
Frontiers in Psychiatry | www.frontiersin.or

Edited by:
Noèlia Fernàndez-Castillo,

Centre for Biomedical Network
Research (CIBER), Spain

Reviewed by:
Lisabeth Fisher DiLalla,

Southern Illinois University
Carbondale, United States

Riley L. Marshall,
Southern Illinois University,

United States,
in collaboration with reviewer LD

Hyun Ruisch,
University of Groningen, Netherlands

*Correspondence:
Brian B. Boutwell

bbboutwe@olemiss.edu

Specialty section:
This article was submitted to

Behavioral and Psychiatric Genetics,
a section of the journal
Frontiers in Psychiatry

Received: 30 October 2019
Accepted: 26 May 2020
Published: 25 June 2020

Citation:
Tielbeek JJ and Boutwell BB (2020)
Exploring the Genomic Architectures

of Health, Physical Traits and
Antisocial Behavioral Outcomes:

A Brief Report.
Front. Psychiatry 11:539.

doi: 10.3389/fpsyt.2020.00539

PERSPECTIVE
published: 25 June 2020

doi: 10.3389/fpsyt.2020.00539
Exploring the Genomic Architectures
of Health, Physical Traits and
Antisocial Behavioral Outcomes: A
Brief Report
Jorim J. Tielbeek1 and Brian B. Boutwell 2,3*

1 Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije
Universiteit Amsterdam, Amsterdam, Netherlands, 2 Department of Criminal Justice and Legal Studies, School of Applied
Sciences, University of Mississippi, University, MS, United States, 3 John D. Bower School of Population Health, University of
Mississippi Medical Center, Jackson, MS, United States

Awidely replicated finding across the behavioral sciences is that antisocial behaviors correlate
with an array of health problems. Less clear, however, is the precise nature of this association.
There is reason to suspect that a direct causal link exists between incarceration—a
consequence of some antisocial behaviors—and certain negative health outcomes, for
instance. However, it might be the case that broader phenotypes like antisocial behavior
may correlate with certain health and physiological traits at a genomic level. We explore this
possibility from a theoretical vantage point, while also presenting some preliminary data from
existing secondary sources. Tentatively, no significant genetic correlations emerged across a
host of health, physiological, and wellbeing outcomes after correction for multiple testing.
However, more work is needed exploring this topic. We propose that future studies should
make use of larger, more diverse samples and examine the genetic overlap between
homogeneous clusters of antisocial behavioral subtypes and disease traits or symptoms.

Keywords: genetic correlation analysis, genome wide association analysis, antisocial behavior, disease
traits, comorbidity
INTRODUCTION

Prior research has produced well-replicated associations between various health maladies (both
psychological and medical) and a range of antisocial behaviors (ASB) (1–4). Overtly aggressive
forms of behavior in particular are correlated with an array of diseases; chronic and acute,
communicable and non-communicable, and including diabetes, hepatitis, asthma,
hyperlipidemia, cancer, and various attendant medical complications such as sepsis (2, 5–7).
Children and adolescents with psychiatric diagnoses such as attention deficit/hyperactivity disorder
(ADHD)—a key risk factor for crime and ASB—are at an increased risk for adverse health outcomes
that can include sleep apnea, diabetes, and obesity (8–10).

While the evidence regarding phenotypic correlation seems clear, less apparent is whether some
covariance between ASB and health indicators also exists at a genomic level (11). This becomes
possible owing to several reasons, including but not limited to the diffuse heritability of quantitative
human traits, as well as arguments made regarding the possibility of “omnigenic” influences in
nature (12, 13). The purpose of this brief report, then, is to shed light on possible associations
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1With additional health traits—which we became aware of after our initial round
of peer review—included in the supplementary tables. We opted to expand our
focus to include these traits as a result of both reviewer feedback, and the relevancy
of the traits for the current research question.
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between ASB and a wide swath of relevant health, physiological,
and disease traits. The findings to come in this area, regardless of
their precise outcome, are important as they will have key
implications for research on this topic. To the extent that a
genetic correlation exists across traits it both suggests a shared
etiology for health and ASB, and also highlights the need to better
understand mechanistic pathways from genetic to phenotypic
variation (12). Correlated genetic factors must also be controlled
in epidemiological and observational studies seeking to explore
causal effects running from ASB to health or vice versa (14, 15).
An absence of a genetic correlation is also of interest, as it suggests
areas where genetic influences are less pleiotropic, and thus will
necessarily shape the search for other trait relevant variants for
both sets of outcomes independently. Below, we first examine
some of the indirect evidence bearing on the current focus. We
then transition to the work being done directly on the genomics of
antisocial behavior, and discuss reasons why overlap between ASB
and health/wellbeing may exist.

The Correlations Between Health, Disease,
and ASB-Relevant Outcomes
There may exist some shared genetic variance between ASB and
health/physiological maladies, but empirical evidence on this
question is largely lacking or absent entirely. To be sure, there is
reason to suspect that such an association might exist. Both sets
of outcomes—ASB and health—are moderately heritable (13).
Given the pleiotropy that exists in the genome, moreover, it
seems reasonable to hypothesize that some of the variants
associated with health and ASB overlap (12). Finally,
phenotypic correlations often reflect genetic correlations to
some extent (11). This last point is not fundamental to the
hypotheses being tested per se, however, does seem broadly
relevant when considering possible overlapping genomic
architectures between outcomes correlated at a phenotypic level.

To illustrate our point, consider the limited results gleaned
from prior genome wide association (GWA) based studies which
relate to the current topic. As we mentioned above, certain
cognitive traits/psychological disorders (i.e., ADHD) can
function to increase the risk of ASB while also presenting
concurrently with certain health maladies (16–18). Hagenaars
and colleagues (16) provide a general summary regarding
genomic correlations between cognitive traits and health [we
direct interested readers specifically to their supplementary
tables, and studies such as Brainin et al. (19) and Kovacic et al.
(20)]. It should be reiterated, though, that the studies referenced
are illustrative, yet only indirectly related to our current focus.
Most research to date has not examined the genomic
architectures of ASB directly, thus cannot directly elucidate the
research question of interest here.

Better Characterizing the Genomics of
Antisocial Behavior
Indeed, to best address the current question a necessary first step
involved examining the genomic architectures of various
antisocial behaviors. While well-powered genome wide
association studies (GWAS) have become widely available in
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general, comparatively less effort has been focused on antisocial
behavioral phenotypes (15, 21). The result, to date, has meant
somewhat limited statistical power when examining antisocial
behavioral phenotypes (compared to health/disease outcomes).
Nonetheless, work in the area is growing, and to address the
power problems (as well as other previous limitations), several
consortia were formed combining several datasets in order to
increase efficiency of research in this area.

Examples of these far-reaching collaborations studying the
genetics of ASB include: ACTION (Aggression in Children:
Unraveling gene–environment interplay to inform Treatment
and InterventION strategies), the Agressotype consortium,
BroadABC (Broad Antisocial Behavior Consortium) and
EAGLE (Early Genetics and Lifecourse Epidemiology). Using
consortia data, we have previously meta-analyzed GWAS data of
the non-overlapping cohorts of the BroadABC and EAGLE
groups (combined N = 31,968) (22). Despite the identification
of a few promising genetic loci (such as chr1:rs2764450; chr2:
rs11126630; chr11:rs11215217; and chrX: rs41456347) these
large collaborative GWA efforts have not yet produced robust
and reproducible genetic variants associated with ASB (22).

Still, these consortia have demonstrated a polygenic
contribution of common variants to antisocial behavior and
revealed genetic overlap of antisocial behavior with several
psychological, psychiatric and addictive outcomes. We
demonstrated preliminary evidence of a genetic correlation
between reproductively relevant traits and ASB, for instance. In
particular, genetic correlation analyses suggested that alleles
associated with higher reproductive output were positively
correlated with alleles associated with ASB, whereas alleles
associated with giving birth later in life were negatively
associated (23). Moreover, in a study using a similar research
design we found preliminary support for a genetic correlation of
ASB with lifetime cannabis use and cigarettes per day, but not
with weekly alcohol consumption or ever smoking (24).
METHODS AND RESULTS

The current brief report expands on the research just mentioned.
To maximize sample size, this study included population-based
cohorts with a broad range of antisocial measures, covering both
aggressive and non-aggressive domains of antisocial behavior,
and with different age groups represented [age ranges for EAGLE
included 3 to 15 years old, and BroadABC included ages ranging
between 7 and 56 years old; additional details are provided
elsewhere, see Pappa et al. (22); Tielbeek et al. (25)]. This brief
report represents our first exploration examining the genetic
overlap of antisocial behavior, utilizing combined summary data
from two consortia [for more detail, see Pappa et al. (22),
Tielbeek et al. (25)] with 71 traits derived from the centralized
database LD Hub (26) (see Footnote 1).
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We should momentarily elaborate on the selection and
inclusion of health and physiological measures. As mentioned,
there are a host of health, physiological, and disease relevant
outcomes correlated across numerous prior studies with ASB
(see above). As additional GWA summary statistics have become
publicly available (see Footnote 1), we opted to cast a wide net
when analyzing the possible shared genomic architectures of
ASB and health/disease/physiology (as opposed to numerous
papers, each smaller in scope).2 While desirable in some respects,
this approach also further necessitates the need to guard against
the possibility of chance findings. With this point in mind, we
uncovered no significant (a < 0.0007) genetic correlations after a
Bonferonni correction was applied to the data (Table 1).

Consideration of findings reaching a level of nominally
significant (a < 0.05) results revealed that—with increasing
sample size—anthropometric risk factors such as high waist-
to-hip ratio (rg = 0.30, P = 0.016) may correlate with genetic risk
of ASB. Moreover, the potential positive genetic overlap of ASB
with insomnia (rg = 0.43, P = 0.026) and HOMA-IR
(Homeostatic Model Assessment for Insulin Resistance, rg =
0.57, P = 0.034) is noteworthy [for a related reference, see also
Rolling et al. (6)], as well as the negative genetic correlation with
autoimmune diseases ulcerative colitis (rg = −0.39, P = 0.038) and
primary sclerosing cholangitis (rg = −0.56, P = 0.030). It is key to
emphasize, however, that although we report the above moderate
to strong genetic correlations, they may in fact reflect false
positive findings—as they did not survive correction for
multiple testing. The large standard errors, it is worth noting,
reflect the relatively low GWAS sample size for ASB, rendering
these results in need of further replicative efforts with larger
sample sizes. Finally, in an effort to be as exhaustive as possible
beyond our initial analyses, and by making use of the same LD
Hub web interface, we calculated the genetic correlations of ASB
with an additional 597 health and physiologically relevant traits
of the UK Biobank which also recently became available
(Supplementary Table S1; see also our footnote above
concerning the inclusion of these additional traits). Similar to
our primary findings, none of these correlations survived
correction for multiple testing (a < 8.4 × 10−5).
DISCUSSION

What this preliminary exploration suggests is that ASB and
various health outcomes share virtually no genomic overlap,
beyond what might be considered at this point as “nominally
significant.” Moreover, these findings further suggest that
phenotypic associations between ASB and health/physiological
outcomes are perhaps phenotypically causal, or mutually
impacted by some third environmental variable (i.e., spurious,
but owing to environmental variables whichmight include a range
of factors such as socioeconomic status, educational attainment,
etc.). Keeping that mind, we have several recommendations for
2We wish to thank an anonymous reviewer for prompting us to consider
expanding our focus, given the wider associations between antisocial behavioral
outcomes and health/physiologically relevant variables.
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future research endeavors examining the overlap of ASB and
health/physiological adversities.

Enlarging and Diversifying Samples
With growing sample sizes, future polygenic risk scores (PRS)
will improve in their prediction of antisocial behavioral traits on
the basis of genetic data. Moreover, future PRS for disease
outcomes may still be capable of elucidating the risk of ASB
and vice versa [see Demontis et al. (9)]. Well-powered PRS, such
as for Type 1 Diabetes, have great clinical and research potential
and have been found useful for classifying adult incident diabetes
type and improving newborn screening (29). Despite the great
potential of PRS and precision medicine, a major limitation is the
Eurocentric bias and the lack of diversity in genetic studies.
Indeed, the underrepresentation of non-European populations in
GWAS is problematic as it limits the generalizability and
predictive value of PRS for these populations (30).

Examining Homogeneous Clusters
Genetic correlations are computed on the basis of GWA summary
statistics of the traits of interest. GWA research designs in
psychopathology often employ sum-scores or case-control status
summarizing a list of items or symptoms. Items included in these
types of composite scores can vary considerably, with some
examples including: ‘hit others when provoked’, ‘blamed others’
and ‘had trouble keeping a job’, yet all of them load on the broader
construct of antisocial behavior (22). Prior work on neuroticism,
however, suggested that the items included were genetically
heterogeneous, and thus argued that future studies should
examine the trait from the standpoint of homogeneous clusters of
relevant alleles (31). To that end, future scholars may find the
framework of genomic SEM (structural equation modeling) useful
in delineating homogenous clusters (32). Taken together, then, the
above recommendations will likely be worthwhile, as it will be
important to examine genetic overlap between GWAS summary
stats of subtypes of ASB (or even on the item level) with disease traits
or symptoms in future research.

Exploring Causality
With the help of well-powered GWAS it has become increasingly
clear that most genes influence multiple biological pathways
and traits—a phenomenon commonly termed pleiotropy
(12). Owing to this issue, it becomes crucial to overcome
unmeasured confounding and distinguish between causal and
spurious risk factors (33, 34). Despite many epidemiological
studies being non-experimental, a research technique called
Mendelian randomization (MR)—which is a version of the
commonly utilized design known as instrumental variables—
can strengthen causal inference by considering genes as the
instruments in the design (34). Stated differently, MR studies
operate by making use of genetic variants as proxies for the actual
(environmental) risk factor of interest (34). The number of
studies utilizing this approach is expanding rapidly, but as a
note of caution (echoed previously in prior work) future MR
studies on this topic should carefully assess the plausibility of the
underlying assumptions when implementing the technique, and
preferably combine various MRmethods whenever possible (33).
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TABLE 1 | Genetic correlations (rg) between 71 traits (anthropometric, autoimmune, cancer, glycemic, hematological, hormone, kidney, lipids, metal, neurological,
sleeping) and broad antisocial behavior.

Trait Category Phenotype Ethnicity rg SE p SNP h2

Anthropometric Child birth length European 0.069 0.212 0.746 0.175
Anthropometric Child birth weight European -0.490 0.251 0.051 0.125
Anthropometric Body mass index European 0.201 0.127 0.114 0.191
Anthropometric Body fat Mixed 0.291 0.159 0.068 0.109
Anthropometric Childhood obesity European 0.252 0.176 0.152 0.400
Anthropometric Extreme bmi European 0.165 0.144 0.252 0.694
Anthropometric Extreme height European 0.062 0.110 0.575 0.123
Anthropometric Extreme waist-to-hip ratio European 0.109 0.222 0.623 0.353
Anthropometric Height_2010 European 0.047 0.090 0.599 0.285
Anthropometric Obesity class 1 European 0.185 0.121 0.127 0.217
Anthropometric Obesity class 2 European 0.210 0.131 0.108 0.184
Anthropometric Obesity class 3 European 0.216 0.172 0.209 0.122
Anthropometric Overweight European 0.136 0.118 0.250 0.110
Anthropometric Hip circumference European 0.022 0.091 0.812 0.129
Anthropometric Infant head circumference European 0.125 0.254 0.622 0.228
Anthropometric Waist circumference European 0.114 0.095 0.233 0.122
Anthropometric Waist-to-hip ratio European 0.303 0.126 0.016* 0.114
Anthropometric Difference in height between adolescence and adulthood age 14 European -0.069 0.272 0.800 0.474
Anthropometric Difference in height between childhood and adulthood age 8 European -0.120 0.217 0.581 0.320
Anthropometric Sitting height ratio European 0.320 0.184 0.082 0.227
Anthropometric Height Females at age 10 and males at age 12 European -0.026 0.179 0.886 0.431
Anthropometric Birth weight European -0.136 0.121 0.260 0.098
Autoimmune Eczema Mixed 0.400 0.223 0.072 0.069
Autoimmune Crohns disease European -0.003 0.141 0.983 0.478
Autoimmune Inflammatory Bowel Disease (Euro) European -0.228 0.152 0.133 0.300
Autoimmune Ulcerative colitis European -0.391 0.189 0.038* 0.224
Autoimmune Asthma European 0.051 0.186 0.784 0.142
Autoimmune Rheumatoid Arthritis European 0.223 0.144 0.122 0.157
Autoimmune Multiple sclerosis European 0.143 0.279 0.609 0.073
Autoimmune Systemic lupus erythematosus European 0.089 0.185 0.629 0.408
Autoimmune Primary biliary cirrhosis European 0.132 0.221 0.549 0.365
Autoimmune Celiac disease European 0.033 0.265 0.902 0.308
Autoimmune Primary sclerosing cholangitis Mixed -0.556 0.256 0.030* 0.399
Cancer Lung cancer (all) European 0.088 0.185 0.636 0.130
Cancer Lung cancer (squamous cell) European 0.228 0.310 0.463 0.048
Cancer Lung adenocarcinoma European 0.124 0.309 0.688 0.025
Cancer Squamous cell lung cancer European 0.153 0.263 0.560 0.037
Cancer Lung cancer European 0.061 0.173 0.727 0.323
Glycemic Type 2 Diabetes European -0.143 0.162 0.378 0.090
Glycemic Fasting glucose main effect European 0.052 0.150 0.729 0.104
Glycemic Fasting insulin main effect European 0.276 0.217 0.202 0.070
Glycemic Fasting proinsulin European -0.274 0.287 0.340 0.189
Glycemic 2hr glucose adjusted for BMI European 0.033 0.267 0.901 0.109
Glycemic HbA1C European 0.264 0.257 0.305 0.064
Glycemic HOMA-B European 0.346 0.213 0.104 0.087
Glycemic HOMA-IR European 0.574 0.270 0.034* 0.068
Haemotological Heart rate Mixed 0.116 0.143 0.416 0.082
Haemotological Mean platelet volume European 0.155 0.182 0.396 0.323
Haemotological Platelet count European -0.130 0.152 0.391 0.132
Hormone Leptin_adjBMI European -0.101 0.214 0.637 0.094
Hormone Leptin_not_adjBMI European 0.054 0.218 0.803 0.098
Kidney Urinary albumin-to-creatinine ratio (non-diabetes) European -0.191 0.240 0.426 0.055
Kidney Chronic Kidney Disease Mixed -0.152 0.230 0.508 0.020
Kidney Serum creatinine (non-diabetes) Mixed -0.177 0.123 0.150 0.115
Kidney Serum creatinine Mixed -0.144 0.117 0.219 0.108
Kidney Serum cystatin c Mixed -0.207 0.165 0.210 0.170
Kidney Urinary albumin-to-creatinine ratio European -0.152 0.222 0.495 0.048
Lipids HDL cholesterol European 0.009 0.121 0.939 0.120
Lipids LDL cholesterol European 0.169 0.130 0.196 0.105
Lipids Triglycerides European 0.129 0.114 0.257 0.174
Lipids Total Cholesterol European 0.229 0.127 0.070 0.135
Metal Transferrin European 0.190 0.224 0.396 0.163

(Continued)
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Mechanisms and Gene–Environment
Interplay
For the traits that might evince preliminary evidence of a genetic
correlation (if the nominal levels of significance are meaningful),
much more work—with more statistical power—is needed to
understand the mechanisms of such associations. We hesitate to
speculate widely, but one possibility could be that the genetic
influences shared across traits operate widely on immune system
functioning as well as general functioning in the central nervous
system. The downstream effect then would be the emergence of
both psychological and physiological conditions at certain points
in the life course (16). Additionally, one cannot discount the
relevance of gene–environment interplay in two forms: gene–
environment interaction (G × E) and gene–environment
correlation (rGE) [in general, see Leppert et al. (35); Ruisch
et al. (36); Ruisch et al. (37)].

Indeed, one can envision scenarios such that the impact of
trait relevant genes is calibrated based on exposure to
environmental insults, including disease or infectious agents
[i.e., G × E; for indirectly related examples see Ruisch et al.
(36); Ruisch et al. (37)]. Moreover, traits which vary in part
because of genetic variation—in this case ASB—might perhaps
operate to increase risk of exposure to infectious agents or more
broadly, situations where health outcomes could be
compromised (36, 37). Future research on this topic will
doubtless benefit from exploring the relevancy of rGEs for the
intersection of health and ASB. Finally, we should note that
interaction with other alleles at additional loci, too, will likely be
Frontiers in Psychiatry | www.frontiersin.org 5
important for understanding the complex underpinnings of
these phenotypes and why their genomic architectures could
potentially overlap. In short, the number of research hypotheses
awaiting investigation in this area is long, detailed, and it would
seem, quite timely.
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