
Frontiers in Psychiatry | www.frontiersin.or

Edited by:
Albert Yang,

National Yang-Ming University,
Taiwan

Reviewed by:
Kaiming Li,

Sichuan University, China
Raymond Salvador,

FIDMAG Hermanas Hospitalarias
Research Foundation, Spain

*Correspondence:
Rajat Mani Thomas

r.m.thomas@amsterdamumc.nl

†These authors share first authorship

Specialty section:
This article was submitted to

Neuroimaging and Stimulation,
a section of the journal
Frontiers in Psychiatry

Received: 10 February 2020
Accepted: 28 April 2020
Published: 15 May 2020

Citation:
Thomas RM, Gallo S, Cerliani L,
Zhutovsky P, El-Gazzar A and

van Wingen G (2020) Classifying
Autism Spectrum Disorder Using the
Temporal Statistics of Resting-State

Functional MRI Data With 3D
Convolutional Neural Networks.

Front. Psychiatry 11:440.
doi: 10.3389/fpsyt.2020.00440

ORIGINAL RESEARCH
published: 15 May 2020

doi: 10.3389/fpsyt.2020.00440
Classifying Autism Spectrum
Disorder Using the Temporal
Statistics of Resting-State Functional
MRI Data With 3D Convolutional
Neural Networks
Rajat Mani Thomas*†, Selene Gallo†, Leonardo Cerliani , Paul Zhutovsky,
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Resting-state functional magnetic resonance imaging (rs-fMRI) data are 4-dimensional
volumes (3-space + 1-time) that have been posited to reflect the underlying mechanisms
of information exchange between brain regions, thus making it an attractive modality to
develop diagnostic biomarkers of brain dysfunction. The enormous success of deep
learning in computer vision has sparked recent interest in applying deep learning in
neuroimaging. But the dimensionality of rs-fMRI data is too high (~20 M), making it difficult
to meaningfully process the data in its raw form for deep learning experiments. It is
currently not clear how the data should be engineered to optimally extract the time
information, and whether combining different representations of time could provide better
results. In this paper, we explored various transformations that retain the full spatial
resolution by summarizing the temporal dimension of the rs-fMRI data, therefore making it
possible to train a full three-dimensional convolutional neural network (3D-CNN) even on a
moderately sized [~2,000 from Autism Brain Imaging Data Exchange (ABIDE)-I and II] data
set. These transformations summarize the activity in each voxel of the rs-fMRI or that of the
voxel and its neighbors to a single number. For each brain volume, we calculated regional
homogeneity, the amplitude of low-frequency fluctuations, the fractional amplitude of low-
frequency fluctuations, degree centrality, eigenvector centrality, local functional
connectivity density, entropy, voxel-mirrored homotopic connectivity, and auto-
correlation lag. We trained the 3D-CNN on a publically available autism dataset to
classify the rs-fMRI images as being from individuals with autism spectrum disorder
(ASD) or from healthy controls (CON) at an individual level. We attained results competitive
on this task for a combined ABIDE-I and II datasets of ~66%. When all summary measures
were combined the result was still only as good as that of the best single measure which
was regional homogeneity (ReHo). In addition, we also applied the support vector
machine (SVM) algorithm on the same dataset and achieved comparable results,
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suggesting that 3D-CNNs could not learn additional information from these temporal
transformations that were more useful to differentiate ASD from CON.
Keywords: neuroimaging, 3D convolutional neural network, classification, autism, Autism Brain Imaging Data
Exchange, deep learning
INTRODUCTION

Neuroimaging holds the promise of objective diagnosis and
prognosis in psychiatry. But unlike neurological disorders,
psychiatric disorders do not show obvious structural brain
abnormalities. Researchers have long posited that brain
abnormalities of psychiatric patients are particularly reflected
in functional scans such as resting-state functional magnetic
resonance imaging (rs-fMRI) (1). These scans involve mapping
the blood oxygenation level (a proxy for brain activity)
throughout the brain every 1 or 2 s—resulting in a 4-D data
product, 3-D of the brain, and 1-D in time. Typically, at a
scanning resolution of 4 mm and 300 temporal sampling points,
this results in a 20 million dimensional feature vector. Hidden
somewhere in this high-dimensional spatio-temporal signal are
the biomarkers that could distinguish between healthy and
psychiatric subjects. Mining these rs-fMRI images for such
patterns is the challenge we are facing.

Machine learning (ML) approaches in recent years have
demonstrated enormous potential in processing images and
videos. Deep learning, in particular, has been extremely
successful in myriad different fields (2). Apart from
algorithmic improvements, deep learning has been successful
largely due to the massive datasets available in the image
processing fields. Unfortunately, this is not the case in
neuroimaging. Large datasets are scarce or non-existent. But
some initiatives like the Autism Brain Imaging Data Exchange
(ABIDE) have tried to aggregate brain imaging datasets of
individuals with autism spectrum disorder (ASD) and healthy
controls (CON) from various sites around the world to build up a
reasonably sized dataset. The complete dataset including the first
and second wave of the data aggregation (ABIDE-I/ABIDE-II)
comprises around 2,100 subjects including ASD and CON.
Albeit the availability of such a database, the dimensionality of
the input data is still too large to be used without any
preprocessing or feature engineering.

Since rs-fMRI data contains a spatio-temporal signal, different
approaches have been tried to reduce its dimensionality.
Primarily, this can be categorized as approaches that try to
reduce dimensionality in space or in time. One approach for
spatial down-scaling is the use of brain atlases. In this approach,
about one million voxels in space are locally averaged in about 100
to 400 different brain regions depending on the atlas, thus
considerably reducing the dimension of the input data. These
100 to 400 averaged time courses are then either used in a 1-D
convolutional network (3) or are first used to calculate a cross-
correlation matrix which subsequently is used as a feature in
various machine learningmethods (4, 5). For example, (4) reached
g 2
an accuracy of 70% on ABIDE-I using the cross-correlation
matrix on time courses extracted using the CC400 atlas.

In the neuroimaging literature, there are many examples of
reducing the dimensionality of brain volumes by summarizing
the time domain, while maintaining intact the 3D spatial
dimensions of the data. These different methods extract
different aspects of the time series. For example, the amplitude
of low-frequency fluctuation (ALFF) is a measure that is posited
to reveal differences in the underlying processing of the brain,
and is calculated as the ratio of spectral power in two distinct
frequency ranges and has been linked to atypical development in
previous studies (6, 7). This measure is calculated independently
for each voxel. Other measures instead are calculated for each
voxel but carry information about distant or neighboring
connectivity. This is the case for regional homogeneity (ReHo),
which is the temporal coherence or synchronization of the BOLD
time series within a set of a given voxel's nearest neighbors, and
of voxel-mirrored homotopic connectivity (VMHC), which is the
synchrony in patterns of spontaneous activity between homotopic
(geometrically corresponding) regions in each hemisphere. The
complete list of summary measures considered in this work is
described in Resting-State Functional MRI Summary Measures.

We aimed to retain the full spatial resolution as input by
summarizing the temporal dimension per voxel as a single
number. Most of the summary measures we employed were
informed by the neuroimaging literature. To the best of our
knowledge, no previous study attempted an extensive use of such
measures using deep learning algorithms. Moreover, since each
summary measure extracts different aspects of the temporal
dimension of the rs-fMRI data, we further aimed to combine
the different inputs for classification.

First, we used each of the nine single summary measures
(single-measure model or SM-models) independently as input to
a 3-D convolutional neural network (3D-CNN). Then, inspired
by the concept of the wisdom of the crowd and weak learners,
which refers to the fact that single models that perform weakly
individually could perform better when combined, we tested this
by combining the nine summary measures. To do so, we
explored two different strategies: the multi-measure ensemble
(MM-ensemble), and the creation of a single model, called multi-
measure-model (MM-model). In the MM-ensemble approach,
we independently trained models on each of the summary
measures and allowed each model to vote toward the final
classification outcome of the test sample. The class with the
majority vote was then used as the predicted outcome. In the
MM-model, we combined the 3D summary measure volumes for
each subject and input them as channels to a single 3D-CNN
model. Since there is a debate whether a deep learning model can
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perform better than a linear or other conventional machine-
learning models in neuroimaging (8, 9), and in order to form a
robust baseline, we also performed the classification using a
linear-SVM. To gain insight into the information the models are
using for the classification task, we performed an occlusion
experiment. This type of analysis describes which regions of
the brain contribute maximally to the output of the most
successful neural networks. The code used of all the
experiments performed is available on GitHub1.
MATERIALS AND METHODS

Autism Brain Imaging Data
Exchange Dataset
We used the ABIDE dataset for all of our experiments. The
ABIDE I+II datasets is a collection of structural (T1w) and
functional (rs-fMRI) brain images aggregated across 29
institutions (10), available for download2. It includes 1,028
participants with a diagnosis of autism, Asperger or pervasive
developmental disorder-not otherwise specified (called ASD
from now on), and 1,141 typically developing participants
(CON). Virtually all the ASD participants were high
functioning (99.95% with IQ > 70), most of the included
participants were adolescents (median age 13 years, range
between 5 and 64 years of age), 1/3 of whom were diagnosed
as ASD, and 20% of the total participants were female, which
represents an important addition with respect to most previous
autism studies which focused on males exclusively. The rs-fMRI
image acquisition time ranges from 2 to 10 min, with 85% of the
datasets meeting the suggested duration (~ 4–5 min) for
obtaining robust rsfMRI estimates (11). We chose to cut off
the minimum scan duration to 100-time points, which led us to
include 96% of the whole ABIDE I+II dataset (N=2,085, N(ASD)
=993), the vast majority of which (95%) with a minimum
acquisition time of 4 min.

Resting-State Functional MRI
Preprocessing
The preprocessing was done using the Configurable Pipeline for
the Analysis of Connectomes (C-PAC, (12). We followed a
preprocessing strategy adopted by the Preprocessed
Connectome Project initiative3. This will allow others to
replicate and extend the findings in this paper. Our
preprocessing pipeline, consisted of i) motion correction,
ii) nuisance regression which included head motion modeled
as 24-regressors (13), scanner drift modeled using a quadratic
and linear term, and physiological noise modeled using the five
principal components from a decomposition of white matter and
cerebrospinal fluid voxel time series (CompCor) (14),
iii) coregistration of the resulting rs-fMRI image to the
subject's anatomical image using FMRIB Software library (FSL)
Boundary-Based (BB) register. Finally, iv) the images were
1https://github.com/galloselene/TempStats_3D-CNN.git
2http://fcon_1000.projects.nitrc.org/indi/abide/
3http://preprocessed-connectomes-project.org/abide/
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normalized onto the standard Montreal Neurological Institute
(MNI) space (4 mm) with the non-linear registration algorithm
from Ants (15). All the above steps were configured using C-
PAC's singularity image4.

Quality Check and Subject Selection
After preprocessing, we selected subjects from the ABIDE I+II
data-sets following the list provided in (16); the authors
performed an automatic quality control (QC) by selecting
those subjects that retained at least 100 frames or 4 min of
fMRI scans after motion scrubbing based on framewise
displacement. Then subjects were visually inspected by the
authors (16). Only subjects that passed the entire QC process
are included in this study. The procedure yielded a total of 1,162
subjects, 620 of which were classified as ASD (773 from ABIDE-I
and 389 from ABIDE-II). Please refer to the original article for an
extensive description of the procedure. See Table 1 for more
details on the sample composition.

Resting-State Functional MRI Summary
Measures
The preprocessed rs-fMRI images were transformed into nine
summary measures that reduced the temporal dimension of the
data to a single number per voxel by highlighting different statistical
features of the time series. The summary measures chosen were:

I. Regional homogeneity (ReHo), a voxel-based measure of
brain activity which evaluates the similarity or
synchronization between the time series of a given voxel
and its nearest neighbors (17).

II. Amplitude of low frequency fluctuations (ALFF),
defined as the total power within the frequency range
between 0.01 and 0.1 Hz, and thus indexes the strength or
intensity of low frequency oscillations (18, 19).

III. Fractional amplitude of low frequency fluctuations
(fALFF), defined as the power within the low-frequency
range (0.01–0.1 Hz) divided by the total power in the
entire detectable frequency range, representing the relative
contribution of specific low frequency oscillations to the
whole frequency range (20).

IV. Degree centrality (DC, weighted), is a measure of local
network connectivity and identifies the most connected
nodes by counting the number of direct connections
(edges) to all other nodes. As such, a node with high DC
will have direct connections to many other nodes in the
network. Degree centrality analysis tends to emphasize higher
order cortical association areas while showing reduced
sensitivity for paralimbic and subcortical regions (20, 21).

V. Eigenvector centrality (EC, weighted) is a measure of
global network connectivity. The EC of a given node
reflects the number of direct connections it has with
other nodes that have high centrality (21).

VI. Local functional connectivity density (LFCD, weighted),
a quantification of the number of local and global
functional connections for each voxel in the brain (22, 23)
4https://fcp-indi.github.io/docs/user/quick.html
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VII. Entropy, a measure of organization and predictability of a
system (17).

VIII. Voxel-mirrored homotopic connectivity (VMHC), a
quantification of functional homotopy by providing a voxel-
wise measure of connectivity between hemispheres. This is
Frontiers in Psychiatry | www.frontiersin.org 4
done by computing the connectivity between each voxel in one
hemisphere and its mirrored counterpart in the other (20, 21).

IX. Auto-correlation lag, the correlation between its past and
present states; thus, a high correlation indicates that the
series state does not change over time (24).
TABLE 1 | Sample composition.

Site Group Group # (females #) Mean age s.d. age Selected for
leave-site-out CV

Abide II ABIDEII-KKI_1 CON 26 (6) 10.49 1.51 Yes
ASD 88 (34) 10.36 1.20

Abide II ABIDEII-NYU_1 CON 45 (4) 10.25 5.87 No
ASD 29 (2) 9.52 3.38

Abide II ABIDEII-OHSU_1 CON 22 (3) 11.55 2.22 Yes
ASD 42 (21) 10.45 1.68

Abide II ABIDEII-SDSU_1 CON 32 (7) 13.06 3.19 No
ASD 24(2) 13.07 2.96

Abide II ABIDEII-TCD_1 CON 14 (0) 15.29 3.54 No
ASD 18 (0) 16.31 2.76

Abide II ABIDEII-UCLA_1 CON 9 (0) 11.99 1.76 No
ASD 9 (4) 9.88 2.12

Abide II ABIDEII-USM_1 CON 15 (2) 19.16 6.94 No
ASD 16 (3) 23.98 7.80

Abide I CALTECH CON 1 (0) 20.20 – No
ASD 2 (1) 38.50 25.03

Abide I CMU CON 1 (0) 33.00 – No
ASD 2 (0) 27.00 8.49

Abide I KKI CON 20 (4) 10.02 1.45 No
ASD 28 (8) 10.01 1.16

Abide I LEUVEN_1 CON 14 (0) 21.86 4.11 No
ASD 14 (0) 23.00 2.83

Abide I LEUVEN_2 ASD 6 (3) 14.82 1.25 No
Abide I MAX_MUN CON 7 (0) 12.86 7.31 No

ASD 4 (0) 14.00 6.16
Abide I NYU CON 69 (10) 14.86 7.28 Yes

ASD 90 (26) 15.32 6.04
Abide I OHSU CON 12 (0) 11.43 2.18 No

ASD 13 (0) 10.24 1.02
Abide I OLIN CON 18 (3) 16.39 3.47 No

ASD 13 (2) 16.85 3.85
Abide I PITT CON 9 (0) 18.70 7.11 No

ASD 4 (2) 24.91 8.11
Abide I SBL CON 1 (0) 35.00 – No
Abide I SDSU CON 12 (1) 14.79 1.82 No

ASD 21 (6) 14.11 1.87
Abide I STANFORD CON 14 (3) 9.61 1.48 No

ASD 19 (4) 9.99 1.64
Abide I TRINITY CON 21 (0) 16.51 2.92 No

ASD 25 (0) 17.08 3.77
Abide I UCLA_1 CON 41 (6) 13.10 2.62 Yes

ASD 28 (4) 13.23 2.03
Abide I UCLA_2 CON 9 (0) 12.67 1.56 No

ASD 4 (2) 12.73 0.62
Abide I UM_1 CON 46 (8) 12.80 2.37 Yes

ASD 50 (17) 13.95 3.14
Abide I UM_2 CON 13 (1) 14.88 1.55 No

ASD 21 (1) 16.72 3.97
Abide I USM CON 43 (0) 23.84 8.47 No

ASD 23 (0) 20.55 8.29
Abide I YALE CON 28 (8) 12.75 3.05 No

ASD 27 (0) 12.83 2.69
May 2020 | Volu
The table illustrates the sample composition: the site of data collection in alphabetical order (SITE_ID), the number of subjects categorized as ASD or CON (group #) and the number of
female individuals in each group (females #), mean, and standard deviation of age per group (in years, respectively mean, age, and s.d. age). The last column describes if data contained in
the specific site was used as test-data in the leave-site-out procedure.
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The mean and standard deviation of the summary measures
were calculated within voxels across brain volumes belonging to
the training sample, and these values were used to normalize the
entire dataset. This procedure, referred to as feature scaling,
speeds up the convergence of the model during training.
Moreover, in the particular context of the ABIDE dataset, in
which imaging data are known to vary in quality and have been
collected using different scanner hardware and sequence, the
procedure might help to mitigate the heterogeneity of the data.
5https://scikit-learn.org/
Network Architecture
In this work, we utilized a 3D CNN architecture to classify ASD
from CON subjects. The architecture is inspired by (16). We
reduce the number of layers and filters per layer to reduce the
number of parameters to around 257 k, therefore reducing
computational complexity and cost. Therefore, starting from
Khosla et al.'s model, we performed a non-systematic
parameter and hyper-parameter search, and carried out the full
experiments on the best configuration. Before honing in on the
above architecture we also experimented with 3D versions of the
popular computer-vision architectures like ResNet-50 (25),
Visual Geometry Group (VGG)-net (26), and it's variants
without much success.

Our model (Figure 1) consisted in a first layer of average
pooling of size 2 and stride 2, which functioned as a sort of down-
sampling function. Two convolutional layers with a exponential
linear unit (ELU) activation followed. The first convolutional
layer had 64 filters of size 3 and the second convolutional layer
had 16 filters of size 3. The convolutional layers were followed by
a max-pooling layer of kernel dimension of 2. The output was
flattened and fed to a first fully connected layer with 16 nodes and
again ELU activation. The last layer was a fully connected layer
with one node for final labels classification.

In the SM-model approach, we used the architecture
described above on each of the nine rs-fMRI summary
Frontiers in Psychiatry | www.frontiersin.org 5
measures, resulting in nine independent models. In the MM-
ensemble approach, the classification problem is first
independently solved for each summary measure as for the
SM-model, but the final prediction is computed as the majority
vote of the individual binary class predictions. In the MM-model
approach, the input of the 3D-CNN is formed by concatenating
the summary measures. Each channel is a summary measure,
therefore the input is now represented as nine-channel 3D
volumes. The other architectural parameters are kept the same.

We used the linear-SVM as a baseline to compare our 3D-
CNN models against. For this purpose, the volumes of each
participant were first flattened into a 1D array and voxels that
were part of a brain mask were used as features for the SVM. The
masks were created independently for each summary measure
and contained only voxels that appeared as non-zero in at least
90% of the subjects. In the SM-model approach, we trained the
linear-SVM on each of the nine summary measures. In the MM-
ensemble approach, the outcome of the model was defined as the
class with the majority SM-models votes. To perform the MM-
model, for each subject, the nine volumes representing each of
the nine summary measures were flattened and concatenated in a
single 1D array. The linear-SVM was then trained on the 1D
arrays. In all the linear-SVM experiments we used the default
parameter options in the machine learning python package
Scikit-learn5 (27, 28).

Cross-Validation Procedure
Cross-validation is a resampling procedure used to evaluate
machine learning models on independent data for a limited
data sample. For each experiment, we implemented two cross-
validation schemes: i) five-fold cross-validation (CV) and ii) a
leave-site-out CV procedure.
FIGURE 1 | Schematic representation of our approach. First, the resting-state functional MRI (fMRI) data are summarized on the time domain while keeping the
spatial resolution intact. The resulting 3D volume is then input to the 3D-convolutional neural network (CNN) models for the classification task. The 3D-CNN model
used across experiments is schematically illustrated. Abbreviation: “Conv” stands for convolutional layer, and the n associated to each layer indicates the number of
kernels. “Linear” stands for linear fully connected layer.
May 2020 | Volume 11 | Article 440
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Before implementing the five-fold cross-validation schemes,
the data were split into training/validation-data, consisting of the
90% of the total dataset, and test-data, consisting of the remaining
10%. The five-fold cross-validation involved randomly dividing
the set of observations into groups, or folds, of approximately
equal size. The first fold is treated as validation set, and the model
is fit on the remaining four folds, called the training set (29). In our
application, the validation set was used to select the best trained
model for each fold. To do so, during training we evaluated the
performance on the validation set after each epoch. The model
with the best accuracy on the validation set between epochs was
used for testing. The test-data are therefore invariant across CV
folds. Although this is not the most common application of K-fold
CV, this procedure is often used in competitions [e.g., predictive
analytic challenge—PAC, 2019, see (30)], it guarantees no
contamination between training/validation-data and test-data,
and, importantly the test-data can be easily interpreted as a
common benchmark to compare models.

For the leave-site-out CV procedure, we selected five sites
with the highest number of total subjects (ASD/total), namely
New York University (NYU) (90/159), Kennedy Krieger Institute
- 1 (KKI-I) (88/114), University of Miami - 1 (UM-I) (50/96),
University of California, Los Angeles (UCLA)-I (28/69), Oregon
Health & Science University (OHSU)-I (42/64). In this method,
each site was held out as the test set in turn. The rest of the data
were randomly split into 90% of the set used for training and 10%
used for validation. The validation set was used to select the best
performing model between epochs, which was then applied to
the test-site. In this way, for the leave-site-out CV we had as
many test sets as sites (i.e., five).

Occlusion of Brain Regions
We performed an occlusion experiment to assess which regions
of the brain maximally determined model performance. We
iterated over all the regions of the Harvard-Oxford atlas
(thresholded at 25 and downsampled at 4 mm to match our
data resolution) systematically by occluding that part of the
cortex with a mask set to be zero and monitoring the probability
of the classifier. We reran the five fold CV procedure on the test
dataset for each occluded region of interest (ROI) and calculated
average balanced accuracy and F1 score between folds. The drop
in performance when the ROI is removed from the data
compared to the original data is a suggestion of how much the
voxels contained in the ROI contributed to the original results.
The 10 ROIs that contributed the most, hence that showed the
most substantial drops, are reported.
RESULTS

In our experiments we pursued the goal of classifying the rs-
fMRI brain images of ASD subjects from healthy controls by
means of their temporal summary measures. We assessed the
potential of achieving this goal of each of our nine summary
measures in independent models, the advantage of employing all
the measures together in an ensemble model approach, and the
use of the measures in a single model with as many channels as
Frontiers in Psychiatry | www.frontiersin.org 6
the summary measures as input. In the next sections, we
illustrate the results obtained by the 3D-CNN models and by
the linear-SVM.

3D-Convolutional Neural Network Results
For our 3D-CNN architecture we used an architecture very
similar to that of Khosla et al. (16). Other architectures like
ResNet and VGG-net did not perform very well at all and
therefore we only present results from the architecture
described in the Network Architecture. The models were
trained with a mini-batch of 32, for a maximum of 50 epochs.
The loss of the validation set had converged by then. The neural
network weights were optimized by the binary-cross entropy loss
and Stochastic gradient descendent (SGD) with learning rate of
0.001 and momentum of 0.9. The same model and parameters
were used across all experiments.

Regarding the variability in classification performance
between models, we observed a difference between the two CV
procedures. When assessed by five-fold CV procedure, all tested
models performed at around 60% accuracy for the classification
task (Figure 2 and Table 2), with little variation between models'
performances. On the contrary, the leave-site-out CV procedure
shows high variability in terms of model performances with
relatively good performance for the NYU site and poor
performance for the other sites (Figure 3, Table 3, and
Supplementary Table S1).

The overall best performing model was the MM-ensemble,
which achieved balanced accuracy of 64% and F1 score of 66%,
averaged over the five-folds of the CV procedure. With the leave-
site-out CV procedure the performance of the MM-ensemble
dropped to an average balanced accuracy of mean 56% and F1
score of 59%, suggesting that this model does not do well in
generalizing to new sites. The overall lowest performance was
obtained by the entropy SM-model.

Among the SM-models, the ReHo SM-model is the best
performing and its classification accuracy is similar to the
MM-ensemble when evaluated with five-fold CV (balanced
accuracy mean: 64%, F1-score mean: 66%). Its performance
remained comparable when tested using the leave-site-out CV
procedure (balanced accuracy mean: 62%, F1-score mean: 64%).

The idea of the ensemble strategy is to learn several different
weak learners and combine them to output predictions based on
the multiple predictions returned by these weak models.
Therefore the success of the MM-ensemble strategy should be
due to the independent contribution of the information gathered
from the nine summary measures. To assess that the SM-models
are processing independent information to classify the subjects,
we estimated Kendall-correlations between predictions of each
SM-model, separately for each fold. If the correlation matrix
shows a cluster of SM-models whose predictions are highly
correlated, this would suggest that the SM-models are picking
up on similar patterns to classify ASD from CON and therefore
they share information. To assess the contribution of each
measurement to the MM-ensemble output, we estimated
Kendall-correlations between each SM-model and the MM-
ensemble prediction, again separately for each fold. If any of
the SM-models has a large influence on the MM-ensemble, this
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would appear as a stronger Kendall-correlation between their
predictions. The correlation results, averaged between folds, are
reported in Figure 4. There were no discernable clusters of SM-
models whose predictions aligned, and all the correlations
between SM-models ranged between 0.77 and 0.90. In the
same fashion, none of the predictions of the SM-models stood
Frontiers in Psychiatry | www.frontiersin.org 7
out for correlating with the prediction of the MM-ensemble, and
all the correlations ranged between 0.77 and 0.83. The analysis
illustrates that variation in the degree of correlation between
predictions of SM-models is more than variation between the
correlation of each SM-model and the MM-ensemble prediction.
Interestingly, while the ReHo SM-model and the MM-ensemble
reached a similar performance accuracy, this cannot be explained
as a more substantial contribution of ReHo to the MM-ensemble,
since the correlation between the two is not stronger than
between MM-ensemble and other SM-models predictions.
These observations indicate that the MM-ensemble benefits
from independent contributions from each of the SM-
model outputs.

Linear-Support Vector Machine Results
In order to establish a baseline for the performance of the 3D-
CNN models, we performed the classification task following the
same procedures but now using a linear SVM. As for the 3D-
CNN experiments, we implemented the two evaluation schemes:
1) five-fold cross-validation (CV) and 2) a leave-site-out CV
procedure. Linear-SVM does not require a validation procedure
to select the algorithm, but to be able to compare the results to
the one obtained by 3D-CNN experiments, we applied exactly
FIGURE 2 | Balanced accuracy and F1-score for the nine single measure (SM)-models trained on the summary measures, and for the MM-ensemble and multi-
measure (MM)-model.
TABLE 2 | Mean performance evaluated as balanced accuracy (accuracy) and
F1-score obtained for 3D convolutional neural network (CNN) and linear support
vector machine (SVM) with five-fold cross-validation (CV).

3D-CNN SVM

Accuracy F1-score Accuracy F1-score

ReHo 0.64 0.65 0.66 0.66
fALFF 0.62 0.63 0.57 0.58
Degree centrality 0.61 0.62 0.63 0.64
VMHC 0.61 0.62 0.62 0.62
Eigenvector centrality 0.60 0.61 0.61 0.63
Autocorr lag 0.59 0.61 0.57 0.59
LFCD 0.59 0.60 0.63 0.65
ALFF 0.59 0.60 0.57 0.58
Entropy 0.54 0.49 0.56 0.57
MM ensemble 0.64 0.66 0.66 0.67
MM model 0.59 0.60 0.61 0.62
In bold = Highest score in that column.
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the same procedure described above and limited the data used to
train the linear-SVM to the 90% of the training/validation
dataset. The averaged balanced accuracy and F1-score for each
experiment evaluated via five-fold and leave-site-out CV are
Frontiers in Psychiatry | www.frontiersin.org 8
reported in Tables 2 and 3 respectively (see also Supplementary
Table S2 for results of single site in the leave-site-out CV).

The results of the linear-SVM confirmed the patterns
identified by the 3D-CNN experiments with the linear-SVM
performing the classification task at around the 60% accuracy
level. The highest balanced accuracy and F1 scores were achieved
by the MM-ensemble (66 and 67% respectively, five-fold CV),
but it suffered when tested on new sites (balanced accuracy mean:
53%, F1-score mean: 56%). While the accuracy of the linear-
SVM MM-ensemble evaluated by five-fold CV is in line with the
one of the 3D-CNN counterpart, its decrease in performance
when evaluated by leave-site-out CV was steeper than what was
observed for the 3D-CNN MM-ensemble.

Again, the ReHo SM-model was the best performing model in
comparison to other SM-models and performed comparable to
the MM-ensemble when the outcome was evaluated with five-
fold CV (balanced accuracy mean: 66%, F1-score mean: 66%).
Interestingly, its performance remained comparable when
evaluated using the leave-site-out procedure (balanced
accuracy mean: 63%, F1-score mean: 62%). The lowest
performance was again observed for the entropy SM-model.

Occlusion of Brain Regions Results
To explore which brain regions were maximally contributing to
the classification results, we performed an occlusion experiment
FIGURE 3 | Leave-site-out balanced accuracy and F1-score for the nine single measure (SM)-models trained on the summary measures mentioned on the y axis,
and for the multi-measure (MM)-ensemble and MM-model for each test-site indicated in the legend.
TABLE 3 | Mean performance evaluated as balanced accuracy (accuracy) and
F1-score obtained for 3D convolutional neural network (CNN) and linear support
vector machine (SVM) as SM-models, MM ensemble, and MM model with leave
site out cross-validation (CV).

3D-CNN SVM

Accuracy F1-score Accuracy F1-score

ReHo 0.62 0.64 0.63 0.62
fALFF 0.59 0.63 0.61 0.61
VMHC 0.56 0.57 0.62 0.59
Degree centrality 0.56 0.56 0.60 0.59
fALFF 0.54 0.56 0.57 0.54
LFCD 0.53 0.56 0.63 0.61
Eigenvector centrality 0.51 0.49 0.59 0.57
Entropy 0.51 0.49 0.53 0.52
Autocorr 0.51 0.42 0.54 0.55
MM ensemble 0.56 0.59 0.53 0.56
MM model 0.56 0.58 0.61 0.62
See Figure 3 and Supplementary Tables S1 and S2 for details on how each test site
performed.
In bold = Highest score in that column.
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on the most successful summary measure: the ReHo, both as
input to the SM-model and the SVM. Mean and standard
deviation across folds of the 10 regions which occlusion drove
the steeper drop in performance are reported in Figures 5 (SM-
model) and Figure 6 (SVM). Interestingly, the occlusion
experiments highlighted many common areas which masking
caused a sensible corruption of classification performance. The
precuneus was the region maximally driving the results in all
the experiments.
DISCUSSION

We have proposed a machine learning solution for using rs-fMRI
that does not compromise its spatial properties. And we
presented an empirical analysis of how the choice of summary
of the temporal dimension via various statistical measures can
impact the performance of a 3D convolutional neural network in
classifying ASD subjects from the control subjects. We
considered nine different measures and used them as inputs in
a 3D-CNNmodel either as i) independent inputs to different 3D-
CNNs (SM-models), ii) an ensemble of results from the nine
independent 3D-CNNmodels to one output (MM-ensemble), or
iii) a combined nine channel 3D-CNN model that used each
measure as a channel.

Our analyses suggest that using a single summary measure is
often suboptimal for training 3D-CNNs, and more accurate
predictions can be achieved with an ensemble approach, even
in a heterogeneous dataset such as ABIDE I+II. Each single
FIGURE 4 | Kendall-correlations between classification predictions between
models trained and tested with different summary measures (SM-models) and
between each SM-models and the MM-ensemble. The last column and the last
row show the correlation between the predictions of each SM-model and the
MM-ensemble. The correlation is made on the common test-dataset, calculated
for each K-fold separately and then averaged for visualization purposes. The color
coding is the Kendall-correlation averaged between K-folds.
FIGURE 5 | Results of the occlusion experiment for the regional
homogeneity (ReHo) SM-model, balanced accuracy, and f1 are reported as
mean and standard deviation across five folds. “all brain” indicates the results
obtained by the original model, when all the ROIs are included. Region of
interests (ROIs) have been identified using the Harvard-Oxford atlas (threshold
at 25 and downsampled at 4 mm). The ROI names indicate the results when
the named ROI is masked from the brain volume, therefore the drop from the
“all brain” result is a suggestion of how much the voxels contained in the ROI
contributed to the original results. Only the 10 ROIs that contributed the most
are reported. Sup., superior portion; Inf., inferior portion; Lat., lateral portion;
Post., posterior; Temp., temporal.
FIGURE 6 | Results of the occlusion experiment for the regional
homogeneity (ReHo) linear-support vector machine (SVM), balanced
accuracy, and f1 are reported as mean and standard deviation across five
folds. “All brain” indicates the results obtained by the original model, when all
the region of interests (ROIs) are included. ROIs have been identified using
the Harvard-Oxford atlas (threshold at 25 and downsampled at 4 mm). The
ROI names indicate the results when the named ROI is masked from the
brain volume, therefore the drop from the “all brain” result is a suggestion of
how much the voxels contained in the ROI contributed to the original results.
Only the 10 ROIs that contributed the most are reported. Abbreviations are
as in Figure 5.
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summary measure extracts specific information from the rs-
fMRI data, capturing local or global aspects of the connectivity of
the voxels in the volumes. Even though different modalities may
result in similar accuracy performance, the trained models may
contain distinct information. This is confirmed by the
correlation matrix of predictions (Figure 4). We calculated the
agreement between all the SM-models and each SM-model with
the MM-ensemble. Combining models from different modalities
enhances the performance and creating an ensemble of these
measures at the last stage of outcome prediction, as done by the
MM-ensemble model, seems to take advantage of the multiple
representation of the data without being affected by the
increased noise.

Our MM-model's average performance was below 60%,
which is 4% less than the MM-ensemble and less than many of
the SM models. Here, summary measures that are not conveying
information about the classification task but who were pooled
together with informative summary measures potentially
increased the noise of the input data and therefore complicated
the classification task for the model.

The concept of transforming weak learning algorithms into
stronger learners by ensembling them has been proven successful
in a number of computer vision tasks (31, 32). In the study of
Khosla and colleagues, (16), the authors affirmed to have
overcome the limitation of traditional machine learning
models for connectomes that rely on region-based summary
statistics by ensembling the different atlases into a single model,
with a small gain in accuracy, for a final performance of 72.3%.

Even though the MM-ensemble approach resulted in the best
performance on the ASD classification, also some of the
summary measures reached a good classification performance.
In particular ReHo resulted in the best accuracy performance
across the SM-models. However, this knowledge is only available
after performing the experiments and thus difficult to anticipate
when choosing a particular summary measure. The MM-
ensemble approach seems to benefit from the performance of
ReHo without the need to select this measure a priori.
Differences in ReHo between ASD and CON have indeed been
reported in the literature. For example, the pericalcarine visual
cortex was found to be locally hyperconnected in the ASD
compared to CON (33), and subjects with ASD have right
dominant ReHo alterations of resting-state brain activity, i.e.,
areas known to exhibit abnormal stimulus or task related
functionality (34). Decreased ReHo in the ASD group
compared to the CON group was found in bilateral middle
and superior frontal gyri, left superior parietal lobule, and right
precuneus. Increased ReHo in the ASD group compared to the
CON group was found in bilateral middle temporal and right
parahippocampal gyri. The authors also report that the ReHo in
the precuneus correlated with the autistic trait score. Jiang and
colleagues found enhanced local connectivity in the middle
frontal cortex, left precuneus, and right superior temporal
sulcus, and reduced local connectivity in the right insular
cortex using ReHo (35).

These results are consistent with our occlusion experiments,
which identified the precuneus and occipital cortex as the regions
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of the brain that had the most influence on the ReHo-SM-model
and the ReHo-SVM outputs. The occlusion procedure used here
has the advantage to be easily interpretable and to open a
window to the information used by the models to perform the
given task, but it is merely descriptive and no strong conclusions
can be drawn from its results. The drop in performance after
occluding the precuneus is of only ~3 percentage points,
suggesting that the algorithms are more likely identifying
patterns spanning more than one single brain region.

The studies mentioned used small groups to detect differences
in ReHo between groups, and our findings on the large ABIDE I
+II dataset suggest that ReHo is indeed a sensitive measure for
detecting cortical abnormalities in autism.

The field of neuroimaging is benefiting from the development
of deep learning techniques and a growing number of studies
have applied deep learning for classification of ASD using the
ABIDE dataset. Unfortunately, comparison between results is
made hard by the heterogeneity of data preprocessing, data
selection, and model selection procedures. We followed the
data selection procedure described in (16). They obtained a top
accuracy of 72.3% by summarizing the temporal dimension of
the data in connectome matrices calculated averaging
stochastically determined regions of interest. Their model
therefore outperformed our best model, the MM-ensemble,
which reached an average balanced accuracy of 64 and 66%
F1-score in the K-fold CV procedure (but reduced performance
in leave-site-out procedure, see Table 3). While they used data
from ABIDE-I for training and test on ABIDE-II, we trained all
our models on a mix of data from both ABIDE-I+II. Since the
increased heterogeneity of our training dataset could possibly
explain the decrease in performance, we repeated the analyses of
the 3D-CNN models, training the models on the data from
ABIDE-I and testing the performance on ABIDE-II (the results
are reported in Supplementary Table S3). Our approach of
summarizing the rs-fMRI data on the temporal domain still
showed lower performances compared with (16). These
differences might be because Khosla et al., used the
connectivity between ROIs and not the statistics from
individual voxels to perform the classification, thus hinting at
the possibility that connectivity patterns across the brain contain
crucial information for the classification between ASD and CON.

The 3D CNN model we employed in our series of
experiments was inspired by the one described in Khosla and
colleagues but we decrease the number of CNN layers from four
to two. The reason behind this choice lies in the fact that,
contrary to the original model, we do not apply regularization
techniques to our 3D-CNN. Our model has a total of 257,585
trainable parameters. This number of free parameters is “small” if
compared to some state of art networks for computer vision. As
comparison, the ResNet 50 has over 23 millions trainable
parameters, but the number of brain volumes available for
training is also critically smaller than the number of images a
ResNet50 was trained on (e.g., ImageNet has > 14 millions of
images). The number of trainable parameters in our model is
suitable for the number of training examples, and a larger
network will be more prone to overfitting. Indeed, when our
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3D-CNN model is left training for enough time (approximately
50 epochs), it is able to reach 100% accuracy on the training set at
the expense of generalizability to new data: a clear indication of
overfitting. For these reasons described, it is unlikely that the 3D-
CNN model was too shallow or not trained enough.

We built our model on the example of another model in the
literature, which has proven successful on the same task of
classifying ASD from CON. The original model was trained on
different features then ours. The relatively low classification
accuracy that even our best model obtained might be a
consequence of this choice: the parameters that made the
original model successful did not generalize to our input data.
Indeed we performed a non-systematic parameter and hyper-
parameter search and carried out the full experiments on the best
configuration. Unfortunately, the numbers of adjustable
parameters in CNN models are extremely high, and it would be
computationally prohibitive to carry out a full systematic search.

The ABIDE dataset is composed of distinct datasets collected
by different institutions. The data collected vary in terms of
demographics of the participants, scanning hardware, and
sequences for data collection, therefore the images vary in
image quality and resolution. Differences in resolution do not
present a concern, because all the images were resampled to the
same 4x4x4 mm3 voxel size in MNI space. Differences in sample
composition and data acquisition contribute considerably to the
heterogeneity of the data, which has been identified as one of the
most important limitations of the ABIDE dataset, and therefore
might explain the low accuracy achieved (36).

In general, heterogeneity of the dataset has been pointed out
by many as a limitation in performing ML on neuroimaging data
(37). Classification accuracy drops significantly in larger
population samples and especially when the data are
aggregated from different sites (36).

Another possibility is that the time domain of rs-fMRI data
contains properties that get lost when the summarizing
procedures are applied. Correlation and its derivative (like our
summary measures) are first-order transformation, which does
not account for higher-order interactions between time courses.
In previous work of our group, we maintained the time
dimension while summarizing the spatial dimension using
ROIs (Harvard Oxford atlas). This approach obtained an
accuracy of 68% using a simple 1D-CNN model on the ABIDE
I+II dataset (3).

Another interesting finding is that the linear-SVM performed
as well, and in certain instances better, than the 3D-CNN
models. He et al., (8), have found that SVM do as well as 3D-
CNNs in other tasks as well. We hypothesize that in our task,
there was no apparent underlying structure in these 3D summary
measures that could be exploited. A linear-SVM can be thought
of as a fully connected neural network with non-linear activation
function (sign function). Our 3D-CNN included also a fully
connected last layer that can again be thought of as an SVM on
the representations learnt by preceding convolutional layers. The
fact that the 3D-CNN architecture could not outperform the
Frontiers in Psychiatry | www.frontiersin.org 11
linear-SVM suggests that either there were no low-dimensional
patterns that capture the essence of the disorder in these summary
measures, or that the amount of data is insufficient for the 3D-
CNN to learn interesting structures. The amount of data available
might not be sufficient to leverage the ability of CNNs to detect
patterns. CNNs are highly flexible models that have been
developed in the context of “big data” settings. The sample size
in our experiments is large but probably not large enough to take
full advantage of CNN models. This could explain accuracies
similar to those of much less flexible linear-SVM models.

We have shown that simple temporal transformation can lead
to accuracies comparable to state-of-the-art for a complex task
like classifying ASD from control subjects. But we also found that
there is not much advantage in using a 3D-CNN architecture for
this task. We have, including in our previous studies and this,
shown various ways of reducing the dimension of the rs-fMRI
signal before feeding it into a machine learning algorithm. In the
future, we plan to utilize the full 4D structure of the rs-fMRI
without compromising the resolution in either time or space.
This can be achieved for example by exploiting larger datasets
like the UK Biobank6 to learn representations for rs-fMRI signals
which can then be used in small-sample psychiatric datasets
like ABIDE.
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