
Frontiers in Psychiatry | www.frontiersin.or

Edited by:
Gregory Light,

University of California, San Diego,
United States

Reviewed by:
Teresa Sanchez-Gutierrez,

Universidad Internacional De La Rioja,
Spain

Massimo Tusconi,
University of Cagliari, Italy

*Correspondence:
Verner Knott

Verner.Knott@theroyal.ca

Specialty section:
This article was submitted to

Schizophrenia,
a section of the journal
Frontiers in Psychiatry

Received: 05 March 2020
Accepted: 01 June 2020
Published: 12 June 2020

Citation:
Knott V, Wright N, Shah D,

Baddeley A, Bowers H, de la Salle S
and Labelle A (2020) Change in the

Neural Response to Auditory
Deviance Following Cognitive Therapy

for Hallucinations in Patients
With Schizophrenia.

Front. Psychiatry 11:555.
doi: 10.3389/fpsyt.2020.00555

ORIGINAL RESEARCH
published: 12 June 2020

doi: 10.3389/fpsyt.2020.00555
Change in the Neural Response to
Auditory Deviance Following
Cognitive Therapy for Hallucinations
in Patients With Schizophrenia
Verner Knott1,2,3*, Nicola Wright4, Dhrasti Shah1, Ashley Baddeley2, Hayley Bowers4,
Sara de la Salle1,2 and Alain Labelle3,4

1 School of Psychology, University of Ottawa, Ottawa, ON, Canada, 2 Clinical Neuroelectrophysiology and Cognitive
Research Laboratory, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada, 3 Department of
Psychiatry, University of Ottawa, Ottawa, ON, Canada, 4 Schizophrenia Program, The Royal Ottawa Mental Health Centre,
Ottawa, ON, Canada, 5 Department of Psychology, University of Guelph, Guelph, ON, Canada

Adjunctive psychotherapeutic approaches recommended for patients with schizophrenia
(SZ) who are fully or partially resistant to pharmacotherapy have rarely utilized biomarkers
to enhance the understanding of treatment-effective mechanisms. As SZ patients with
persistent auditory verbal hallucinations (AVH) frequently evidence reduced neural
responsiveness to external auditory stimulation, which may impact cognitive and
functional outcomes, this study examined the effects of cognitive behavioral therapy for
voices (CBTv) on clinical and AVH symptoms and the sensory processing of auditory
deviants as measured with the electroencephalographically derived mismatch negativity
(MMN) response. Twenty-four patients with SZ and AVH were randomly assigned to
group CBTv treatment or a treatment as usual (TAU) condition. Patients in the group CBTv
condition received treatment for 5 months while the matched control patients received
TAU for the same period, followed by 5 months of group CBTv. Assessments were
conducted at baseline and at the end of treatment. Although not showing consistent
changes in the frequency of AVHs, CBTv (vs. TAU) improved patients' appraisal (p =
0.001) of and behavioral/emotional responses to AVHs, and increased both MMN
generation (p = 0.001) and auditory cortex current density (p = 0.002) in response to
tone pitch deviants. Improvements in AVH symptoms were correlated with change in pitch
deviant MMN and current density in left primary auditory cortex. These findings of
improved auditory information processing and symptom-response attributable to CBTv
suggest potential clinical and functional benefits of psychotherapeutical approaches for
patients with persistent AVHs.

Keywords: schizophrenia, auditory hallucinations, cognitive behavioral therapy, auditory cortex, auditory sensory
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INTRODUCTION

Auditory verbal hallucinations (AVHs), defined as perceptions
or subjective experiences of “hearing voices” without
corresponding external auditory stimulation, occur with a high
frequency of up to 60% to 80% in patients with schizophrenia
(SZ) (1). Reflecting a diverse phenomenological experience,
AVHs can involve words, sentences, or conversations (with
varied clarity, loudness, and spatial locations) spoken as
commands, comments, insults, or encouragements by familiar
or unfamiliar single and/or multiple voices (in first, second, or
third person) (2).

Although the causes of AVHs are still unclear, improved
understanding of the neural basis of AVHs has been forthcoming
from functional magnetic resonance imaging (fMRI) studies
which have shown elevated activation of brain regions
associated with auditory stimulus processing, speech
generation, and speech perception during the experience of
active hallucinations (vs. silent rest) (3–6). Paradoxically,
although in sensory cortices hyper-excitable neuronal states are
typically associated with enhanced exogenous induced processes
(7–10), AVHs have been associated with reduced neuronal
activation of the auditory cortex in response to external
auditory stimulation (11). These opposing findings in
hallucinating patients of increased activation of the auditory
cortex in the absence of external stimulation and reduced
activation of the auditory cortex in response to externally
presented speech and non-speech sounds have been
interpreted as evidence for competition between internally
generated and externally originating neural activity in the
auditory cortex for the attentional resources of the
hallucinating patient (11). Also evidenced in SZ patients who
are prone to AVHs (vs. patients who have never hallucinated),
diminished neural responsiveness to external auditory
stimulation is believed to affect the functional cost of an
auditory cortex that is thought to be tonically “tuned on” and
“tuned in” to the internal channels broadcasting hallucinating
stimuli, with the preferential endogenous processing of AVHs
resulting in the “saturation” of neuronal resources and resulting
in limited capacity for the exogenous processing of external
auditory stimuli (12, 13).

Further evidence that the auditory cortex in hallucinating patients
is overly sensitive to activation arising from internal processing, while
being less responsive to external stimulation, comes from
electrophysiological studies assessing cortical responsiveness to
auditory stimuli with electroencephalographically (EEG)-derived
event-related potential (ERP) components that have been shown
to be generated in the auditory cortex and have been extensively used
to document profound early auditory information processing (EAIP)
deficits in SZ (14). Patients with SZ have been found to be impaired
with respect to two aspects of EAIP: inhibiting intrinsic responses to
redundant stimuli (to prevent sensory overload), and facilitating/
detecting potentially salient stimuli (for extended higher-order
processing and response) (15). These elementary pre-attentive
auditory input deficits in SZ are reflected in two candidate ERP
endophenotypes, one of which includes P50 sensory gating as a
measure of inhibitory failure. This inhibitory deficit is indexed in SZ
Frontiers in Psychiatry | www.frontiersin.org 2
both by minimal suppression of P50 (an early central-maximum
positive scalp component elicited at ~50 ms in response to the
second stimulus [S2] of click pairs [S1-S2]), and by a diminished S1
P50 amplitude (16). A second ERP endophenotype of EAIP
dysfunction in SZ, mismatch negativity (MMN), is a frontal
maximum negative scalp component at ~150 to 200 ms which
indexes automatic acoustic deviance detection and, in SZ, exhibits a
reduced amplitude in response to changes in physical or abstract
features in auditory oddball paradigms (17).

Although both of these ERP-indexed elementary sensory
processes (auditory gating and auditory charge detection) have
been consistently shown to be abnormal in SZ, our findings
indicated a significant worsening of these brain sensory functions
in patients who hallucinate (trait positive) as: (1) increasing
negative affective content of AVHs was inversely related with S1
P50 amplitude (18); (2) SZ hallucinators (vs. non-hallucinators)
exhibited smaller MMNs to changes in pure tone stimuli (19),
with MMN reduction being more evident with increasing trait
ratings of hallucinatory activity (20); and (3) SZ hallucinators (vs.
healthy controls) showed smaller MMNs to pure tone and speech
deviant stimuli (21). Furthermore, in SZ patients who are prone
to hallucinate, we observed diminished involuntary attentional
orienting to speech stimuli (evidenced by a reduction in a later
[~300 ms] frontocentral positive [P3a] scalp component),
suggesting an impairment in the ability of human speech
deviations to capture attention (22). Together with findings of
reduced amplitude of the N1 component of the auditory ERP
during hallucinating states (23), observed ERP deficits in sensory
registration (N1), sensory inhibition (P50), sensory
discrimination (MMN), and stimulus selection (P3a) within the
auditory modality are consistent with the “saturation” hypothesis
of AVHs. The resulting competitive outcome favoring resource
allocation to the processing of internal auditory signals may in
part explain the profound behavioral performance deficits of SZ
patients during auditory discrimination tasks (24).

AVHs are associated with high levels of distress likely related
to idiosyncratic beliefs or cognitive appraisals involving control,
power, voice identity, authority, and consequences of not
complying with the voices (25–27). Despite adequate dosages
of antipsychotic drugs, AVHs are drug resistant in ~25% of SZ
patients, and become chronic, causing an impaired quality of life
(28) and diminished cognitive capacity, with the latter playing a
key role in functional outcome (29). Cognitive behavioral
therapy (CBT) has been suggested as a complement to
pharmacotherapy for targeting psychosis in treatment resistant
cases (30–32). Reviews (33–37) and multiple meta-analyses (38,
39, 40–42) on the effectiveness of specialized cognitive behavioral
therapy for psychosis (CBTp), developed, and recommended as
an adjunctive treatment for decreasing distress in patients with
persistent AVHs (43, 44), found a modest but significant positive
impact on positive symptoms, negative symptoms, and general
psychopathology. The proposed mechanism of change resulting
from CBTv is through changes in beliefs about voices as well as
enhancing coping skills (33).

In contrast to CBTp, which is aimed at a broad array of
symptoms, administering tailored therapies for specific
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symptoms and using a recommended symptoms specific
approach such as CBT for voices (CBTv) (34, 40) has shown
effectiveness in individual and group sessions. In three
randomized controlled group CBTv trials, improvements have
been found not only in positive and general symptoms, but also
in self-esteem, effective coping strategies and social functioning,
as well as reductions in voice frequency and perceived voice
power (35, 45–49).

The Present Study
The ultimate goal of CBTv is to help patients cope with auditory
hallucinations, which would presumably translate into improved
external auditory information processing, and to improved
functioning. The primary aim of this pilot study was to examine
change in the neuronal response to auditory stimulation following
an integrated group CBTv trial which would incorporate the use of
both acceptance and commitment therapy (ACT) to modify
painful and stressful thoughts and emotions arising from voices
(50–52), and attentional training (ATT) to reduce the attentional
capture by emotionally salient voices (53, 54). Effective cognitive
strategies that are able to reduce AVH saturation of sound
perception neurocircuitry may free up resources for external
auditory processing in limited capacity auditory cortical
networks. At the sensory processing level, the MMN may be an
ideal probe for indexing treatment associated with functional
changes in the auditory cortex as: it can be rapidly assessed and
it is highly stable over time (test-retest ranging from 0.60 to 0.80)
(55, 56); it is an automatic sensory process that is relatively free of
attentional and motivational confounds that influence effort-
demanding, higher order cognitive operations (57); and finally,
because MMN has strong external face validity (in that it is
positively related to performance in behavioral tasks of sound
discrimination) (58, 59), and its impairment in SZ is positively
correlated with cognitive (memory) (60) and executive
functioning deficits (61, 62), social skills acquisition (63), and
global daily functioning (64–67).

In addition to our study's primary objective of using MMN to
index CBTv-induced changes in neural correlates of auditory
discrimination of pure tone deviants, a complimentary objective
was to conduct a regions of interest (ROI) analysis on deviance-
elicited source localized activity in bilateral primary (pAC) and
secondary auditory cortices (sAC), putative regions implicated in
AVHs, and the main cortical areas of MMN generation (68–76).
Hypothetically, although we do not necessarily expect changes in
AVH topography (i.e., frequency and quality of voices), within
the “saturation” model we generally predicted that CBTv, in
reducing resource-demanding processing of internal (voices)
stimulation, will allow for increased processing of external
auditory stimulation. At the neural level, we specifically
hypothesized that increased exogenous processing following
CBTv will be evidenced by greater MMN responses to auditory
deviants, and by greater deviant-elicited activation in the
primary auditory cortex (pAC), and specifically the left pAC as
this is the main brain region in SZ hallucinators that exhibits
both increased activation in the absence of an external stimulus
and decreased activation in the presence of an external auditory
stimulus (11). CBTv-induced changes in symptoms were
Frontiers in Psychiatry | www.frontiersin.org 3
expected to correlate with changes in deviance elicited MMN
and auditory cortex responses. MMN changes with CBTv were
also predicted to be related to response changes in the
auditory cortex.
METHODS

Study Participants
The study was approved by the Research Ethics Board of the
Royal Ottawa Mental Health Centre and the University of
Ottawa. The study recruited twenty-five (10 women, 15 men)
individuals with schizophrenia (SZ: M=45.95 years, SD=12.60)
from the Outpatient Schizophrenia Program of the Royal Ottawa
Mental Health Centre, all of which were diagnosed by trained
psychiatrists using the Structured Clinical Interview DSM-IV-TR
(SCID-I) (77). Patients included in the study: (i) were between
the ages of 18 and 60 years; (ii) reported a consistent history of
auditory verbal hallucinations over the course of their illness; (iii)
exhibited a score of 3 or greater (reflecting mild or greater
auditory/verbal hallucinatory experience) on the hallucination
item of the Positive and Negative Syndrome Scale (PANSS) (78),
and a score less than 65 on the total PANSS score (to screen out
individuals with severe level of symptoms and severe impaired
functioning that would impact their ability to participate in
group CBTv); (iv) reported no history of neurological
conditions or head injury; (v) were clinically stable, as
indicated by no significant changes in symptoms or
medication, for at least the 3-month period prior to testing;
(vi) were being treated only with one of the atypical
antipsychotics as their primary medication; (vii) were willing
to participate in 5 to 6 months of CBTv in addition to their usual
treatment; and (viii) displayed normal hearing (threshold < 30
dB SPL) as assessed by audiometric testing.

Treatment Design
Following a parallel group design, 14 (8 males) of the 25 patients
were randomly assigned to receive CBTv for 5 months in
addition to their usual treatment (CBTv group) and eleven (7
males) were randomly assigned to continue their treatment as
usual (TAU group). The recruitment and creation of groups
involved: (i) a patient referral through hospital psychiatrist to the
study team; (ii) the introduction of the study requirements and
involvement by the study team and consent from participants;
(iii) completion of screening session to ensure patients met the
study requirements; and (iv) random assignment to treatment
groups. In the CBTv group, patients received CBTv for 5 to 6
months, while patients in the TAU were followed for the same
time period. Following completion, TAU patients then
completed 5 months of CBTv treatment (Figure 1). The two
laboratory test sessions, one at baseline and one at follow-up,
included electrophysiological recordings, assessment of
psychiatric symptoms, and completion of questionnaires
relating to AVHs.

Of the fourteen patients assigned to the CBTv condition,
thirteen patients (8 males) completed all assessments at baseline
June 2020 | Volume 11 | Article 555

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Knott et al. CBT and MMN in Schizophrenia
and follow-up and provided usable EEG data. Of the eleven
patients recruited in TAU group, nine (5 males) completed all
assessments at baseline and follow-up and provided usable EEG
data. Of the nine patients who completed the TAU group, six
completed all assessment at baseline, follow-up, and post-CBTv,
and provided usable EEG data. All patients who completed the
study continued with their regular medication and psychosocial
interventions throughout the study period. The main reasons for
attrition or exclusions from the study were: (i) consent
withdrawal; (ii) incomplete or unusable EEG data at one or
both time points (e.g. noisy EEG data, less than 40 clean EEG
epochs per deviant stimulus, and missing EEG channels; (iv)
medication change; and (v) onset of medical illness.

CBTv Protocol
Consistent with the NICE (77) and PORT (78) guidelines, group
CBTv was delivered using a manualized approach, where
prescribed goals and techniques to be used during treatment
sessions are outlined and followed throughout treatment. The
treatment was implemented by one expert CBTv therapist
(N.W.), following a session-by-session treatment manual.
Conducted in eighteen planned sessions over 5 months, and
facilitated by highly trained group leaders, the CBTv intervention
incorporated CBT strategies for positive symptoms, and ATT as
well as ACT within a CBT framework. The 18 session group
CBTv was administered on a weekly basis for 5 months (during
the last 2 months, sessions were spread out to every two weeks).
Each CBTv group had approximately nine participants and each
participant had a copy of the participant manual, which included
all homework/practice assignments. Adherence to the CBTv
protocol across the groups was assessed by adherence to the
treatment manual and measured by the Cognitive Therapy Scale
for Psychosis (CTS-Psy) (79).

Symptom Assessment
Patients in the CBTv group were assessed independently at two
test sessions: at baseline, and at follow-up at the end of CBTv (5
months after baseline). The TAU group was assessed at three test
sessions: baseline, at follow-up at the end of waitlist period (5
months after baseline) and at the end of CBTv (10 months after
baseline). The following clinical outcome measures
were implemented:
Frontiers in Psychiatry | www.frontiersin.org 4
Positive and Negative Syndrome Scale (78). The Structured
Clinical Interview for the PANSS is a 30-item rating scale designed
to measure the presence and severity of psychopathology in patients
with SZ, schizoaffective disorder, and other psychological disorders.
The PANSS was completed by a trained clinician following a semi-
structured interview format and using available clinical information.
The clinician was blind to the group assignments. Each item was
rated by the clinician on a Likert scale ranging from 1 (not present)
to 7 (extremely severe). Three subscales scored were derived:
Positive Symptoms scores (possible range of scored: 9–49);
Negative Symptoms Scores (possible range of scores: 7–49); and
General Symptoms Scores (possible range of scores: 16–112).

The Psychotic Symptom Rating Scales (PSYRATS) (80). The
PSYRATS includes two scales designed to measure the severity of
a number of dimensions of auditory hallucinations and
delusions. Only the Auditory Hallucinations subscale was
administered to the patients, which includes an 11-item scale
that assesses dimensions of auditory hallucinations. The items
include frequency, duration, location, loudness, amount and
intensity of distress, amount and intensity of negative content,
disruption, controllability, and number of voices. Symptoms
scores are rated on a 5-point ordinal scale (0–4). Items are
summarized for a total score, and higher scores reflect more
severe auditory hallucinations.

Beliefs About Voices Questionnaire-Revised (BAVQ-R) (81).
The BAVQ-R is a 35-item self-report questionnaire that
measures perceptions about, and emotional and behavioral
response to auditory verbal hallucinations. The items are rated
on a 4-point scale ranging from 0 (disagree) to 3 (strongly agree).
The questionnaire consists of five subscales measuring different
meanings given to the voices: omnipotence with six items (e.g.,
“My voice is very powerful”), malevolence with six items (e.g.,
“My voice is persecuting me for no good reason”), resistance with
nine items (four items for emotion: e.g., “My voice frightens me”
and five items for behavior: e.g., “When I hear my voice usually I
tell it to leave me alone”), benevolence with six items (e.g., “My
voice wants to help me”) and engagement with eight items (four
for emotion: e.g., “My voice makes me feel calm” and four for
behavior: e.g., “I seek the advice of my voice”).

Voices Acceptance and Action Scale (VAAS) (82). The VAAS
is a 31-item self-report questionnaire that measures acceptance-
based beliefs (defined as a willingness on the part of the voice
FIGURE 1 | Flow chart of treatment design.
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hearer to have voices in his or her life coupled with an effective,
non-avoidant disengagement from them) and action-based
beliefs (defined as behaviors that are self-directed rather than
being a reaction to the voices). Both the 16 acceptance-based
items (e.g., “My voices are just one part of my life”) and the 15
action-based items (e.g., “My voices stop me from doing things I
want to do”) are scored on a 5-point scale: strongly disagree,
disagree, unsure or neutral, agree, or strongly disagree.

Choice of Outcome in CBT for Psychoses (CHOICE) (83). This
outcome measure was developed to be sufficiently generic to
apply across different CBTp approaches and models, but
sensitive enough to capture change. It consisted of a two-
dimensional 24-item self-report questionnaire, which provides
measures for severity and satisfaction across a range of problems/
difficulties (e.g., “ways of dealing with distressing experiences
[e.g., beliefs, thoughts, and voices],” “the ability to approach
problems in a variety of ways”).

Auditory Paradigm
ERP test sessions occurred in the morning (8–11 a.m.) following
overnight abstinence of drugs, alcohol, caffeine and food. During
the auditory stimulation, participants sat upright and viewed a
silent video (The Blue Planet by BBC, 2001). In the optimal
MMN paradigm (84), which was designed to elicit MMN
responses to 5 separate auditory deviants, auditory tonal
stimuli of 70 dB sound pressure level (SPL) were presented
binaurally through headphones and consisted of standard
(p=0.5) stimuli (composed of three sinusoidal partials of 500,
1000, 1500 Hz, 75 ms duration) that were randomly intermixed
with deviant (p=0.5) stimuli. Stimulus onset asynchrony (SOA)
was fixed at 500 ms. The deviant tones differed from the standard
tones in terms of pitch, duration, intensity, perceived location of
sound origin, or contained a silent gap in the middle of the tone
(i.e. gap deviants). The duration deviant was only 25 ms in
duration (instead of 75 ms). Half of the pitch deviants were 10%
lower (composed of 450, 900, and 1350 Hz partials) and the other
half were 10% higher (composed of 550, 110, 1650 Hz partials).
Half of the intensity variants were at 80 dB and the other half at
60 dB. A change in perceived location was created by creating an
800 µs time difference between channels, leading to a sensation of
a change in location of approximately 90°. Half of the deviants
had an 800 µs delay in the right channel while the other half was
in the left channel. In the gap deviants 7 ms (including a 1-ms
rise and fall) were removed from the middle of the standard
stimulus. Stimuli were presented in 3 sequences of 5 minutes
each (1845 stimuli) for a total of 15 minutes (5535 stimuli). Each
sequence started with a 15 standard tones, followed by a
sequence in which every second tine was a standard (p=0.5)
and every other tone was one of the five deviants (p=0.1 each).
One deviant of each category was presented once every five
deviants and deviants of the same category were never
presented consecutively.

ERP Procedures
ERPs were recorded with a cap embedded with Ag+/Ag+Cl−

electrodes (EasyCap, Herrching-Brieibrunn, Germany)
Frontiers in Psychiatry | www.frontiersin.org 5
positioned on 32 (see Figure 2) according to the 10–10 system
(85). An electrode on the nose served as reference and a ground
electrode was positioned at the AFz electrode site. Electrodes
were placed above and below the right eye to record vertical
electrooculographic (VEOG) activity. Electrical recordings were
carried out using a Brain Vision QuickAmp® (Brain Products,
GmbH, Munich, Germany) amplifier and Brain Vision
Recorder® (Brain Products GmbH, Munich, Germany)
software. Electrical activity was sampled at 500 Hz, with
amplifier bandpass filters set at 0.1 to 100.0 Hz. Electrode
impedances were kept below 5 kΩ.

Off-line analysis was performed with Brain Vision Analyzer®

software (Brain Products, GmbH, Munich, Germany). For each
stimulus, electrical epochs of 500 ms duration (beginning 100 ms
prior to stimulus onset) were digitally filtered (0.1–20 Hz) (86),
ocular (87) and baseline corrected (relative to the pre-stimulus
segment), and only epochs with EEG voltages ± 75 µV were used
for final ERP averages, which were constructed separately for the
standard and each deviant stimulus type at each electrode site.
Waveforms for the low and high pitch deviants, those for the
low- and high-intensity deviants, and those for the right and left
location, were averaged together. The mean number of epochs
for MMN averages was not significantly different between
deviants, nor were there differences in epoch numbers (for
each deviant) across test sessions or between treatment groups.

MMNs elicited by frequency (fMMN), duration (dMMN),
intensity (iMMN), gap (gMMN), and location (lMMN) deviants
were analyzed with difference waveforms, which were derived by
digital point-by-point subtraction of the standard stimulus
values from those elicited by each of the deviant stimuli.
Grand average waveforms, raw and subtracted, are displayed in
Figure 2. MMN amplitude was defined as the most negative peak
(± 5 ms) between 120 and 250 ms at the frontal electrodes (F3, Fz,
F4), the sites exhibiting maximum MMN amplitudes. Amplitude
of the N1 component (peak negativity between 90 and 120 ms)
elicited by the standard stimulus was also measured (from Fz) as
an index of sensory registration, which is typically reduced in
chronic SZ (88).

Source Localization
Intracortical current density (A/m2) measures at peak MMN
activity (based on ERP grand averages) from predefined ROIs
was computed using validated (89) exact low-resolution
electromagnetic tomography software (eLORETA, version
2081104) (90, 91). eLORETA models the cortical gray matter
as a collection of voxels (6239 voxels with a spatial resolution of
5-mm3). Relying on the standard electrode positions displayed
on the scalp (92, 93), the digitized Talairach atlas (94), the
average MRI brain template (MMI152) provided by the
Montreal Neurological Institute (95) and a cortically restrained
solution space, it calculates within a realistic head model (96) the
non-unique “inverse” problem by computing a three
dimensional distribution of intracortical source activity (with
zero location error) at each voxel based on surface-level electrical
signals. The original LORETA method has received considerable
validation from studies using EEG (97) and more established
June 2020 | Volume 11 | Article 555
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localization methods such as structural and functional MRI (98–
100) and intracranial electrode recordings (101). Employing the
ROI-Extractor tool, the selected ROIs were based on eLORETA-
defined Brodmann Areas (BA), and current density data from a
single centroid representative voxel of each BA (the voxel closest
to the center of the BA mass, which is an excellent representation
of the corresponding BA) were extracted for further analysis.
This included the pAC (BA 41) and secondary (sAC) auditory
cortex (BA 42).

Statistical Analyses
Statistical analysis was conducted using SPSS version 23 (SPSS
Inc., Chicago IL, USA). Two sets of analyses were carried out: 1)
the primary set compared data between two groups, including
the 13 patients completing the CBTv treatment arm and the 11
patients completing the TAU treatment arm; 2) the secondary set
combined data from two groups, including the patients assigned
to the CBTv treatment arm and the TAU patients who went on
to receive CBTv. For the primary analyses, MMNs were assessed
with separate mixed analysis of variance (ANOVA) for each
deviant, each ANOVA consisting of one between-group factor
Frontiers in Psychiatry | www.frontiersin.org 6
with 2 levels (CBTv vs. TAU) and two within-group factors,
including time (baseline vs. follow-up) and frontal electrode site
(left [F3], central [Fz], and right [F4]). MMN latency (at Fz only)
for each deviant and clinical rating/questionnaire scores were
analyzed with similar ANOVAs but with no site factor. Measured
as peak negativity in an 80 to 120 ms window, the N100
amplitude/latency values derived from the standard stimulus
were also subjected to similar ANOVAs to determine if CBTv
affected simple sensory registration. For the deviants exhibiting
significant treatment-induced changes in MMN in the between-
group analyses, the eLORETA-derived CD values for the pAC
and sAC were analyzed using ANOVAs involving a between-
group factor and two within-group factors, including time and
ROI (BA41, BA42). For the secondary set of analyses, which
assessed measures in the combined CBTv treatment group,
ANOVAs did not contain a between-group factor. In order to
maintain a constant 5 month period between baseline and
follow-up sessions in these analyses, the data from the
assessments conducted at the initial follow-up session in the
TAU group served as their baseline data. For both sets, regardless
of whether significant Greenhouse-Geisser corrected (p < 0.05)
FIGURE 2 | Baseline (raw) grand-averaged ERP waveforms elicited by the standard and five deviant stimuli for all participants (N=24), shown across scalp sites and
highlighted at Fz with respect to both raw (unsubtracted) and subtracted (deviant minus standard) difference waveforms.
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treatment, time or interaction effects were observed or not,
treatment change was assessed via a priori planned
comparisons of baseline vs. follow-up data. For the deviant
MMNs and CDs exhibiting significant treatment effects in this
between-group analysis, Spearman's rho correlation coefficient
statistic was used to examine the relationship between changes in
electrophysiological measures and changes in clinical/
questionnaire measures, as well as between MMN changes and
source localized CD changes. In order to reduce the number of
statistical tests, these correlations were assessed only for
electrophysiological and clinical/AVH measures showing CBTv
treatment effects in the initial set of analyses.
RESULTS

Of the fourteen patients assigned to CBTv, thirteen (8 males)
completed all assessments at baseline and follow-up and
provided usable EEG recordings. Of the eleven patients
assigned to TAU, ten (6 males) completed all assessments at
baseline and follow-up and provided usable EEG recordings.
Thus, the attrition rate was 8%, with onset of medical illness (one
patient) and unusable EEG data (one patient) accounting for
patient-drops. During their subsequent participation in CBTv,
only six of the ten patients in the TAU group completed all
assessments at baseline (i.e., some data as from their follow-up
session post TAU) and at follow-up and provided usable EEG
Frontiers in Psychiatry | www.frontiersin.org 7
recordings. Patent-drops were due to either change in
medication (one patient), or unusable EEG (two patients). The
final CBTv and TAU groups were similar in age, gender, year of
education, duration of illness, PANSS positive, PANSS negative,
PANNS total and PSYRATS total scores (Table 1).

CBTv Effects on Clinical/AVH Symptoms
Between-Group Analyses
The CBTv group did not differ from the TAU group with respect
to changes in PANSS positive, negative or general symptoms
(Table 1). Similarly, no group differences were observed with
respect to changes in the frequency and quality of AVH
symptoms assessed with PSYRATS ratings (Table 1).

For the BAVQ-R, significant time effects were observed for
two of the subscale scores, omnipotence (F = 7.36, df = 1/21, p =
0.013) and resistance behavior (F = 4.37, df = 1/21, p = 0.049).
Planned comparisons found these reductions in omnipotence
(p = 0.014) and increases in resistance behavior (p = 0.015)
ratings between baseline and follow-up to be limited to the CBTv
group (Figure 3). Analysis of VAAS rating failed to yield any
significant group, time or interaction effects but ratings scores on
both the CHOICE severity (F = 8.08, df = 1/21, p = 0.01) and
CHOICE satisfaction (F = 12.16, df = 1/21, p = 0.002)
dimensions showed significant time effects, with planned
comparisons showing significant changes in severity (p =
0.003) and satisfaction (p = 0.008) only in the CBTv group
(Figure 3).
TABLE 1 | Demographic and clinical measures for treatment groups.

Demographics CBTv group (n = 13; 7 males) TAU group (n = 10; 6 males)

Mean ± SD Baseline Mean ± SD Follow-up Mean ± SD Baseline Mean ± SD Follow-up

Age (years) 41.77 ± 14.69 47.8 ± 11.81
Education (years) 4.62 ± 1.33 5.5 ± 1.18
Duration of illness (years) 16.1 ± 11.64 21.78 ± 9.60
PSYRATS total 25.15 ± 5.38 22.53 ± 6.21 27.5 ± 4.62 27.89 ± 4.76
PANSS
Positive Scale 15.62 ± 3.31 16.2 ± 4.41 15.6 ± 3.53 16.17 ± 5.94
Negative Scale 15.77 ± 4.78 16.2 ± 4.59 15.5 ± 4.17 13.7 ± 5.28
General 33.31 ± 13.71 30.3 ± 6.17 31.3 ± 6.43 31.67 ± 7.71
June 2020 |
PSYRATS, The Auditory Hallucinations subscale from the Psychotic Symptom Rating Scale; PANSS, Positive and Negative Syndrome Scale.
Follow-up for the PANSS measures included missing data (3 missing cases from the CBTv group and 4 missing cases from the TAU only group).
FIGURE 3 | Mean (± SE) rating scores for BAV-Q, VAAS, and CHOICE instruments administered to patients in CBTv and TAU conditions at pre- (baseline) and
post-treatment.
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Combined Group Analyses
Changes from pre- to post-CBTv were not observed for PANSS
or VAAS ratings but significant reductions were shown for total
PSYRATS (p=0.035), BAVQ-R omnipotence (p=0.0013) and
CHOICE severity (p=0.009) rating scores (Figure 4).

CBTv Effects on MMN/N100 Amplitude/
Latency
Between-Group Analyses
Analysis of frontal amplitudes did not reveal any significant
group, treatment, or time effects for MMN elicited by intensity,
duration, gap or location deviants. A significant treatment x time
interaction (F = 15.78, df = 1/40, p = 0.001) was shown for the
pitch deviant, with planned comparisons revealing significant
increases in pMMN amplitudes in the CBTv group at follow-up
compared to baseline (p = 0.001) as well as greater pMMN
amplitudes in CBTv group compared to TAU group p = 0.043) at
follow-up (Figure 5). Analysis of MMN latency yielded a
significant treatment x time interaction for the gap deviant
(F = 4.41, df = 1/25, p = 0.049) with planned comparisons
showing a reduced (earlier) gMMN latency (Figure 6) in the
CBTv group (p = 0.019) at follow-up (M = 148.68 ms, SE ± 6.86)
compared to baseline (M = 164.02 ms, SE ± 6.92). Neither the
amplitude nor latency of N100 were affected by treatment.

Combined Group Analyses
A significant time effect was observed only for the pitch deviant
(F = 14.68, df = 1/18, p = 0.001), with pMMN amplitudes
showing an increase at follow-up compared to baseline
(Figure 7). Analyses of the duration deviant yielded a
significant time x electrode interaction (F = 9.12, df = 1/36,
p = 0.002), with comparisons of left frontal (F3) amplitude
showing a greater dMMN amplitude (p = 0.029) at follow-up
compared to baseline (Figure 7). For MMN latency, analysis
showed a significant time effect for the duration deviant
(F = 6.71, df = 1/18, p = 0.018), with dMMN exhibiting a
shorter latency (M = 153.01 ms, SE ± 7.11) at follow-up
compared to baseline (M = 166.46 ms, SE ± 6.03) latency
Frontiers in Psychiatry | www.frontiersin.org 8
(Figure 7). No treatment effects were observed for N100
amplitude or latency.

CBTv Effects on Source Localized CD
Between-Group Analyses
For the pMMN, analysis of localized CD yielded a significant
region effect (F = 33.53, df = 1/21, p = 0.001), with CD of the sAC
being greater than CD of the pAC. A significant treatment x time
x hemisphere interaction was also evidenced (F = 11.62, df = 1/
21, p = 0.008), with planned comparisons finding increases
(p = 0.008) in CD in the left hemisphere of the CBTv group at
follow-up compared to baseline (Figure 8).

Combined Group Analyses
Analysis of CD associated with the pMMN showed significant
(F = 17.85, df = 1/18, p = 0.001) region effect, with CD in the sAC
being greater than CD in the pAC. In significant time (F = 5.38,
df = 1/18, p = 0.032) and time x hemisphere interaction effects
(F = 8.27, df = 1/18, p = 0.010), planned comparisons showed
significant overall increases (p = 0.002) in CD of the left auditory
cortex in the CBTv group at follow-up compared to baseline
(Figure 9).

Relationships Between Symptoms and
MMN/CD
In the initial CBTv group, changes in the pMMN amplitude
(from baseline to follow-up) were positively correlated with
changes in the resistance emotion subscale of the BAVQ-R
(r = 0.64, p = 0.029), and negatively correlated with the total
(r = −0.76, p = 0.002) and both the activation (r = −0.82,
p = 0.001) and acceptance (r = −0.70, p = 0.008) scores of the
VAAS (Figure 10). Treatment-induced changes in symptoms
were found to be related to treatment-induced changes in CD of
the auditory cortex but only in the left pAC. In this region of the
auditory cortex, CD changes were positively correlated with
changes in the benevolence (r = 0.63, p = 0.021), resistance
emotion (r = 0.55, p = 0.05) and engagement behavior subscale
scores (r = 0.54, p = 0.04) of the BAVQ-R, and negatively
FIGURE 4 | Mean (± SE) pre- (baseline) and post-treatment rating scores for BAV-Q, VAAS, and CHOICE instruments administered to all patients (N=22)
completing CBTv.
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correlated with changes of the total VASS(r = −0.68, p = 0.01)
score (Figure 11).

Relationships Between MMN and CD
In the initial CBTv group, correlations between the treatment
changes in the pMMN and the associated CD were limited to the
left hemisphere, with increases in fMMN at F3 being positively
correlated with increases in CD in the left pAC (r = 0.58, p =
0.01), left sAC (r = 0.53, p = 0.02) and in combined left auditory
cortical regions (r = 0.55, p = 0.01).
DISCUSSION

This pilot study shows changes in EAIP during a pure tone
auditory oddball paradigm in a sample of patients with SZ and
persistent AVHs, attributable to the effects of CBTv. Compared
Frontiers in Psychiatry | www.frontiersin.org 9
to patients receiving TAU in the initial analyses, the patients who
underwent CBTv showed significantly greater increases in
auditory deviance detection as evidenced in enhanced MMN
response to pitch deviants and faster (earlier latency) MMN
responses to auditory gap deviants at treatment follow-up. These
changes occurred independently of general psychiatric
symptoms (PANSS) and changes in sensory registration
(N100). The patients that received therapy also showed
significant increases in activation (CD) of the left auditory
cortex during the processing of auditory pitch deviants.
Although CBTv did not affect self-reports of the frequency or
quality of AVHs (PYSRATS), or the severity of psychotic
symptoms (PANSS), it improved patients' perceptions and
behavioral response to AVHs (BAVQ-R), and CBTv was
thought by patients to be associated with better outcome
(CHOICE) than TAU. Even more interestingly, these clinical
changes together with self-reported improvements in patient
FIGURE 5 | Grand-averaged subtracted pitch deviant waveforms at frontal (F3, Fz, F4) sites recorded pre- (baseline) and post-treatment in patients assigned to
CBTv and TAU conditions.
FIGURE 6 | Grand-averaged subtracted gap deviant waveforms at mid-frontal site (Fz) recorded pre- (baseline) and post-treatment in patients assigned to CBTv
and TAU conditions.
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beliefs about AVHs (VAAS) at CBTv follow-up were associated
with increases in MMN response and left auditory cortex
activation to pitch deviants.

Targeting the cognitive appraisals, perceptions, and beliefs
concerning the nature of psychotic symptoms, both individual
CBT (41) and group CBT in SZ (102) have been effective in
alleviating positive psychotic symptoms as a whole (i.e.
Frontiers in Psychiatry | www.frontiersin.org 10
hallucinations and delusions) but, as with our own negative
findings, the efficacy of CBT interventions specific for
hallucinations has been mixed in regards to reductions in the
frequency and severity of these symptoms (103, 104). Similar
mixed findings in SZ have been reported in CBT trials with
added ACC and ATT techniques (105). Our augmented CBTv
A

B

FIGURE 7 | Grand-averaged subtracted pitch (A) and duration (B) deviant waveforms at frontal (F3, Fz, F4) sites recorded pre- (baseline) and post-treatment in all
patients (N=22) completing CBTv.
FIGURE 8 | Mean ( ± SE) current density values (ln[Å/m2]) of the left and right
hemisphere of the auditory cortex (pAC and sAC combined) in patients
assigned to CBTv and TAU conditions.
FIGURE 9 | Mean ( ± SE) current density values (ln[Å/m2]) of the left and right
hemisphere of the primary and secondary auditory cortex in all patients
(N=22) completing CBTv.
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did however affect AVH-related beliefs and behavioral reactions
to hallucinations, shown by reductions in BAVQ-R
Omnipotence and BAVQ-R Resistance Behavior scores, which
may in part have accounted for patients' favorable outcome
perception (CHOICE) with this therapy.

Reductions in conviction of beliefs about the power/
authority (omnipotence) of voices and compliance to voices have
been observed in previous group CBTp trials (105–107) and are
clinically important considering that our patients' hallucinations
have failed to respond to effective antipsychotic drugs. Employing
specialized interventions like CBTv to target beliefs about voice
omnipotence, particularly with respect to commanding aspects of
the voices, which have been linked to a range of dangerous
behaviors (aggression, violence, self-harm, and suicide), is a
therapeutically relevant goal as voice omnipotence predicts
compliance to hallucinations, and reductions in these beliefs
about voices are associated with reduced cognitive functioning
given their negative relationship with exogenous attentional
processes (26, 108–110).

Consistent with our hypotheses that dampening the impact of
internal voice processing with CBTv would result in the
enhanced sensory processing of external auditory stimuli,
improvements in EAIP with therapy were evidenced by larger
pMMN and shorter gMMN responses in SZ patients with
Frontiers in Psychiatry | www.frontiersin.org 11
persistent AVHs. Rarely examined with other deviant types,
abnormal deviance detection in SZ has been most frequently
documented with pitch and duration, and occasionally with
intensity changes in simple sound stimuli (17, 111, 112). While
pMMN is thought to be sensitive to illness duration/disease
progression, the dMMN behaves more as a trait index and as a
valid endophenotype reflecting greater vulnerability to illness
(17). Although not consistently observed, attenuated pMMN,
dMMN, and iMMN have been observed in our laboratory in
hallucinating (vs. non-hallucinating) SZ patients and have been
correlated with hallucinatory severity ratings (19–22, 113, 114).

Possibly reflecting contributions from bilateral prefrontal
cortices, the auditory MMN response to both simple sound
and speech deviants is mainly dependent on synaptic plasticity
mediated by glutamatergic N-methyl-D-aspartate (NMDA)
receptors in the auditory cortex (115–117). Although also
shown with the detection of duration deviants in our
combined group analysis, the more reliable improvements in
deviance detection with CBTv were observed in response to the
pitch deviant, with pMMN being shown to be increased in both
sets of analyses along with pitch CD in auditory cortices. Not
always associated with auditory hallucinatory experiences, SZ is
associated with deficits in the perception of a broad range of
auditory features, including pitch discrimination as measured in
FIGURE 10 | Scatterplots showing relationships between pitch MMN amplitude change and BAV-Q and VAAS ratings change in the initial group receiving CBTv.
FIGURE 11 | Scatterplots showing the relationships between changes in pitch MMN current density (CSD) in the left primary auditory cortex (pAC) and BAVQ-R and
VAAS rating changes in the initial group receiving CBTv.
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tone-matching tasks (118). Dependent on the low-level acoustic
features or type of complex naturalistic sound, the neural
representation and processing of acoustic stimuli is confined to
different regions within the human auditory system. The neural
mechanisms underlying pitch perception are still largely debated
but are assumed to involve a hierarchy of pitch processing steps,
starting in the subcortical structures and terminating at the
cortical level, where perceived pitch (variations) is most likely
encoded (119). Certain areas of the auditory cortex are
specifically sensitive to pitch, and although the locations are
still another debate (120), previous functional neuroimaging has
identified pitch-coding regions, including anterior-lateral pAC
(on Heschl's gyrus [HG]) and adjacent sAC processing areas (on
the superior temporal gyrus [STG]) (121), and extending to the
planum temporale during the passive influences of infrequent
pitch changes (122, 123). Increased pMMN (and dMMN)
amplitudes with CBTv in patients experiencing persistent
AVHs is consistent with brain volumetric studies showing
negative relationships between left hemisphere HG/STG
volume and both hallucination severity (122, 123) and MMN
amplitude in SZ patients (124).

Changes in the appraisal of and response to AVHs with CBTv
were associated with enhanced pMMN amplitudes and selective
increases in pitch CD in the left pAC, and are consistent with the
current status of AVHs in that they implicate speech perception
areas in the left temporal lobe, improving perception of and
attention to external sounds. These relationships between
changes in auditory neural responsiveness and AVH symptom
ratings are in line not only with structural studies showing the
left pAC gray matter volume reduction in SZ to be associated
with AVH severity (122, 123, 125), but also with functional
neuroimaging studies confirming a “paradoxical” brain
activation in relation to AVHs—the left pAC evidencing
increased activation (during silent rest) in the absence of an
external stimulus, and decreased activation in the presence of an
external auditory stimulus (11). Although the specific brain
mechanisms underlying these alterations are not understood, it
is reasonable to speculate that they may be mediated by changes
in glutamate neurotransmission. Aberrant glutamate levels in
temporal and prefrontal cortical areas are found in SZ with
frequent and severe hallucinations (126, 127) and glutamate
receptor mediated synaptic plasticity in the pAC, as indexed by
MMN alteration, is compromised in patients with SZ and
particularly in patients with AVHs. Although not necessarily
affecting tonic glutamate levels, changes in MMN responsiveness
to pitch deviance with CBTv and adjunctive ATT and ACC
techniques may indicate an increased ability to adequately
modify synaptic plasticity in response to auditory (glutamate)
neurotransmission resulting from external auditory stimulation.

The co-occurrence of altered ratings of beliefs/responses to
AVHs together with changes in neural response (pMMN) to
auditory deviance, which was shown to be statistically correlated
with changes in beliefs, behavioral/emotional (BAVQ-R) and
coping response (VAAS) to hallucinations, may be tentatively
explained by the influence of CBTv on a common underlying
NMDA receptor-mediated process—prediction error signaling.
Frontiers in Psychiatry | www.frontiersin.org 12
In a predictive coding framework, predictive coding is viewed as
a hierarchical information processing model which posits
interactions between lower-order (bottom-up) perceptual
signals and higher-order cognitive processes in a dynamic,
interactive fashion to generate predictions about the
environment and compare incoming stimuli with these
predictions (128, 129). Within this model, neural responses to
stimuli that match predictions are suppressed, while stimuli that
are unexpected, violating these predictions, trigger a mismatch
“prediction error” signal, which signals that updating of
expectations is required to accommodate the discrepant stimuli
(130–132). It has been proposed that in hallucinating patients,
excess aberrant spontaneous activation of the auditory sensory
cortex may be confused by the brain with activity typically seen
with external auditory stimulation, leading to erroneous
expectations of a perceptual event (predictive coding failure)
with the brain inferring externally located voices which in turn
leads to a false (AVH) perception (129, 133, 134). Predictive tone
signaling has been observed at the earliest levels of auditory
cortical hierarchy—in the pAC (135). The MMN is hypothesized
to reflect a prediction error signal (e.g. the properties of the
deviant stimulus do not match the predictive model formed by
the train of preceding standards, thus the model must be updated
in order to improve predictive accuracy) (136), which is
attenuated during NMDA receptor antagonist treatment with
ketamine (137–139) and can be used to examine abnormalities in
predictive coding. In a roving standard MMN paradigm, which
allows for optimal evaluation of prediction errors (140), MMN
deficits in SZ have reflected attenuated prediction error signaling
(141). This is particularly pronounced in hallucinating (v. non-
hallucinating) patients and consistent with a predictive coding
account of hallucinations in SZ (142).

Hallucinatory experiences are associated with hyper-
activation of the primary and secondary sensory areas, possibly
due to dysregulation related to frontal lobe hypo-activation.
Different brain mechanisms appear to underlie the clinical
effects of pharmacotherapy and psychotherapy (143, 144). It
has been argued that psychotherapeutic approaches such as CBT
may exert their affects by gaining control of the function of
particular circuits, such as changes in appraisal, control of
attention, modulation of interceptive processes, and may
involve key nodes, such as anterior cingulate and medial
prefrontal areas (involved in error detection and conflict
monitoring), dorsolateral prefrontal cortex areas (involved in
cognitive control/working memory), and insula (interceptive
sensitivity) (105). We can also speculate that different
psychotherapeutical strategies may have different brain effects
within a circuit. In our augmented treatment protocol, CBT and
AAC focused on controlling the emotional response to
hallucinations might be based on decreasing endogenous brain
activity in the temporal/limbic areas, while ATT focused on
auditory perceptual processes might be based on increasing
externally induced brain activity in these same regions.
Although not directly comparable with ATT, targeted cognitive
training (TCT) of the auditory system in SZ patients has been
shown to drive plasticity in cortical activation patterns related to
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both sensory representations as well as higher order cognitive
processes (145, 146). In patients with SZ, TCT has not only
produced significant improvements in auditory perception and
learning, which was predicted by MMN (147), but also increases
in verbal learning and reductions in AVHs (148, 149).
Improvements in higher order auditory processing gained
through TCT in SZ are dependent on the severity of basic
auditory deficits (150). Given that the MMN response to
deviant sounds has also been shown to have a direct mediating
effect on cognition and functional outcome in SZ patients (151),
future research may want to examine the effects of pairing CBTv
with TCT aimed at improving auditory discrimination as a
potential optimal strategy that would benefit both AVH
symptoms and cognitive and psychosocial functioning.
LIMITATIONS

This study has several limitations. Regarding adherence to CBTv,
a fidelity/treatment response scale was not used, and future
research would benefit from audiotaping (with consent) and
using a fidelity measure and independently trained raters.
Although the results are relatively consistent across the two
sets of analyses, they require replication in a larger sample.
Patients were randomized to CBTv and TAU vs TAU only
conditions but blindness was not a component of the study
design and should be an aim in future work. Concurrent
antipsychotic treatment may have influenced the results, but
both groups of patients were receiving similar treatments. In
order to reduce Type 1 error rates our source analysis with
eLORETA was limited to two ROI, and additional studies are
required to examine CBTv effects on non-auditory brain regions,
especially frontal areas which are thought to contribute to MMN
generation during deviance detection and to interact with
auditory cortices in producing AVHs. External auditory
stimulation for MMN generation was limited to pure tone
deviants and additional studies need to examine CBTv effects
on the processing of complex natural sounds including MMN
response to speech deviants, which appear to be particularly
sensitive to EAIP dysfunction in patients with SZ (21, 152) and as
with MMN to response to pure tone deviants are reflective of
NMDA receptor-mediated neurotransmission in auditory
cortices (117). Functional neuroimaging has shown that the
neural encoding of natural sounds (e.g., speech, voice) entails
the formation of multiple representations of sound spectrograms
with different degrees of spectral and temporal resolution (152–
154). Combining the superior temporal and spatial resolution of
EEG and fMRI techniques, respectively, to image neural activity
during resting-state (absence of external auditory stimulation)
and in response to behaviorally relevant, real-world sound
stimuli would be an optimal strategy for achieving a more
complete picture of brain mechanisms involved in AVH
responsiveness to CBTv in SZ patients (155–160).

Finally, we assessed responsivity to external auditory
stimulation on the neural level and there is a need to
incorporate behavioral assessments (e.g., tone-matching and
Frontiers in Psychiatry | www.frontiersin.org 13
dichotic listening tasks) in order to examine performance
changes associated with auditory processing. Optimally, these
would be complemented with tests assessing changes in cognitive
and functional outcome with CBTv.
CONCLUSION

In conclusion, we have shown for the first time significant
changes in MMN responsiveness to external auditory deviants
in SZ patients undergoing cognitive therapy for persistent
auditory hallucinations. Correlated with improvements in
patient's response to hallucinations, these neural findings
improve our understanding of how psychotherapy may benefit
patients with AVH, possibly by shifts in perceptual processing
from internal distressing auditory (voices) stimulation to
potentially relevant changes in external auditory stimuli. As
these present observations were captured in a relatively small
test sample, confirmation of these observations in larger studies
integrating biomarkers like MMN to elucidate treatment effect
mechanisms will help to increase our understanding of and
ability to personalize psychotherapeutic approaches such as
CBTv (153, 154).
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