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Mindfulness Based Cognitive Therapy (MBCT) was developed to combine methods from
cognitive behavioral therapy and meditative techniques, with the specific goal of
preventing relapse in recurrent depression. While supported by empirical evidence from
multiple clinical trials, the cognitive mechanisms behind the effectiveness of MBCT are not
well understood in computational (information processing) or biological terms.

This article introduces a testable theory about the computational mechanisms behind
MBCT that is grounded in “Bayesian brain” concepts of perception from cognitive
neuroscience, such as predictive coding. These concepts regard the brain as
embodying a model of its environment (including the external world and the body)
which predicts future sensory inputs and is updated by prediction errors, depending on
how precise these error signals are.

This article offers a concrete proposal how core concepts of MBCT—(i) the being mode
(accepting whatever sensations arise, without judging or changing them), (ii) decentering
(experiencing thoughts and percepts simply as events in the mind that arise and pass),
and (iii) cognitive reactivity (changes in mood reactivate negative beliefs)—could be
understood in terms of perceptual and metacognitive processes that draw on specific
computational mechanisms of the “Bayesian brain.” Importantly, the proposed theory can
be tested experimentally, using a combination of behavioral paradigms, computational
modelling, and neuroimaging. The novel theoretical perspective on MBCT described in
this paper may offer opportunities for finessing the conceptual and practical aspects
of MBCT.

Keywords: Mindfulness Based Cognitive Therapy (MBCT), being mode, decentering, cognitive reactivity, Bayesian
brain, predictive coding, active inference
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INTRODUCTION

Mindfulness Based Cognitive Therapy (MBCT) is an evidence-
based psychotherapeutic approach that was designed as a
treatment for relapse prevention after repeated episodes of
depression (1, 2). MBCT was originally developed based on
theoretical concepts about the origin of depression and
potential mechanisms of relapse (3–5). One central idea in
these concepts concerns cognitive reactivity as a risk factor for
relapse of depression. In brief, in periods of low mood, negative
thinking patterns that are associated with negative emotions and
painful bodily sensations are thought to be reactivated
automatically and may lead to relapse of depression by self-
reinforcing cycles of ruminative thinking; this, in turn, is
assumed to strengthen the association between dysphoria and
depressogenic thinking and to increase the probability that
ruminations are triggered in future episodes of low mood (1, 6,
7). In order to interrupt and prevent these processes, a core
strategy of MBCT is the cultivation of mindfulness skills, derived
from Buddhist traditions (8–11), which are supposed to target
this self-perpetuating process.

The clinical efficacy of MBCT for preventing relapse after
three or more depressive episodes has been demonstrated by
multiple randomized control trials (6, 7, 12–19). By contrast, so
far, the mechanisms and factors that mediate the effects of MBCT
are not fully understood, nor whether these mechanisms match
those of the theory behind MBCT [for review, see (20)]. As for
other psychotherapeutic approaches (21), a precise
understanding of cognit ive and neurophysiological
mechanisms that mediate therapeutic effects are important in
order to predict and optimize treatment outcomes, guide
treatment selection for individual patients, and finesse existing
therapeutic approaches (21).

This article offers a novel perspective on potential mechanisms
of MBCT that derive from computationally inspired theories of
brain function. Specifically, the view presented in this paper draws
upon Bayesian concepts of perception and action that feature
prominently in contemporary cognitive neuroscience (22–25). In
the following, we refer to these concepts as the “Bayesian brain
hypothesis” (26). These theories assume that the brain constructs a
model of “the world” (i.e., the physical and social environment, but
also the body) which guides both perception and action. In
particular, this article refers to two concepts: predictive coding
which regards perceptionasBayesian inferenceunder ahierarchical
model about the world (27, 28); and active inference that explains
action selection as a belief-fulfilling process (29–31). These
approaches are united by one overarching idea: that the brain’s
overall goal is to minimize surprise (or prediction error) about
sensory inputs (22, 32).

There are several reasons why it seems useful to examine
MBCT from the perspective of the Bayesian brain hypothesis.
First, Bayesian brain theories formalize and make testable
predictions about cognitive processes that are of relevance for
understanding the human mind in health and disease. Generally,
the investigation of mental disorders by Bayesian models of
cognition has become a very active field of research [for reviews,
{25, 31, 33, 34)].
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Second, key central constructs of the cognitive theories
behind the development of MBCT—including the “being
mode,” decentering, and reactivity (2, 4)—can be understood
in terms of processes inherent to Bayesian theories of cognition.
This article explicates these conceptual bridges in order to
provide a complementary perspective on mechanisms of MBCT.

Third, this novel perspective facilitates linking MBCT to
neurophysiological mechanisms. This is because numerous
neurophysiological studies have begun testing key mechanisms
proposed by the Bayesian brain hypothesis. For example, studies
using functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG) have demonstrated that brain
activity contains signals which reflect processes as
mathematically predicted by Bayesian brain theories (35–38).
Given a link between Bayesian concepts of cognition and MBCT,
neurophysiological readouts of this sort might become useful as
markers of treatment outcome in MBCT and may complement
classical self-report measures (e.g., questionnaires) and clinical
interviews in this regard.

This article is not the first to address the question whether
potential mechanisms of contemplative practices, including
mindfulness, could be related to “Bayesian brain” concepts; in
particular, see Farb et al. (39) and Lutz et al. (40). Farb et al. (39)
examined mindfulness as one example of how contemplative
practices could be understood in terms of predictive coding. Lutz
et al. (40) discussed how an influential phenomenological model
of focused attention meditation (41) could be recast in terms of
active inference.

By contrast, this article focuses on MBCT as a specific
psychotherapeutic approach to depression. To the best of our
knowledge, this paper (and the thesis it is based on; (42)
represents a first attempt to understand therapeutic
mechanisms of MBCT in terms of concrete processes predicted
by the Bayesian brain hypothesis. In order to keep the article
accessible for a general readership, this article restricts itself to a
conceptual analysis and keeps mathematic formulations to a
minimum. The reader who is interested in detailed mathematical
treatments of the processes discussed is referred to existing
literature (27, 43, 44).

Thearticle is structuredas follows.Followingabrief reviewof the
theoretical foundations of MBCT, it summarizes the general idea
behind the Bayesian brain hypothesis and explains some of the key
terms and concepts. We subsequently introduce a Bayesian
perspective on MBCT that relates some of the key concepts in
MBCT (doing and being modes, decentering, reactivity) to
processes proposed by Bayesian theories of cognition. The final
section discusses how the implications of the Bayesian perspective
onMBCTcould be tested in experimental studies andhow thismay
help improve clinical practice.
MINDFULNESS BASED
COGNITIVE THERAPY

Depression is one of the world’s leading causes of disability (45,
46). It frequently displays a chronic course, with multiple
occurrences of recovery (remission) and recurrence (relapse)
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(47). MBCT was developed as a therapy to prevent relapse in
patients with previous episodes of depression (1, 2). This
development was based on cognitive models of vulnerability to
depression, in particular, the theory of Interacting Cognitive
Subsystems (ICS) (48–50) and the Differential Activation
Hypothesis (3, 51, 52). In addition, ideas and concepts from
Buddhist philosophy played an important role for the
development of mindfulness-based interventions, e.g.,
Mindfulness-Based Stress Reduction (MBSR) (10) and
subsequently MBCT (1, 6). For detailed accounts, the
interested reader is referred to (1, 4, 6).

Pathomechanistic Concepts of Depression
Relapse in MBCT
During depressive episodes, low mood frequently coexists with
negative thinking patterns, painful emotions, and disturbing
body sensations (53). Following successful remission, the
probability of future relapse is high but difficult to predict for
individual patients (54–57). Importantly, the more frequently
depressive episodes have been experienced in the past, the more
vulnerable the individual becomes to relapse (58).

What causes this vulnerability? Following the work by
Teasdale and colleagues (51, 52), MBCT builds on the notion
that cognitive reactivity, “the tendency to react to small changes
in mood with large changes in negative thinking” (1, p. 30),
represents one primary source of vulnerability [for a review of
empirical findings, see (59)]. Generally, the theory behind MBCT
assumes that the higher the reactivity of an individual, the greater
the vulnerability of this individual for recurrences of depressive
episodes; this has been confirmed empirically (59). More
specifically, in periods of even mild dysphoria, cognitive
reactivity is thought to trigger negative thinking patterns that
are associated with painful emotions and bodily sensations.
These negative thoughts and affective experiences may
reinforce each other, resulting in a vicious cycle that ultimately
leads to recurrence of depression (5–7). Importantly, with each
episode of depression, the associations between depressed mood
and negative thinking patterns are thought to be strengthened,
increasing the likelihood that depressogenic ruminations are
reactivated in future moments of dysphoria. As a consequence,
MBCT is based on the premise that the risk of relapse can be
reduced if one becomes aware of the reactivation of negative
thinking patterns during dysphoria and learns to disengage from
the self-reinforcing cycles of ruminations and emotions.

A key concept in MBCT is that cognitive reactivity and the
vicious cycle described above is sustained by a particular mode of
mind—the so-called “doing mode” [for a summary of concepts
of modes of mind in MBCT, see (60)]. This particular mode of
mind sets in when negative thinking patterns and associated
emotions and bodily sensations are recognised (2, 61).

Generally, the doing mode is activated by a discrepancy
between desired and actual experiences (e.g., thoughts,
emotions, bodily sensations). Once activated, the doing mode
elicits actions that are predicted to minimize this discrepancy,
monitors the consequences, and reinstates further action if the
discrepancy has not been reduced yet. The doing mode is not
pathological per se but represents a goal-oriented mode that
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draws upon experience and models for predicting the future. It is
usually helpful, particularly in application to concrete problems
of the external world. “It is natural, then, that we should turn to
this same doing mode when things are not as we would like them
to be in our personal, internal worlds—our feelings and thoughts,
or the kind of person we see ourselves to be. And this is where
things can go terribly wrong.” (1, p. 68).

In other words, the doing mode can become harmful when
applied to problems which we cannot influence or for which
there is no immediate solution, or when a perceived discrepancy
is assigned emotional significance even though it is just a fleeting
event. In these cases, mental activities elicited by the doing mode
are futile and get stuck in ongoing monitoring whether perceived
discrepancies have decreased; this manifests as ruminations,
increases distress, and “binds” the negative emotional state to
the thinking pattern (62). When the doing mode becomes
problematic in this manner, it is also referred to as the
“driven-doing mode” (1, p. 69).

These notions of vulnerability to relapse, based on the
concepts of cognitive reactivity and the doing mode, have been
guiding the development of MBCT. MBCT brings together
techniques for mindfulness meditation—in particular from
MBSR (10, 63)—with elements of cognitive therapy (CT). A
central aim of MBCT is to increase the patient’s awareness of the
rapid, automatic reactivation of negative thinking patterns
during moments of dysphoric mood and the unhelpful
activation of the doing mode. To achieve this, mindfulness
meditation serves to cultivate a different mode of mind, the
“being mode.” This mode of mind differs from the doing mode as
it does not aim to reach a certain goal but is explorative and
experiential (1). In other words, the being mode allows
sensations to be as they are—in this moment, without any
interpretation or evaluation, and without any urge to change
them. It is thus anchored in the present moment whereas the
doing mode is required to predict the future and draws from
experience in the past. Additionally, the being mode involves a
“decentered” perspective on the working of the mind.
Decentering, a further core construct of MBCT, means that
thoughts, emotions, and sensations are simply observed as they
arise and pass, without engaging with them. This enables the
individual to view these occurrences simply as temporary and
automatic mental events, but not as defining the “self” or
constituting any “truth” or “facts” about reality. Decentering is
therefore also often referred to as meta-awareness (4, 64, 65).

Structure of the MBCT Program
MBCT is classically taught as an 8-week program that serves to
cultivate one’s ability to activate the being mode and to stimulate
the growth of decentering skills. The following represents an
extremely brief summary; for a detailed description, see (1).

In MBCT, a variety of formal meditation practices are
introduced where the individual pays attention to a particular
focus in a non-striving and non-judgmental way. Whenever
attention drifts off, the individual is invited to simply
acknowledge this mind-wandering and to gently reorient
attention back to the previous focus (4). The practices
encourage the individual to recognize when the doing mode is
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taking over and to engage in the being mode instead. Through
practice, this approach increasingly allows one to identify the
problematic deployment of the doing mode (i.e., driven-doing
mode) in everyday life and to disengage from this purposefully in
later stages of the program. In all practices, emphasis is placed on
the attitude by which attention is redirected, namely in a most
gentle, kind, non-judgmental and compassionate fashion. This
attitude is particularly important as it allows the individual to
turn towards any painful experiences and resist the urge to wish
for change and problem solving.

In addition to mindfulness meditation, MBCT incorporates
elements of CT, including psychoeducation (for example, that
dysphoric mood can trigger negative thinking patterns which, in
turn, can trigger emotions and bodily sensation, or vice versa).
Additionally, it is emphasized that thoughts are not facts, but
rather passing mental events that do not reflect the “self” and
which one does not have to identify with. However, there is one
fundamental difference between a “classical” CT approach and
those CT elements used in MBCT. Whereas regular CT aims to
change the content of negative thinking, MBCT does not try to
alter thought content but its relationship with emotion and
bodily sensations (1, 4). This derives from the rationale that
changing the content effectively requires the use of the goal-
oriented doing mode. This is exactly the opposite of what MBCT
tries to cultivate—that is, to foster the being mode in general and
find a more appropriate balance between doing and being mode.

In summary, central goals of MBCT practice include the
reduction of cognitive reactivity—which is thought to convey
vulnerability to depressive relapse—and to take a more
decentered perspective on transitory mental events such as
thoughts, emotions, and bodily sensations. To achieve this,
MBCT aims at cultivating the being mode or, more specifically,
the flexibility to switch between being mode and doing mode,
depending on which has greater adaptive capacity in a given
context. Below, we will examine how these core features of
MBCT can be understood in terms of processes that play a
central role in Bayesian theories of brain function, and how this
interpretation may foster a better understanding of the
therapeutic effects of MBCT in cognitive and neuronal terms.

Empirical Evidence
The effectiveness of MBCT for reducing risk of relapse for
patients with multiple previous episodes of depression has
been demonstrated by several randomized clinical trials (6, 7,
12–15, 18, 19, 66) and meta-analyses (67, 68). By contrast, it is
less clear whether the mechanisms of change match those
suggested by the theoretical framework behind MBCT—and
how this would best be tested using methods beyond subjective
self-report. A recent systematic review of variables that might
predict or mediate the effects of MBCT on treatment outcome
(20) emphasized the need for more rigorous studies to examine
causal specificity. Notably, while there are numerous
neuroimaging studies on mindfulness [e.g. (69–73)] and
comprehensive reviews [e.g. (74, 75)], so far very few empirical
studies have specifically examined the neural processes that
underpin MBCT (76).
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The next section turns to Bayesian theories of cognition and
brain function that offer a novel perspective on potential
mechanisms of MBCT and could facilitate the design of empirical
studies that employ behavioral and neuroimaging readouts.
THE “BAYESIAN BRAIN THEORY”

The “Bayesian brain theory” has grown in popularity over the
last few decades and is presently one of the most influential
theories in cognitive neuroscience (for review, see Friston, 22). It
refers to the idea that the brain uses probability theory, and
specifically Bayes’ theorem, to infer the states of the world that
give rise to the sensory inputs it receives.

The use of Bayesian theory for explaining perception has a
long history in cognitive science and neuroscience. It dates back
to work by Helmholtz in the late 19th century (77) who suggested
that perception corresponds to “unconscious inference.” More
recently, Gregory (78) used the example of visual illusions to
argue that perception could be understood as Bayesian inference.
However, this proposal was mathematically informal, and it is
only in the past two decades that the Bayesian brain theory
evolved into a detailed description of perception. Several recent
reviews are available (27, 79).

According to a Bayesian view on perception, the brain creates
and continuously updates a model of the external world (including
the physical environment but also the body), based upon past
experience and homeostatic needs (25) (Figure 1A). This model is
necessary for the brain in order to infer the state of theworld. This is
because the brain has no direct access to the world: the only
information it receives are sensory inputs that are both noisy and
ambiguous. For example, the visual inputs that the retina receives
are ambiguous: the same image can result from a variety of objects
when conditions of lightning, visual angle, etc. are changed, and the
brain must therefore infer the state of the world that most likely
caused the retinal image (80). This inference is thought to rest on
Bayes’ theorem and requires knowledge or beliefs aboutwhich state
is most likely a priori. In science, this is also known as an inverse
problem: given some observations (sensory inputs), the challenge is
to infer what the external causes are (81).

Bayes’ theorem dates back to the 18th century and was
developed by the Presbyterian priest Thomas Bayes (83). In a
cognitive science context, it can be understood as describing how
“beliefs” should be updated when one receives new information.
Here, the term “belief” denotes a mental representation that an
individual holds and which may reflect prior experience. Beliefs
can concern concrete (e.g., physical properties of objects in the
world) or abstract (e.g., the intentions of other people) entities of
the world. To accommodate inevitable uncertainty, beliefs have a
probabilistic representation and correspond to probability
distributions; they are thus characterized by statistics like
expectation (mean) or precision (inverse variance), see Figure
1B. Furthermore, beliefs can depend on each other and
collectively constitute a model of the world. For reviews of
probabilistic concepts of cognition, see Kersten and Yuille (80),
Griffiths et al. (84) and Petzschner et al. (79).
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https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Manjaly and Iglesias A Computational Theory of MBCT
Concretely, Bayes’ theorem describes how an initial belief (or
prior information) about a particular quantity is integrated with
or updated by new observations (i.e. sensory input), resulting in
an updated belief (or posterior probability); see Figure 2.
Equivalently, it can be understood as inference about a
quantity x, given an initial belief and new observations y.
Mathematically, a short form of writing Bayes’ theorem is:

p x yj Þ∝ p yð jxð Þp xð Þ (1)
Frontiers in Psychiatry | www.frontiersin.org 5
Here, p(x) represents the “prior”, i.e., information that is
available about the quantity x, prior to receiving new
information. p(y|x) is the so-called “likelihood” and denotes
the new information or data. In the brain, this is equivalent to
sensory inputs y caused by the quantity x, as discussed below.
Finally, p(x|y) represents the conclusion or inference and is
called the “posterior.” Equation 1 says that the posterior
probability is proportional to the product of likelihood and
prior. For continuous variables, the integral of the right side of
A

B C

FIGURE 2 | (A) Graphical summary of Bayes’ theorem (see Eq. 1) for the case of Gaussian probability distributions. It illustrates that the posterior represents a
compromise between prior and likelihood, depending on their relative precision. PE is the abbreviation for “prediction error.” To revisit the example from Figure 1B, let
us consider perception of temperature. The actually perceived temperature (posterior belief) is a compromise between the expected or predicted temperature (prior)
and the sensory input (likelihood). The posterior belief can also be understood as updating the prior belief, where the magnitude of the belief update depends on the
prediction error (PE) and the relative precisions (inverse variance) of the prior and the likelihood. In this example, the precision of sensory input (likelihood) is higher,
therefore the posterior is closer to the likelihood. This panel is adapted from Figure 2 in Haker et al. (82), with permission. (B) When the precision of the prior belief is
higher than the precision of the data (likelihood), a small belief update results, i.e., the posterior stays close to the prior. (C) When the precision of the data (likelihood)
is higher than the precision of the prior belief, a large belief update results, i.e., the posterior moves more strongly towards the data.
A B

FIGURE 1 | (A) Schematic summary of the “Bayesian brain” notion that the brain contains an internal model consisting of beliefs about the states of the
environment. These give rise to predictions about sensory inputs. The discrepancy between the actual and the predicted sensory inputs (prediction error) serves to
update the model. Adapted from Figure 3 in Haker et al. (82), with permission. (B) An illustration of the concept of “beliefs” as probability distributions. Here, we
consider Gaussian probability distributions (or, more precisely, densities) that are characterized by an expectation (or mean; represented by the vertical dashed line)
and precision (inverse variance; symbolized by the horizontal double arrow). The x-axis (red) indicates the entity that the belief represents (e.g. the temperature of a
particular object). The y-axis (violet) represents, simply speaking, the probability that is assigned to each possible instantiation of this entity (in the above example: the
probability that object temperature has a particular value).
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Equation 1 (product of likelihood and prior) over x has to equal
one; for discrete variables, the same holds for the sum over x.
Visually, this means that the larger the width of a distribution,
the shorter its height (Figure 2). The width of the distribution
represents the variance, and the inverse of variance is called
precision; this definition holds both for continuous and discrete
quantities. As an example, Figure 1B shows the expectation
(mean) and precision of a continuous quantity x that is normally
distributed. Precision can be thought of as the confidence one
assigns to a prior belief, or as the information (signal-to-noise
ratio) one ascribes to sensory inputs.

Precision plays a central role in Bayesian inference. Bayes’
theorem in Eq. 1 can mathematically also be re-expressed as a
precision-weighted belief update. As shown by Figure 2, the
posterior is always a compromise between the prior and the
likelihood, where the relative precision of the two determines
the posterior’s shape and location. For example, if the precision
of the new data (likelihood) is higher (i.e. narrower curve) than
the precision of the prior information, then the posterior moves
closer to the likelihood (Figure 2C). By contrast, if the precision
of the new data is lower than the precision of the prior, the
posterior moves closer to the prior (Figure 2B). Mathematically,
the belief update in Bayes’ theorem depends on the so-called
prediction error - the discrepancy between new data and prior
belief (i.e. predicted sensory information)—that is weighted by
the ratio between data precision and prior belief precision
(Figure 2A).

A Bayesian view on perception proposes that the incoming
sensory information (inputs or sensations) corresponds to the
likelihood which is constantly compared to the predicted sensory
information. This prediction derives from the prior beliefs
encoded in the brain’s model. The difference between the
actual and the expected sensory input is the prediction error.
The posterior is the actual percept and derives from updating the
prior belief by means of a precision-weighted prediction error
(Figure 2). Furthermore, in the Bayesian brain theory,
predictions and prediction errors correspond to quantities that
are exchanged between neuronal populations whose activity
encodes probability distributions that have a certain precision
(27, 43).

An important implication of the Bayesian brain theory is that
perception as inference or belief updating corresponds to
minimizing the surprise about the sensory inputs (32). Here,
“surprise” is a mathematical concept from information theory
that is approximated by prediction errors. Intuitively speaking,
the better the brain’s model of the world, the more successfully it
can predict sensory inputs and the less surprise it experiences.

Under this notion, the brain has two general strategies to
reduce prediction errors and thus surprise (compare Figure 3). A
first strategy to minimize prediction error is known as active
inference (22). This refers to acting upon the world (e.g., the
body) in order to change it in such a way that sensory inputs
become consistent with prior beliefs. This idea is similar to
homeostatic regulation, a process that elicits actions whenever
sensory inputs deviate from a given setpoint. Indeed, Bayesian
formulations in the spirit of active inference exist that describe
Frontiers in Psychiatry | www.frontiersin.org 6
homeostatic regulation as the reflex-like fulfilment of
homeostatic beliefs: these regard setpoints as homeostatic
beliefs (about the states the body should inhabit) and describe
how those beliefs are “defended,” rather than altered, by eliciting
actions whenever prediction errors occur (25, 85). This is
particularly important for those homeostatic beliefs which
cannot be updated arbitrarily (e.g., body temperature must not
exceed a particular limited range). Here, the force of action
depends on two things (85). First, on the magnitude of the
prediction error: If bodily sensations deviate from the prior belief
significantly, the prediction error is large and a significant
regulatory action follows (e.g., strong activation of endocrine
or autonomic nervous system processes via hypothalamus or
brainstem). Second, on the precision of the homeostatic belief:
actions scale with the precision of the belief, because a prediction
error becomes more meaningful and the need for correction
more urgent when homeostatic beliefs are precise (i.e., the
permissible homeostatic range is tight).
FIGURE 3 | A general scheme of “Bayesian brain” theories of cognition.
Here, the overall goal is to minimize prediction errors. Prediction errors
represent, simply speaking, the difference between actual sensory input (or
sensation, green arrow) and a prediction about the input which originates
from a prior belief (red arrow). Minimization of the prediction error can either
be achieved by updating the brain’s model (perceptual inference, e.g.,
according to predictive coding; middle part of figure) or by choosing actions
such that beliefs are fulfilled, and the predicted sensory inputs occur (active
inference; lower part of figure). In addition to inference and action, hierarchical
Bayesian models also allow for forecasting future states and offer an
opportunity to integrate metacognition as a top-level that monitors levels of
prediction errors (upper part of figure). Reprinted from Petzschner et al. (25),
with permission from Elsevier.
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The second general strategy to minimize prediction errors is
perceptual inference. Here, as described above, the incoming
sensation (likelihood) is compared with the expected sensation
(prior belief), and any discrepancy between expected and actual
sensation creates a prediction error which is used to update the
belief (compare Figure 2). This belief update results in an
improved model that is less surprised by the sensory input.

A particularly popular implementation of perceptual
inference, called “predictive coding” (27, 28), suggests that the
brain is hierarchically organized, with increasing levels of
abstraction the further one moves up the hierarchy. This idea
of a hierarchy in the brain is motivated by neuroanatomical
studies that provide evidence for hierarchical relations among
cortical areas (86). Predictive coding assumes that at each level of
the hierarchy, neuronal populations encode a probability
distribution (a prior belief or prediction about the activity of
the level below) which is signaled to the level below via top-down
connections (28). There, the prediction can be compared to the
actual activity level, and a prediction error can be computed that
is passed upwards again where it is used to update the belief at
the level above. In other words, at each level of the hierarchy,
Bayesian inference is performed where the prior is provided by a
predictive signal from the level above and the likelihood is
represented by the local activity. The greater the magnitude of
a prediction error at the bottom of the hierarchy, the further up
the hierarchy its effects will percolate and lead to adjustments of
the model.

Importantly, a hierarchical model of this sort can not only
implement perceptual inference, but can also accommodate
other components of adaptive behavior (see Figure 3 for a
schematic overview and Figure 4 for a putative anatomical
circuit with focus on bodily perception and control). First, a
hierarchical architecture can not only infer current states of the
world, but also forecast future states, for example, by inferring on
trajectories of states of the world (88). Second, a hierarchical
architecture can implement anticipatory control, also known as
allostatic regulation (89), through active inference. As described
above, in active inference, the prediction error is not reduced by
updating beliefs but by fulfilling beliefs through actions. In a
hierarchical model, the beliefs that drive actions are positioned at
the bottom of the hierarchy and do not undergo Bayesian belief
updating, however, they can be modulated by perceptual
inference or forecasts from higher layers (see Figures 4 and 8).
For example, homeostatic beliefs about bodily states can be
shifted or adjusted in their precision by predictions from a
perceptual hierarchy (85). This enables anticipatory control or
allostatic regulation (89): for example, if forecasts of bodily or
environmental processes indicate future violations of
homeostasis, homeostatic beliefs can be altered such that
actions are elicited in advance which mitigate or avoid the
predicted threat (25, 85). This is important for understanding
stress-related diseases because subjectively perceived or
anticipated threats can lead to activation of sympathetic
processes (“fight-flight” responses) over prolonged periods (90,
91). Finally, a hierarchical model can also naturally integrate
metacognition, or specifically, self-monitoring of one’s agency in
Frontiers in Psychiatry | www.frontiersin.org 7
exerting control. In principle, in order to assess how well the
brain’s model is capable of inferring states of the world and elicit
adequate actions, it is sufficient to monitor a single quantity
(prediction error) at the top of the perceptual hierarchy (85). If
this top-level prediction error is chronically enhanced, this
indicates that the brain’s model is inadequate and provides
poor inferences/predictions, and/or that the brain is not
capable of eliciting adaptive actions. In either case, chronically
enhanced prediction error or surprise signals a loss of control
and has been proposed as an index of “learned helplessness” (85).

Importantly, perceptual inference and active inference are
applied to both the physical and social environment and to the
body (25). In other words, the brain needs to construct a
comprehensive model that considers both exteroceptive inputs
from the external world and interoceptive inputs from the body.
This model is used to achieve the overarching goal of the brain:
to minimize prediction errors about both environmental and
FIGURE 4 | A hypothetical anatomical circuit for homeostatic and allostatic
regulation (87). The lower part represents a reflex arc in which homeostatic
beliefs about bodily states (represented in hypothalamus, brainstem, spinal
cord) are defended (protected) against deviations, by eliciting actions that
depend on precision-weighted prediction errors. The upper part represents a
cortical hierarchy for perceptual inference that is capable of modulating the
homeostatic beliefs via descending connections and can implement
anticipatory (allostatic) control. A top metacognitive layer (tentatively assigned
to medial prefrontal cortex) holds beliefs about performance levels (i.e., levels
of prediction errors at the top of the hierarchy). Colors have the same
meaning throughout this figure, as indicated by the legend. It is important to
keep in mind that in Bayesian treatments of inference-control loops, the
direction in which predictions and prediction errors are signaled reverses
when switching from the afferent branch (perception) to the efferent branch
(action). For example, in the afferent branch, prediction errors are signaled
upwards in the hierarchy, whereas in the efferent branch, they are used by
descending projections to inform actions. post., posterior; ACC, anterior
cingulate cortex; mPFC, medial prefrontal cortex. Reproduced from Figure 3
in Manjaly et al. (87), with permission from BMJ Publishing Group Ltd.
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bodily states, in order to reach a state where incoming sensory
inputs lead to minimum surprise.
NEUROPHYSIOLOGICAL IMPLICATIONS
OF THE BAYESIAN BRAIN

The Bayesian brain perspective proposes concrete computational
processes how the brain’s model is dynamically adapted from
moment to moment. Additionally, it has a plausible biological
basis. Friston (27) summarized the available neurobiological
evidence and proposed a minimal neuronal model which
assigns different functions to different cortical layers; updates
can be found in more recent reviews [e.g., (32, 92–94)]. As shown
by anatomical tract tracing studies (86), layers II–III have
ascending (forward or bottom-up) connections to the granular
layers of hierarchically higher areas. Conversely, the
infragranular layers have descending (backward or top-down)
connections to extragranular layers in hierarchically lower areas.
The predictive coding model by Friston (27) proposes that
prediction errors are computed by pyramidal cells in
supragranular layers II and III. Predictions, on the other hand,
are encoded by pyramidal cells in infragranular layers V and VI.
Each level of the hierarchy consists of these neuronal units with
their intrinsic connections between layers and extrinsic
connections between areas. This architecture allows for
signaling of predictions and prediction errors in order to
implement Bayesian inference (compare Figures 2 and 5).

However, as was outlined above, belief updates in Bayesian
inference are dependent on the magnitude of precision. The
Frontiers in Psychiatry | www.frontiersin.org 8
higher the precision of the prediction (or prior belief), the
smaller the belief update; conversely, the higher the precision
of the sensory input, the larger the belief update (see Figure 2).
Neurophysiologically, precision is thought to be encoded by
neuromodulatory transmitters, for example dopamine and
acetylcholine, which shape the excitability of neurons and thus
impact on the variance of their activity (32).

In summary, the Bayesian brain theory represents an
integrative model of how perception and action are
implemented by the brain in order to fulfil a homeostatic
principle: the minimization of prediction error or surprise. In
this manner, it provides a bridge from theoretical models of
cognition to physiological models of brain processes and suggests
concrete neurobiological and computational mechanisms. The
next section will examine how the ideas underlying the Bayesian
brain theory could potentially provide a novel perspective on
mechanisms of MBCT.
MBCT FROM THE PERSPECTIVE OF
BAYESIAN BRAIN THEORIES

This section turns to the central question of this article: Could
Bayesian brain theories help obtain a novel view on how MBCT
works? This question is particularly relevant given that Bayesian
theories of brain function are expressed in terms of formal
cognitive process models, such as predictive coding and active
inference, which have increasingly been used in recent years to
describe and understand psychiatric disorders (33, 34, 96, 97).
An analysis of the concepts underlying MBCT in terms of these
models may therefore open up potential new ways of
understanding why MBCT is effective in preventing relapse of
depression. Furthermore, because Bayesian models like
predictive coding make concrete suggestions of how these
cognitive mechanisms are implemented physiologically, it may
be possible to derive concrete and experimentally testable
predictions about the neurophysiological processes that
mediate MBCT effects.

MBCT considers cognitive reactivity and an overly strong
engagement in the doing mode (or more specifically, the
employment of the driven-doing mode) as central risk factors
for the relapse of depression. MBCT specifically targets these risk
factors by encouraging the practitioner

i. to cultivate a different mode of mind (the being mode),
ii. to adopt a decentered perspective, and
iii. to reduce cognitive reactivity.

In the following, we examine how these three central
processes in MBCT might be understood from a “Bayesian
brain” view. This discussion is guided by the structure of a
brain circuit that has been proposed as a possible architecture for
predictive coding and active inference and includes a low-level
reflex arc for action that is influenced by a higher hierarchical
system for perception and metacognition (Figure 4). The circuit
shown in Figure 4 concerns the specific case of bodily perception
(interoception) and regulation (homeostatic and allostatic
FIGURE 5 | Schematic summary of proposed neurophysiological
implementations of hierarchical Bayesian inference in the cortex, specifically,
predictive coding. In this scheme, neurons that compute prediction errors (red
plates, E) are situated in supragranular layers and signal these errors to
neurons in granular layers (grey plates) at the next higher level. By contrast,
neurons that compute predictions (green plates, P) are lcoated in infragranular
layers and signal these predictions to neurons in both infra- and
supragranular layers at the next lower level. This figure is reproduced, with
permission, from Heilbron and Chait (95).
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control); however, the general principle equally applies to
externally directed perception (exteroception) and control, only
the anatomical circuits change (25). In the following, we retain
the general structure of this hypothetical circuit but focus on
specific parts and omit anatomical designations for clarity.

The Being Mode
The being mode, which is cultivated throughout the MBCT
program, is characterized by an ability to allow and accept
whatever sensations arise, without giving in to the urge to
judge or change the sensations (1, p.72). From a Bayesian
brain perspective, this attitude can be understood as a
particular style of perceptual inference that is caused by a
change in the relative precision-weighting of prior beliefs and
sensations. Specifically, the being mode would correspond to a
perceptual inference style where the top-down influence of prior
beliefs is reduced and the percept is dominated by the bottom-up
influences of “raw” sensations (i.e., the likelihood). How could
this perceptual inference style arise? To answer this question, it is
helpful to return to the basic principle of belief updating in
Bayesian models, as shown in Figure 2. Translating the equation
into simple words and simplifying slightly, this principle can be
understood as follows:

change of expectation∝

precision of input=precision of prior beliefð Þ*prediction error

(2)

This says that, at any level of the hierarchy, the belief update
(which leads to the posterior and thus the percept) is
Frontiers in Psychiatry | www.frontiersin.org 9
proportional to the prediction error, but weighted by a
precision ratio. This ratio roughly corresponds to sensory
precision (precision of the likelihood) divided by the precision
of the prior belief. This makes intuitive sense: the more
importance one assigns to the sensory input, the more weight
a prediction error should carry, leading to larger belief updates.
On the contrary, the more precise (narrow) a prior belief, the less
inclined one would be to change it when receiving
new information.

Equation 2 predicts that a perceptual inference style where
sensory information dominates and top-down influences by
prior beliefs are weak can be achieved by increasing the
precision of the sensory information (Figure 6). As a
consequence, the beliefs at low levels of the processing
hierarchy are updated rapidly and in close synchronization
with the sensations, as are the percepts that result from these
dynamically changing beliefs.

At this point, the question arises how an individual would be
able to actively increase sensory precision. In theories of
predictive coding, this is understood as an effect of attention:
the precision of those sensory channels that are being attended to
increases, while the precision of unattended channels decreases
(98). Indeed, this matches the training phase of MBCT in which
the practitioner learns to maintain and gently re-orient
attentional focus to the sensations as they arise.

Neurophysiologically, attention-induced changes in precision
are thought to rely on changes in neuromodulatory (particularly
cholinergic) projections from the basal forebrain and the
brainstem that alter the excitability of cortical neurons (32).
FIGURE 6 | (A) Graphical summary of predictive coding that illustrates the exchange of prediction errors and predictions (prior beliefs) across levels of a cortical
hierarchy. In this schematic of predictive coding, perception corresponds to Bayesian belief updates (BU) across the hierarchy. This panel represents the case before
an individual adopts the being mode, with perception strongly shaped by priors (as illustrated on the right). (B) This panel illustrates a hypothetical mechanism for
instantiating the being mode. Specifically, attentional modulation of forward connections in the cortical hierarchy is proposed to induce higher sensory precision and
thus enhanced precision-weighting of prediction errors (PE), leading to rapid belief updates that are closely coupled to the sensory inputs. This corresponds to a
perceptual style that lacks “bias” (as usually imposed by the brain’s internal model; compare panel A) and is closely synchronized to sensations. See main text for
details.
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Changes in excitability, in turn, determine the variability of
activity in neuronal populations and alter the slope of the
typical sigmoidal relationship between membrane potential
and firing rate at the neuronal population level (99, 100).

In summary, this predictive coding view suggests that
cultivating the being mode in MBCT could be understood as
enhancing sensory precision at lower levels of cortical hierarchies
and that this change in precision weighting could be achieved by
the attentional focus that is acquired during MBCT practice.

Decentering
Following directly from above, the next step of analysis concerns
decentering, the ability to experience thoughts and percepts
simply as events in the mind that arise and pass. In the being
mode, under the influence of high sensory precision induced by
attention, prediction errors receive a large weight (compare
Equation 2) and are carried up to higher levels where more
abstract beliefs are represented. If the incoming sensations are
variable, perceptual inference at higher levels undergoes dynamic
changes from moment to moment as the incoming sensory
information changes. If present for a prolonged period, these
constant belief updates at higher levels of perception, triggered
by the propagation of precise prediction errors up the hierarchy,
may lead to the recognition—presumably at very high,
metacognitive levels—that beliefs which were thought to be
fixed and define the “self”— such as one’s ability to exert
control and maintain prediction errors at a certain level (85)—
can actually change (compare Session 6 of MBCT on “Thoughts
are not Facts” in (1), p. 299). In other words, the individual’s
attachment to high-order beliefs about one’s own agency and
control, which were previously assigned high importance and
were understood as integral to one’s identity, may loosen.
Computationally, this could be represented by a reduced
precision of beliefs about one’s agency and capacity of control
(Figure 7). It is worth repeating that this process of decentering
would not occur within the perceptual inference hierarchy itself,
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but at a higher (metacognitive) level where prediction errors
within the perceptual hierarchy are monitored (Figure 7). This
view continues to understand decentering as a metacognitive
phenomenon—as is common in mindfulness concepts that refer
to decentering as “meta-awareness” (101, 102)—but suggests a
specific and novel form that views decentering as a direct
metacognitive consequence of perceptual changes that occur
during the being mode. It predicts that metacognitive
predictions about the level of prediction errors encountered in
the perceptual hierarchy should change (i.e., have less precision),
and that this change should be reflected by altered connections
from metacognitive to perceptual areas (see Figure 7). These
areas are discussed in concrete anatomical terms below.

Reactivity
Finally, Bayesian brain concepts can also help to understand
cognitive and physiological reactivity in a novel way. Specifically,
from an active inference view, (re)actions serve to fulfil prior
beliefs in order to reduce prediction error. This is perhaps most
easily discussed by using bodily regulation as an example (but
can equally be extended to cognitive processes). If sensory inputs
from the body deviate from prior beliefs about expected bodily
states (homeostatic beliefs), actions are deployed in a reflex-like
fashion. Importantly, as described by Bayesian treatments of
homeostatic control (85), the higher the precision of the
homeostatic belief, the greater the significance of a prediction
error and the more forcefully an action is executed in order to
reduce it. This reflex-like mechanism, however, is thought to be
under control by higher-order beliefs (e.g., predictions from the
perceptual hierarchy or a change in metacognitive beliefs; see
Figures 4 and 8) that can alter the properties of homeostatic
beliefs and thus induce anticipatory action (85). This may
involve a shift in the expectation (mean) of prior beliefs or a
change in their precision [compare Figure 6 in (85)]. Similar to
the proposal in Seth and Friston (103), this might be
implemented physiologically by descending projections (e.g.,
FIGURE 7 | This figure illustrates a hypothetical mechanism for inducing decentering, within a hierarchical cortical network for perceptual inference plus an additional
metacognitive layer at the top. Here, the notion is that during the being mode (with attentional modulation of forward connections, higher precision-weighting of
prediction errors, PE, and rapidly ongoing belief updates, BU; compare Figure 6), high-level beliefs about one’s agency and level of control at the meta-cognitive
level are altered and become less precise. See main text for details.
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from anterior cingulate; Figure 4) that alter local excitation-
inhibition balance and change the variability of activity in the
neuronal population that encodes the homeostatic belief (e.g., in
the hypothalamus or brainstem). Flattening the prior in this
manner would reduce homeostatic reflexes and decrease the
reactive tendency to respond to changes in incoming sensations.

Moving beyond homeostatic regulation, the same principle of
action vigor depending on the precision of prior beliefs that the
actions are meant to fulfil has been proposed to hold in general
(25). If this assumption turns out to be correct, reduction of
cognitive reactivity may thus be seen as a decrease in the
precision of prior beliefs: for such “flat” priors, the range of
expected states of the world becomes broad, which renders any
sensation that deviates from the prior’s mean (expectation) less
meaningful and decreases the impulse to respond to incoming
sensations (see Figure 8).

Applying this general notion to MBCT, under the perspective
presented in this paper, it is conceivable that a decrease of prior
precision could be a consequence of the cultivation of the being
mode and the adoption of a decentered perspective. More
specifically, following a period of heightened prediction error
signals and constant belief updates (Figure 6) and the
metacognitive insight that even the most high-level beliefs may
undergo dynamic changes (Figure 7), a reduction of reactivity
due to decreased precision of the prior may constitute a
consequence of cultivating the being mode and having adopted
a decentered perspective. In other words, experiencing constant
belief updating in the perceptual hierarchy and adjusting one’s
metacognitive expectations such that higher magnitudes of
prediction errors become “acceptable” (i.e. expected) may
subsequently invoke a lessened tendency to defend beliefs
Frontiers in Psychiatry | www.frontiersin.org 11
against perturbations. This could be implemented by top-down
influences from perceptual and metacognitive areas onto low-
level effector regions and would extend the cognitive changes
induced by MBCT to the domain of responding, reducing the
emission of reflex-like reactions to stimuli, thoughts, or emotions
(Figure 8).
TESTING THE THEORY’S IMPLICATIONS
FOR MBCT EXPERIMENTALLY

The previous section described three proposed mechanisms how
core components and processes in MBCT—being mode,
decentering, and reduced reactivity—could be understood from
the perspective of Bayesian models of brain function. Clearly, so
far, the above accounts of MBCT are speculative and purely
theoretical. Importantly, however, since the Bayesian brain
framework that our view on MBCT is grounded in makes
concrete suggestions of how cognitive processes are
implemented physiologically, we can derive experimentally
testable predictions. In the following, the predictions that
originate from the above discussion and suitable experimental
tests are described briefly (see Figure 9 for a summary of our
hypotheses and proposed experimental tests). The suggestions
below refer to longitudinal designs that compare participants
before and after exposure to MBCT, i.e., the standard 8-week
program. In other words, we focus on predicted changes in
computational and neurophysiological processes that occur
over the duration of the MBCT program and that could be
assessed in pre-MBCT vs. post-MBCT comparisons.
FIGURE 8 | This figure illustrates a hypothetical mechanism for the reduction of reactivity. Here, a reduced precision of beliefs about the state of the world (e.g.,
bodily states) decreases the tendency to react to any discrepancy between the sensory inputs expected under this belief and the actual sensory inputs (prediction
error). This is because the vigor of reflex-like actions that are emitted to “defend” beliefs depends on precision-weighted prediction error (see Stephan et al. (85) for
mathematical details). pwPE, precision-weighted prediction errors; BU, belief updates; BD, belief defending. Compare Figure 4 for a (hypothetical) anatomical circuit
and see main text for details.
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Our first proposal above was that the being mode is
characterized by a shift of attentional focus that leads to enhanced
sensory precision (Figure 6). This hypothesis—and its implication
that enhanced sensory precision weighting should develop over the
period of MBCT training—can be tested using established
experimental procedures for assessing attentionally induced
changes in precision. For example, Petzschner et al. (104) found
that a late component of the heart-beat evokedpotential (HEP)– an
event-related EEG signal that is thought to reflect precision-
weighted prediction error in interoception—is altered by
attentional focus towards vs. away from the heart. Importantly,
the paradigm by Petzschner et al. (104) provides a quantitative
measure of attentional modulation of the HEP amplitude (the
DHEPa index) and thus changes in sensory precision. This would
render it a useful tool to investigate the predicted increase in sensory
precision after completion of an MBCT program, compared to
before. Our hypothesis would be rejected if, in patients who
successfully completed the MBCT program and clinical
improvement, we failed to find the predicted increase in DHEPa.
This failure could be detected according to conventional criteria of
Bayesian statistics, i.e., a Bayes factorof threeor larger in favor of the
“null hypothesis” of no change.

Another possibility would be to use computational modelling
to obtain subject-specific estimates of precision-weighted
prediction errors during interoception in a trial-by-trial
manner. Specifically, one could test whether, after completion
of the MBCT program, the precision of prediction errors about
bodily states is increased when subjects switch into the being
mode. Estimates of trial-wise precision weights can be obtained,
for example, using hierarchical Bayesian models, such as the
Hierarchical Gaussian Filter [HGF; (105, 106)] which has
previously been used to infer dynamic changes of precision
from behavioral or physiological data [see (36, 107, 108)]. One
technical challenge of this approach in the interoceptive domain
Frontiers in Psychiatry | www.frontiersin.org 12
is that one requires repeated and controlled perturbations of
bodily states in a safe and non-invasive manner (see
discussion below).

Our second proposal abovewas that decentering corresponds to
a change in metacognition, effectively leading to less precise beliefs
about the level of prediction errors that are expected to be
encountered. In the model shown by Figure 7, this would
manifest as a change in the descending (top-down) connections
from metacognitive areas to perceptual areas that are thought to
signal these metacognitive beliefs (Figure 7). In principle, this is
testable by fMRI and effective connectivity analyses that allow for
obtaining directed estimates of connections [e.g., (109)]. However,
one caveat is that it is not perfectly understood how a less precise
belief translates into the strengths of descending connections. It
seems plausible to assume that descending connection strengths
shouldbe reduced,however, toourknowledge, thisquestionhasnot
been examined so far. For the moment, our hypothesis therefore
only refers to changes per se in descending connections from
metacognitive areas to perceptual areas, not to the sign of
these changes.

Previously, metacognitive processes have only been examined
in terms of functional connectivity which does not allow for
interpreting the directionality of connections (110, 111). Testing
our proposal would require effective connectivity analyses that
compare the connectivity of metacognitive areas before and after
the completion of an MBCT program. Concretely, in the
exteroceptive domain, this would correspond to examining
connectivity from frontopolar Brodmann area 10 in anterior
prefrontal cortex (112) to areas at the top of sensory hierarchies.
In the interoceptive domain, an area that is likely placed at the
top of the interoceptive hierarchy (and also receives
exteroceptive information) is the anterior insula [see Seth (113)
and compare Figure 4]. By contrast, the anatomical area(s)
implementing metacognition are not well known so far;
FIGURE 9 | Summary of the hypotheses presented in this paper and the proposed experimental tests. This figure relates key concepts from MBCT (first column) to a
proposed Bayesian brain perspective of its mechanisms (second column), a brief summary of this hypothesis (third column), and possible experimental tests (fourth column).
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however, a plausible candidate region is the medial anterior
prefrontal cortex [see the discussion in Stephan et al. (85)].

Our third proposal concerned the reduction of reactivity due
to MBCT and consisted of two components. First, we postulated
that a decrease in reactivity would result from reduced precision
of homeostatic beliefs thought to be encoded in lower
visceromotor regions that trigger regulatory actions in a reflex-
like fashion (e.g. hypothalamus or brainstem nuclei like the
periaqueductal grey, PAG; see Figure 4). Second, we suggested
that a reduction in homeostatic belief precision could be caused
by descending connections from high-level interoceptive areas
(such as anterior insula, AI, or anterior singlet cortex, ACC) that
might transmit allostatic predictions (compare Figure 4).
Testing the first component of this proposal could be achieved
by experimental approaches that reduce the precision of beliefs
about bodily states in a controlled and predictable manner and
then test whether these changes are reflected by changes in bodily
states and by activity in visceromotor brain regions like the
hypothalamus or PAG (114). This approach has recently been
pioneered by Grahl, Onat (115) in the context of placebo studies.

Testing the second component of this proposal would require
effective connectivity analyses and fMRI. Specifically, one would
need to assess whether anMBCT-induced reduction of reactivity to
experimentally controlled perturbations of homeostasis would be
related to a change in connectivity from cortical areas assumed to
compute allostatic predictions (like AI and ACC) to low-level
visceromotor regions. Here, the same caveat applies as for tests of
the second proposal, i.e., the theory presently only allows for
predicting changes in connectivity per se, but not the sign of these
changes. Furthermore, a significant technical challenge is to choose
suitable techniques for perturbing homeostasis safely and
repeatedly during an experimental session. This could involve
approaches like auricular (percutaneous or transcutaneous vagus
nerve stimulation; 116), short-lived pharmacological (117) or
immunological (118) interventions, or manipulations of cardiac
and respiratory processes (119). For a more detailed discussion of
this challenge and potential solutions, see Khalsa et al. (120) and
Critchley and Garfinkel (121).
CONCLUSIONS

In this paper, we have described how core components of
MBCT—i.e. the being mode, decentering, and cognitive
Frontiers in Psychiatry | www.frontiersin.org 13
reactivity—can be understood in terms of mechanisms that
derive from Bayesian brain concepts. The mechanisms we
propose essentially concern changes in precision-weighting (of
sensory inputs and various beliefs, respectively) that are elicited
by the elements of the MBCT program and concern different
levels of perceptual hierarchies (see Figure 9 for a summary).

We have outlined how our hypotheses regarding mechanisms
of MBCT could be tested empirically. Clearly, this proposal
represents an initial blueprint and will undoubtedly experience
revisions in the future as the anatomical nature of the hierarchies
involved and the available models to represent hierarchical
Bayesian become more concrete and refined. Nevertheless, we
hope that this article already illustrates that a Bayesian
perspective on MBCT not only offers exciting opportunities to
better understand the processes that MBCT elicits, but that the
proposed explanations can also be tested experimentally. If the
ideas presented in this paper turn out to have substance, they
may be useful for informing further developments of MBCT and
eventually for understanding the variability across patients with
regard to individual treatment response.
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