have, in turn, developed a custom-built 16-channel
(8 + 8 channels) two-helmet coil with two separate receiving
elements (45), allowing experimental setups where the subjects
were facing each other so that their feet pointed to opposite
directions in the magnet bore. In the present proof-of-concept
study we demonstrate how hemodynamic signals can be
recorded during real-time social interaction using this a novel
MRI setup so that the subject can lie parallel to each other while
sharing the same physical space in a realistic face-to-face contact.
The setup thereby allows seamless interaction between the
members of the dyad, while providing whole-brain coverage.

Because this was the very first proof-of-concept human
experiment done with our dual-coil design, we wanted to
benchmark the feasibility of the setup with a robust and simple
social interaction task, rather than setting up an overly complex
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design without knowing the potential limitations of the coil
setup. Consequently, we used social touching as the model task,
as touching is an intimate way of conveying affect and trust in
social relationships (46–48). During the fMRI experiments,
subjects took turns in tapping each other’s lip versus observing
and feeling the taps. We show that overlapping networks of
sensorimotor brain areas are engaged during executing motor
actions as well as observing and feeling social touching,
suggesting that the two-person fMRI recordings are feasible for
studying the brain basis of social interaction.
MATERIALS AND METHODS

Subjects
We scanned 10 pairs of volunteers with a mean age of 23 ± 3
years (20 subjects; 7 female–male pairs and 3 female–female
pairs). One further pair was scanned but excluded due to
excessive head motions: one of the subjects moved so that the
detector array’s sensitivity was compromised, and repositioning
was not possible due to time constraints. All subjects were right-
handed per self-report, and none of them reported any history of
neurological illness. All pairs were friends or romantic partners.
The study was approved by the Aalto University Institutional
Review Board. All subjects gave written informed consent and
were screened for MRI exclusion criteria prior to scanning.

MRI Acquisition
Data were acquired with 3-T whole body MRI system
(MAGNETOM Skyra 3.0 T, Siemens Healthcare, Erlangen,
Frontiers in Psychiatry | www.frontiersin.org 3
Germany) with both a vendor-provided 32-channel receive
head coil (reference scans) and a custom-built 16-channel (8 +
8 channels) two-head, two-helmet receive coil (anatomical
images, task-based fMRI, and resting state scan). With both
receive coils, the integrated body coil was used for transmit.
Figure 1 shows an overview of the coil and subject setup. We
originally experimented with a setup where subjects were lying
either sideways or in a supine position, while entering the gantry
from the opposite ends so that a second custom MRI bed was
used for the backwards entry. This setup was however discarded
due to subject discomfort and concomitant motion-
related artifacts.

Every scanning session consisted of two parts. First both subjects
were scanned one-by-one using normal one-person setup (head-
first supine, 32-channel coil). T1-weighted MP-RAGE images were
acquired for anatomical reference, and gradient echo (GRE) echo-
planar imaging (EPI) data were acquired for evaluating the temporal
signal-to-noise ratio (tSNR), especially in comparison with the two-
person data. Imaging parameters for the MP-RAGE scans were as
follows: repetition time (TR) = 2.53 s, echo time (TE) = 28 ms,
readout flip angle (a) = 7°, 256 × 256 × 176 imaging matrix,
isotropic 1-mm3 resolution, and GRAPPA reduction factor (R) = 2.
The parameters for the GRE-EPI were: TR = 3 s, TE = 28 ms, a =
80°, fat saturation was used, in-plane imaging matrix (frequency
encoding × phase encoding) = 70 × 70, field-of-view (FOV) = 21 ×
21 cm2, in-plane resolution 3 × 3 mm2, R = 2, effective echo spacing
(esp) = 0.26 ms, bandwidth = 2380 Hz/pixel (total bandwidth = 167
kHz), phase encoding in anterior–posterior direction, slice thickness
= 3 mm with 10% slice gap, interleaved slice-acquisition order.
Altogether 126 volumes, with 49 oblique axial slices in each, were
A B

C D

FIGURE 1 | Coil and subject setup. (A, B) Illustration of the dual coil and its arrangement in the scanner. (C, D) Subject setup inside the scanner.
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acquired during the 6 min 18 s data-collection period. Three
“dummy” scans were acquired at the beginning of each
acquisition to stabilize the longitudinal magnetization.

Next the subjects were positioned in the scanner together with
the two-head coil; the subjects were lying on their sides, facing
each other at a close distance. Localizer and GRE-EPI data were
acquired after shimming the magnet, using the semi-automated
workflow by iteratively acquiring B0 field maps and calculating
the shims for as long as the shim was deemed unacceptable. In
this phase, the subjects could be repositioned if the their field
maps appeared excessively dissimilar. The scan parameters were
the same as in the one-person setup, with the following
exceptions: in-plane matrix = 160 × 70, FOV = 48.6 × 20.1
cm2, and bandwidth = 2404 Hz/pixel (total bandwidth = 385
kHz). Moreover, the phase encoding was in subjects’ left–right
direction to avoid aliasing ghosts from one subject’s brain into
the other, and to reduce distortion and scan time by limiting the
number of phase encoding steps (to 35 per slice). The 49 slices
were oriented axially and tilted only to maximize the symmetry
of the acquisition of the two brains. During the two-person
measurements, the bodies of the subjects were in contact
(without direct skin contact) and pillows and foam mattresses
were used to make the subjects as comfortable as possible. The
subjects’ heads were stabilized using small pillows with non-
slippery surface and additional support was provided using a
large vacuum pillow that once deflated retained its shape
throughout the session.

Touching Task
Figure 2 summarizes the touching task. The subjects took turns
in repeatedly tapping (“actor” subject) the lower lip of their
partner (“receiver” subject) with the tip of the index finger, so
that both partners could also clearly see the finger movement.
This site was chosen so that that the finger movements would be
clearly visible to both subjects. Self-paced (∼2 Hz) tapping was
performed throughout the 30-s task blocks. Subjects were
stressed to minimize finger movements, because motion near
the imaging volume perturbs the magnetic field and can interfere
with the spatial encoding and introduce head motion. During the
rest blocks the subjects were instructed to hold their finger close
by but not touching the lower lip of their partner. Each task run
contained six rest–task block cycles with an additional rest block
at the end of the run. Except for the initial rest condition,
transitions between blocks were cued by pre-recorded voice
Frontiers in Psychiatry | www.frontiersin.org 4
command “Touch” and “Rest.” These were delivered to the
participants by connecting the stimulus computer’s audio
output to the magnet console to use the intercom system of
the MRI scanner. Presentation software (Neurobehavioral
Systems, Berkeley, CA, USA) controlled stimulus presentation.
After the first task run we confirmed that the subjects could hear
the voice commands. For any given run, only one of the subjects
performed the active touching task while the other focused on
feeling the taps. The roles were switched between runs. Both
subjects were always scanned twice in both roles so that
altogether four task runs with 126 EPI volumes in each
were acquired.

Resting-State Scans
Resting state scans were obtained for inspecting signal quality.
During the single-subject GRE-EPI data acquisition, the subjects
were instructed to keep their eyes open and still. Eye-blinking
was allowed. The two-person resting-state scans were always
acquired prior to the task scans, asking the subjects to lie still
with eyes open without actively looking at each other.

Image Preprocessing—One-Person Scans
The fMRI data were preprocessed in Matlab utilizing custom
code and FSL functions (49). The one-person fMRI data were
motion-corrected using FSL MCFLIRT (50). Next, slice-timing
correction was applied and the frame-wise motion within each
fMRI run was corrected using FSL function MCFLIRT after
brain extraction using BET (51) and smoothed with structure-
preserving smoothing with SUSAN (52) that employed a 6-mm
(full-width-at-half-maximum, FWHM) Gaussian smoothing
kernel. The data were rigidly (six free parameters) aligned to
the anatomical MP-RAGE scans, with narrow search space for
the alignment because the receiver intensity was spatially atypical
and prohibited the use of the standard options for several
datasets. The anatomical images were normalized to the MNI
space, and the resulting warps were then applied to the EPI
images. Data were finally smoothed using a Gaussian kernel with
8 mm FWHM.

Image Preprocessing—Two-Person Scans
Individual heads were first separated and rotated to standard
head-first supine orientation using a fixed coordinate
transformation without resampling. Next both subjects’ data
were preprocessed independently as described above.
FIGURE 2 | Experimental design. Subjects took 30-s turns in tapping the top of each other’s lip with their index finger, resulting in alternating tapping-feeling boxcar
design with complete antiphase across the subjects. Turns were indicated with commands relayed via headphones.
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Preprocessing was concluded by recombining the data of each
pair so that one subject’s data were in MNI space, and the other
subject’s data were placed nose-to-nose with that to mimic the
actual positioning during the scanning.

Signal-to-Noise Ratios
Coil performance was assessed with temporal signal-to-noise
ratio (tSNR) of resting-state fMRI scans comprising of 126 time
points. The FSL BET program was used to extract the brain
voxels from the images, after which the data were motion-
corrected using FSL MCFLIRT. Next, voxelwise tSNR values
were calculated as the ratio of the mean signal over the
measurement, divided by the standard deviation (std) at each
voxel. For comparison, similar analysis was carried out for the
one-person resting-state data.

Task-Evoked BOLD Responses
Task-evoked BOLD responses were analyzed in FSL using the
General Linear Model (GLM). The main blocks were modeled at
the stimulus periodicity, and the voice instructions were modeled
as 3-s events at the beginning and end of each block (see Figure
2). A canonical double-gamma hemodynamic response function
(HRF) was convolved with the timeseries of tactile stimulus
blocks and voice events. Also, the motion parameter estimates of
both of the simultaneously scanned heads were included as
nuisance regressors for both heads individually; in other words,
both subjects’models had their own as well as the other subjects’
motion parameters as nuisance covariates. The other head’s
motion estimates were included to gain resilience against
motion-related field or signal fluctuations extending from one
head to the location of the other. The analyses included the entire
two-head volumes, allowing quantification and visualization of
Frontiers in Psychiatry | www.frontiersin.org 5
subject-specific and shared activation patterns across the dyad.
In a complementary methodological approach, we used
independent-component analysis with the GIFT toolbox
(http://icatb.sourceforge.net/) on the joint dual-head EPI data,
and we assessed the temporal profile of the top extracted
components against the experimental stimulus model.
RESULTS

Dual-Coil Performance
Figures 3A, B show a representative dyad’s normalized data for
T1 and EPI sequences. tSNR was compared between resting-state
scans of the two subjects imaged simultaneously with the two-
person coil and the same subjects imaged alone with standard 32-
channel head coil. Figure 3C shows the mean tSNR in a sagittal
plane of a representative dyad and in a roughly corresponding
plane of one of the subjects of this dyad measured individually.
The scales of the color bars are different by a factor of 1.5,
corresponding to the theoretical scaling factor of SNR resulting
from the differences in acquisition bandwidth (inversely
proportional to the square-root of the bandwidth). As expected,
the tSNRs of the two-person measurements were almost 50%
lower than those of the single-subject measurements, with most
salient drop of signal in the frontal cortices.

Regional Effects in the GLM
The voice cues modeled as 3-s events elicited reliable bilateral
auditory-cortex activations similarly in both subjects regardless
of their role as the actor or the receiver (Figure 4A). In turn, the
touching task resulted in differential activation patterns in the
A B

C

FIGURE 3 | Representative single-dyad T1 (A) and T*2 (B) -weighted images acquired with the dual coil. (C) tSNR for the dual coil and (D) conventional Siemens 32-channel
head coil. Note that in due to preprocessing, the data from the dual coil pairs in panel (C) are further away from each other than they actually are (c.f. panel B).
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somatosensory and motor cortices depending on whether the
subject was tapping or receiving taps (Figure 4B and Figure S1).

We next evaluated the consistency of the auditory and
somatosensory activations across individual subjects. To that
end, we binarized the first-level activation maps for the verbal
instructions and tactile tasks, and generated cumulative
activation maps where voxels indicated in how many subjects
task-dependent activations were detected at the a priori
threshold (Figure 5). This analysis confirmed that the evoked
auditory responses could be detected practically in all the
subjects, while the magnitude and detectability of the
somatosensory responses was significantly more variable.

Independent-Component Analysis (ICA)
ICA (Figure 6) applied on the combined data of the two subjects
revealed two clear components during the task: IC1 centrally
involving the sensorimotor network, and the IC2 involving the
auditory cortices and lateral frontal cortices. Both these
components were shared with the subjects, implying that
similar auditory and somatomotor activity patterns were
present in both subjects, irrespectively of whether they were
currently executing versus feeling the touches.
DISCUSSION

Our results show that hemodynamic activity can be reliably
measured from two interacting subjects’ brains within one
scanner using a dual-helmet setup with two separate coil
arrays, and that this technique can be used for studying
elementary social cognitive functions, such as interpersonal
communication via touching. Although the SNR of the dual-
helmet coil was compromised (see Figure 3) compared with a
conventional 32-channel head coil (53), the task-dependent BOLD
responses were task- and region-specific: auditory cues activated
the auditory cortex similarly in both subjects (as they both heard
Frontiers in Psychiatry | www.frontiersin.org 6
the same cues), while the somatosensory and motor activations
varied depending on which subject was actively tapping the other.
The cues however appeared to alert the acting subject more than
the reacting subject, as reflected by activation of the parieto-
occipital cortex (precuneus). ICA also revealed activation of
sensorimotor and auditory networks in both subjects. Altogether
our results highlight how sensorimotor networks “resonate” across
individuals during tactile interaction and confirm that fMRI with
our novel dual-coil design is a potentially useful tool for studying
brain basis of social interaction.

Performance of the Dual Coil
GLM revealed that specific task-dependent fluctuations in
hemodynamic activity can be picked up with the setup. Despite
relatively modest sample size, the contrasts of interest (tactile,
motor, and auditory activations) were significant at the a priori
FDR-corrected statistical threshold. However, SNR of the dual
coil was clearly inferior to a conventional 32-channel head coil.
An important source of discrepancy in the tSNR between the
two- and the single-subject setups is the smaller number of coil
elements in each of the helmets in the two-person coil in
comparison to the one-person coil (8 vs. 32). The overall
quality and geometry of the coil also matters: while the two-
person coil is a working prototype, the 32-channel coil is the
state-of-the-art product of the magnet vendor. The homogeneity
of the main magnetic field (B0) is another important factor. The
second-order shim coils cannot achieve the same degree of
homogeneity for the two heads than for a single round object,
and the B0 at the edges of the imaging volume is, to begin with,
less homogeneous than in the center of the magnet. For these
reasons, the water peak is wider in the two-person case.

Also, as the two heads are typically of somewhat different size,
the flip angles differ between the heads. Moreover, as the heads
after shimming remain in different magnetic fields (and often
result in a two-peaked water spectrum; the phase maps of the
individual brains are relatively even, but have different offsets),
the magnetization transfer due to fat saturation tends to reduce
A

B

FIGURE 4 | Main effects of auditory cue (A) and the touching task (B) for the actor and receiver subjects. The data are thresholded at p < 0.05, FDR corrected.
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the signal of one head more than of the other, with fat saturation
performance varying correspondingly. The homogeneity of the
tSNR in the brain is also compromised due to the absence of coil
elements in the anterior parts of the brains (see Figures 1 and 3).
This drop is similar to what occurs when the anterior part of the
32-channel coil is removed and only the posterior elements are
Frontiers in Psychiatry | www.frontiersin.org 7
used for imaging. A final reason that influences the tSNR is the
subject comfort and stability, which in the two-person setup are
worse than in the normal setup, further compromised because
the subjects need to be scanned in close proximity and in a
sideways position. We tried to alleviate this problem by keeping
the experimental runs short and by padding the subjects well, as
A B

FIGURE 6 | (A) Two representative independent components (ICs) and (B) their time courses extracted from the data.
FIGURE 5 | Cumulative map of the binarized (active / inactive) single-pair level activation maps for the auditory cues and touching task. Color bar indicates the number of
subjects where significant activations were observed in the first-level analyses. Note that this analysis does not differentiate which subject was active in the tapping task.
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well as using both subjects’ motion parameters as nuisance
regressors in the analysis. It is however obvious that future
studies need to implement more effective prospective means
for motion control, such as neck or head restraints.

Simultaneous Measurement of Interacting
Individuals
In contrast to conventional single-person MR imaging, the
present two-person functional imaging approach provides
novel means for understanding the neural basis of human
social interaction. During social interaction, the interaction
partners’ brains need to continuously anticipate as well as
respond and adjust to incoming signals. A critical question is
whether these sensorimotor loops function only recursively, as a
cascade of third-person action-response processes? For example,
a dialogue between two persons becomes fully incomprehensible
if one persons’ speech fragments are removed from the
recording. Brains are coupled with each other via behavior,
and they influence each other via extracranial loops: Motor
actions conveyed by one individual are interpreted by means
of the sensory systems of another, and converted to sensorimotor
format for promoting action understanding (1). The present 2-
person fMRI setup provides means for studying how these loops
are established during real-time interaction, as the evolving
temporal cascade of sender-receiver operations in the social
interaction can be measured continuously.

Intuitively two-person neuroimaging sounds like an
outstanding means for analyzing social interaction, because it
allows quantifying the dynamic interaction between two brains
similarly as such interaction occurs in real life. Yet after initial
demonstrations of the feasibility of the two-person
hyperscanning fMRI technique (30), it is surprising how little
work has been conducted in this domain given the prominence
of other individuals to practically all aspects of our lives (54). For
example, by the time of writing this article, searching Web of
Science for “fMRI and hyperscanning” yields only 52 hits (of
which 15 are original articles actually using fMRI
hyperscanning), whereas searching for “fMRI” yields no less
than 70,460 hits. One likely reason for the paucity of fMRI
hyperscanning studies is that such experiments are inherently
difficult to carry out and analyze. The two-person approach adds
significantly to the complexity of the data—not just due to the
doubled number of analyzed voxels, but due to the interactive
and temporally evolving nonlinear nature of real social
interaction. It is thus possible that this line of work has not
increased our knowledge on social interaction as much as the
extra complexity would warrant. But it is also possible that we
have not yet asked the best questions with the two-person
neuroimaging setups, and maybe we need to adopt a new
theoretical framework for measuring and analyzing brain
signals emerging from social interaction, rather than just
scanning two brains at the same time using traditional
approach with pre-determined stimulus models. During social
interaction, the interlocutors constantly generate “stimuli” for
each other in an adaptive fashion, meaning that one potentially
powerful approach involves careful recording and annotation of
Frontiers in Psychiatry | www.frontiersin.org 8
the behavioral dimensions of the social interaction as it occurs
during the experiment, and using that data for post-experiment
generation of the subject-specific stimulus models. This
approach obviously leads to a high-dimensional stimulus space
that again can be capitalized in the analysis: we do not necessarily
know which features of social interaction form the most
important dimensions when generating a classic stimulation
model (55). On the contrary, when the stimulus model is
generated based on the subject behavior during the
experiment, the critical dimensions do not need to be known
in advance but the research may aim at constructing them based
on the data.

Practicality of the Two-Person
Imaging Setup
We had to position our subjects into close proximity with each
other due to the limited size of the transmitting body coil but also
to provide a shared interpersonal space, allowing, for example,
joint manipulation of objects. However, this intimate setting
likely led to breaching the subjects’ peripersonal spaces,
potentially influencing social processes because close social
proximity may feel uncomfortable (56, 57). Accordingly, this
setup is best suited for scanning subjects who know each other
well enough, and the intimacy may also yield biases in subject
selection. For the same reasons, this type of dual-coil imaging
might be impossible for patient populations with disorders
involving social interaction. An optimized version of the coil
design could involve a setup comparable to two conventional
head coils with subjects' vertices aligned against each other, so
that both subjects can be scanned in supine position while they
enter the scanner from opposite ends of the bore. Although
subjects cannot directly see each other, eye contact can be
arranged using a mirror system. Our setup only had external
auditory stimulus delivery system for the subjects. In theory, it
would also be possible to project visual stimuli to the subjects,
but due to the close proximity of the subjects’ faces this is deemed
impractical. Our proof-of-concept study also revealed that the
dual-coil setup is significantly less comfortable than conventional
32-channel head coil. Subject setup and shimming are slow, and
the scanning position is difficult to maintain over prolonged
periods of time. Interlocking of the head coils and close
proximity of subjects also increased susceptibility to motion.
Accordingly, we tried to maximize subject comfort by limiting
the scanning time into short blocks; in our experience the current
scanning time (four 6-min sessions plus anatomical images and
preparations) was close to the maximum that subjects can
comfortably do.

Limitations and Future Directions
In this study we resorted to conventional moderately accelerated
fMRI acquisitions. However, recent advances in multi-band
excitation, to improve temporal resolution, and parallel
transmit, to even out the flip angles in the two potentially very
different sized heads, could greatly benefit the two-person MRI
setup. The SNR for the dual coil was significantly worse than that
of the conventional 32-channel head coil, particularly in the
April 2020 | Volume 11 | Article 279
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frontal cortex due to multiple factors pertaining to coil geometry
and the low number of channels. This lacking signal in frontal
cortex is a limiting factor when it comes to investigating social
interaction, for which the frontal cortex acts as a central hub
region (58). However, many social processes emerge in regions
where the coil system has adequate signal [such as posterior
temporal and parietal cortices (16, 40, 59)], thus care must be
taken when deciding what sort of social tasks can be studied with
the present setup. Additionally, future benchmarking with
variable tasks and experimental setups should be conducted to
evaluate what types of tasks are ultimately feasible for this type of
dual-coil imaging setup. Future developments of the coil setup
should strive to maximize coil coverage of the scalp more evenly,
and with higher-density coil arrangements. Such new devices
would also allow more efficient control of subject motion: the
limited contact of the current coil design with the scalp,
combined with the sideways scanning position makes the setup
sensitive to head motion.
CONCLUSIONS

We conclude that two-person fMRI is a feasible and potentially
powerful tool for studying brain dynamics of real-time social
interaction. Even though the signal quality was compromised
compared with state-of-the art head coils, our results show that
our dual-head coil yields sufficient SNR for quantifying the
dynamics of the real-time two-person interaction. This proof-
of-concept study revealed that it is possible to measure good-
quality hemodynamic signals simultaneously from two brains
with one scanner. The two-person fMRI approach presented in
this study complements the existing fMRI and MEG
hyperscanning and face-to-face EEG and fNIRS techniques by
allowing tomographic imaging of brain activations of two
interacting subjects in face-to-face settings. Even though both
subjects generated tactile stimuli to each other in the experiment,
the task was still externally controlled. Our data however suggest
that in the future this methodology can be used for quantifying
brain activation in dyadic, unconstrained, and naturalistic
social interaction.
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