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The past 5 years have seen a sharp increase in the number of studies using calcium
imaging in behaving rodents. These studies have helped identify important roles for
individual cells, brain regions, and circuits in some of the core behavioral phenotypes of
psychiatric disorders, such as schizophrenia and autism, and have characterized network
dysfunction in well-established models of these disorders. Since rescuing clinically
relevant behavioral deficits in disease model mice remains a foundation of preclinical
CNS research, these studies have the potential to inform new therapeutic approaches
targeting specific cell types or projections, or perhaps most importantly, the network-level
context in which neurons function. In this mini-review, we will provide a brief overview of
recent insights into psychiatric disease-associated mouse models and behavior
paradigms, focusing on those achieved by cellular resolution imaging of calcium
dynamics in neural populations. We will then discuss how these experiments can
support efforts within the pharmaceutical industry, such as target identification, assay
development, and candidate screening and validation. Calcium imaging is uniquely
capable of bridging the gap between two of the key resources that currently enable
CNS drug discovery: genomic and transcriptomic data from human patients, and
translatable, population-resolution measures of brain activity (such as fMRI and EEG).
Applying this knowledge could yield real value to patients in the near future.
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INTRODUCTION

Drug discovery for brain disorders is a uniquely challenging endeavor (1, 2). One reason for this is
that the brain’s output, i.e. behavioral responses to sensory input, is not sufficiently explained by
genetics (3), as it is the result of complex computations performed by a vast network of neurons
distributed in functionally distinct brain regions. To make progress towards new treatments for
psychiatric disorders, it is crucial to understand brain functioning at the level of these neural
circuits (4).

Action potentials (APs), electrical signals relayed between neurons via local and long-distance
synaptic connections, are the mechanism by which neurons integrate and transmit information.While
individual neurons’ firing patterns can be highly variable, at the population level, AP firing is reliable
enough to form the basis for information coding in the brain (5). These population codes can be spatial,
temporal, or both, with information represented by the subset or ensemble of active neurons,
fluctuations in firing rates, or correlated activity between neurons (6). While many methods exist to
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record this activity, several lines of evidence suggest that cellular
resolution is necessary to truly understand circuit functioning.
While neurons exhibit diverse stimulus selectivity, behavioral
output can often be reliably predicted by the activity of groups of
individual cells (7). Inducing AP firing in specific neurons can
disrupt a range of cognitive processes, including spatial navigation
(8) and social behavior (9). Conversely, stimulating APs in specific
subsets of neurons can be sufficient to elicit complex, clinically
relevant behavioral responses, such as improved decision making
(10) and mood (11).

Given their importance to brain functioning, it is unsurprising
that many brain disorders can be attributed to dysfunctional AP
firing. For example, studies using mouse models (12) or human
induced pluripotent stem cells (13) have revealed that ion channel
mutations associated with epilepsy also alter AP properties. While
these changes are profound and detectable in individual cells, the
pathophysiology underlying psychiatric disorders is less
straightforward. This complexity begins at the genetic level:
although diseases like schizophrenia and autism are highly
heritable, much of this heritability is driven by common variants
with small effect sizes (14, 15),whose individual impact onneuronal
activity may be difficult to predict or detect. Copy number variants
and de novomutations, which can bemore penetrant and form the
basis for several disease models, are relatively rare but are enriched
in patients with psychiatric disorders (16–18).

How do these varied risk factors ultimately produce a relatively
consistent clinical phenotype? One explanation is that they converge
on common pathways, and several lines of evidence suggest that
specific neural circuit components represent this point of
convergence (19). Functional genomics studies indicate that the
genetic burden in psychiatric disorders disproportionately affects
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distinct excitatory neuron subpopulations (20–22). Other cell types,
such as inhibitory fast-spiking interneurons, are implicated by
postmortem and physiological reports (23, 24). In addition, gene
ontology studies consistently point to impaired synapse formation as
a core feature of schizophrenia and autism (25–27). Observations of
altered excitatory-inhibitory balance (28, 29) and brain connectivity
(30, 31) in psychiatric patients substantiate these inferences. If
convergence underlies pathogenesis, we would expect to see similar
circuit-level deficits in models with different etiologies. In fact, while
the above studies are basedonhumandata, similar commonly shared
deficits are also observed at the level of neuroanatomy (32),
population physiology (33), and cellular resolution physiology (34,
35) in mouse models of disease. Overall, these findings suggest that
studying pathophysiology in neural circuits, ideally with cellular
resolution and/or cell type specificity, is likely to provide
mechanistic insight into psychiatric disorders.

In recent years, imaging intracellular calcium dynamics using
genetically encoded calcium indicators (GECIs) has emerged as the
method of choice to study activity in neural circuits. Current-
generation GECIs can track the firing of single APs in individual
cells, in awake, behaving mice (36). GECIs enable a range of
experimental designs (Figure 1). Firstly, recording and subsequent
analysis can be restricted to specific neuronal populations, defined by
marker enrichment using Cre-dependent expression, functionality
using inducible expression, or projection targets using retrograde
virus transport. Secondly, activity can be recorded with population
resolution (using fiber photometry or widefield imaging),
supporting comparisons to LFP (local field potential) or EEG
(electroencephalography) recordings, or with cellular resolution
(using 1- or 2-photon fluorescent microscopy). While methods
have been developed to allow head-fixed mice to perform several
FIGURE 1 | Calcium imaging in disease modeling and drug discovery. Different modalities (top panels) provide access to different units of analysis (circles), with
calcium imaging bridging the cell, population, and animal levels. Numerous tools exist (arrows) to generate disease models of varying complexity, each of which has
utility in drug discovery efforts (middle panel) that can be revealed using calcium imaging. Leveraging these platforms, to understand the mechanisms by which
disease-related genes bring about clinical symptoms, can underpin a pathophysiology-based approach to drug design (bottom panel), which may be the key to
discovering new therapeutics for patients with psychiatric disorders.
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complex behavioral paradigms (37, 38), the advent of head-mounted
cameras (39, 40) has allowed for recording brain activity duringmore
naturalistic, disease-relevant behaviors such as reciprocal social
interactions; when combined with endoscopy, this approach also
allows the visualization of deep brain structures (41). Calcium
imaging therefore represents a versatile and powerful approach to
understanding neural circuit functioning.

Disease-associated genes, as well as candidate drugs, often
impact intracellular signaling, membrane properties,
cytoarchitecture, or other features of individual cells. By gathering
cellular resolution data at population scale, calcium imaging allows
us observe the effect of genetic modulation on a computationally
relevant readout (i.e., neuronal activity), as well as to contextualize
this activity in the larger network, behavioral state, or translatable
signal. In the following sections, wewill discuss recent insights from
this approach into psychiatric disease models and behavior
paradigms, and how these efforts can support drug discovery.
CALCIUM IMAGING DURING
SPATIAL COGNITION

Place cell dynamics in CA1 pyramidal neurons are well-established
and readily detectable (42), leading them to be one of the first
physiological phenomena to be studied in vivo using calcium
imaging (43). These cells support navigation by reporting spatial
location, and may be involved in cognitive processes such as
episodic memory, which is disrupted in psychiatric disorders (44,
45). They represent a potential point of convergence for
schizophrenia-associated genes (21), and have been implicated in
mouse models of autism (46). In humans, altered hippocampal
volume and functional connectivity is consistently observed in
psychiatric disorders (47), but individual cells’ activity patterns
cannot be detected using EEG. Three key factors therefore combine
to make CA1 pyramidal cells a prime candidate for study using
calcium imaging: existence of an expected activity pattern
(providing a reliable basis for comparison between wild type and
transgenic mice), disease relevance, and a gap in understanding of
cellular pathophysiology.

Investigating place cell functioning in mouse models of
schizophrenia and autism has yielded interesting results. Patients
with microdeletions in chromosome 22q11.2 are at high risk for
schizophrenia, and show cognitive impairment that is recapitulated
in a mouse model (48). These mice show altered place field
dynamics, including reduced stability, and fewer, narrower fields
(49). Some of these phenotypic alterations, such as a reduction in
place fields per cell, were also seen in DISC-1mutantmice, another
genetic schizophrenia model. In contrast, DISC-1 mutants also
exhibited unique phenotypes, such as broader place fields (50).
Fragile X syndrome (FXS), the most common monogenic form of
autism, is causedbya lossof expressionof the translational regulator
FMRP, and FMR1 knockoutmice provide amodel for this disorder
with good construct validity (51). In these mice, individual cells’
place tuning is intact, but coordinated activity of ensembles is
significantly reduced (52). Interestingly, this instability correlates
with impaired cognitive performance on a spatial learning task.
Frontiers in Psychiatry | www.frontiersin.org 3
Thesefindings illustrate howusing calciumimaging ina forward
translation approach, i.e. starting with a genetic perturbation and
observing downstream effects, can providemechanistic insight into
disease. Place cell dynamics provide a robust platform to study how
region 22q11.2 or FMRP target genes affect neuronal activity
patterns associated with cognition. Using this platform to dissect
the molecular mechanisms mediating the circuit level effects of
these mutations could in turn identify routes to therapeutic
intervention. More broadly speaking, understanding how
different features of place cell dynamics distinguish schizophrenia
models of different etiology, and how they correlate with cognitive
performance, could support patient stratification and biomarker
development respectively.
CALCIUM IMAGING DURING SOCIAL
BEHAVIOR

Reverse translation, i.e. startingwithaface-validparadigmforadisease-
relevant phenotype and attempting to understand the neural circuitry
underlying it, can also be a fruitful strategy in translational research
(53). Several factors make social behavior a good candidate for this
strategy.Deficits in sociability and social cognition are a key diagnostic
criterion and clinical endpoint for psychiatric disorders (54).
Furthermore, while many aspects of these diseases (such as psychosis
or intellectual disability) are difficult to model in mice, several
paradigms exist to test social behaviors (55). Targeted perturbations
have shown that these behaviors require the coordinated activity of
several interconnected cortical and subcortical brain regions (56), but
the neurons involved, their normal activity patterns, and disease-state
abnormalities are not known. Recent studies have used calcium
imaging in inventive ways to address this question.

Several studies have used a fiber photometry approach to study
region and cell type-specific activity patterns during social
behavior. Although this is a population-resolution recording
technique, these studies are able to provide cell-level insights by
using cell type-specific or projection-specific expression to
interrogate defined subpopulations of neurons. Labeling a
genetically defined subpopulation of pyramidal neurons in the
medial prefrontal cortex (mPFC) revealed that dopamine D2
receptor positive, subcortically projecting neurons are recruited
during social exploration, and that this recruitment is attenuated
in a mouse model of autism (9). A retrograde viral targeting
approach was used to show that dopaminergic projections from
the ventral tegmental area to D1 receptor expressing neurons in
the nucleus accumbens (NAc), rather than the mPFC, support
social behavior (57). Dopaminergic projections from the dorsal
raphe nucleus also bidirectionally control sociability in an
emotional state dependent manner (58). Multiple studies have
used parvalbumin-Cre mice to obtain fast-spiking interneuron
specific expression, and have consistently found that increased
activity in these cells is associated with social behavior (59–61)
[but not emotional state discrimination, which is driven by
somatostatin expressing interneurons (62)]. Building on this
insight, specific stimulation of fast-spiking neurons is sufficient
to recover social behavior deficits of diverse etiology, including
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autism-like cortical hyperexcitability (63), fear conditioning (64),
genetic alteration (61, 65), and juvenile social isolation (59).

Calcium imaging using endoscopy has corroborated many of
these findings, while also revealing more subtle activity patterns
during social behavior. Cellular resolution imaging ofmPFCneurons
confirmed that specific subpopulationsdrive social behavior, and that
the NAc is an important target for this information (66). Imaging in
the amygdala and hypothalamus confirms responses to social stimuli
in these regions, anddemonstrate that this activity encodes important
social features, suchas thegenderof the targetmouse (67, 68). Inmost
cases, cellular resolution allows for a more nuanced understanding
information coding—for example, mPFC neurons encode a
combination of social and spatial information, and exhibit diverse
responses (e.g. increased or decreased activity) to social stimuli (66,
69). Neuronal responses are also often context-dependent, with
varying levels of activity during different behavioral phases (e.g.
approach vs. withdrawal) (57).

In addition to refining our basic understanding of neural
circuitry and behavior, these findings have novel and practical
implications for drug development. Complex, de-correlated
activity patterns may not be visible in population resolution
signals, and suggest that a blanket enhancement or inhibition of
activity (as may be the outcome of many pharmacological
interventions) may not improve social cognition. Drugs with use-
dependent mechanisms, such as allosteric modulators, or drugs that
target molecules that are preferentially expressed in relevant
neuronal populations, such as certain neurotransmitter receptors,
may therefore be more effective. Similarly, projection-specific
deficits may not be visible in postmortem tissue, and identifying
these pathways could point to potential targets for emerging
treatment modalities, such as transcranial magnetic stimulation or
gene therapy.
CALCIUM IMAGING DURING
SENSORY PROCESSING

Even with carefully chosen transgenic models and behavioral
paradigms, translatability remains a major challenge to drug
discovery efforts. EEG can overcome this challenge by recording
the same signals in mice and humans. Several brain activity
endophenotypes have been identified in patients with psychiatric
disorders using this approach (70), and these areoften replicated in
corresponding mouse models (71). Despite being a population
resolution measure, some EEG endophenotypes have been linked
to underlying deficits in specific neuronal subpopulations, such as
gamma-band oscillatory power and fast-spiking interneurons (24,
72). Another class of deficits is in sensory processing, as measured
using event-related potentials (ERPs). These sensory-evoked
population signals are clearly altered in patients with psychiatric
disorders, buta lackofunderstandingof thecellularunderpinnings
of these phenomena has made it difficult to use them to infer
causal mechanisms.

A few recent studies have attempted to bridge this gap, by
establishing disease-relevant sensory processing tests in mice and
combining them with calcium imaging. The first study replicated a
Frontiers in Psychiatry | www.frontiersin.org 4
visualmismatchnegativity test, oftenusedasabiomarker inpatients
with schizophrenia, inmice (73). By combining this paradigmwith
LFP recordings, the authors confirmed that population-level signals
evoked bydeviant and redundant stimuli correspondwith neuronal
activity in layer 2/3 of the cortex, providing ground truth evidence
for a crucial assumption of EEG recordings in humans. They went
on to showthatnon-fast spiking interneuronsmodulate this effect at
the local microcircuit level. This finding was supported by
experiments in schizophrenia model mice, including the 22q11.2
microdeletion model, which showed disorganized population
activity that was not reproduced by chemogenetic inhibition of
fast-spiking interneurons (35). A separate study focused on activity
in V1 during a visual discrimination task, in which Fmr1-KOmice
were impaired (74). Importantly, the authors confirmed that
patients with FXS showed deficits in the same test. Using calcium
imaging to separately observe neuronal subpopulations, they found
deficits in orientation tuning in pyramidal cells and in evoked
activity in fast-spiking interneurons; the visual discrimination
impairment was reversed by cell type specific chemogenetic
stimulation of fast-spiking interneurons.

The above studies show that with careful validation in patients
and recording of multimodal physiological signals, it is possible to
establish informative tests of sensory processing that can provide
convincing insight into human brain circuit functioning. By taking
advantage of the increased accessibility of neural circuitry in mice,
and the cellular resolution afforded by calcium imaging, these
experiments have pinpointed circuit components and activity
patterns that could be promising targets for treatment. Expanding
this approach to other biomarkers, particularly those that may
stratify patients (75), should be a priority for translational research.

Finally, we should note that cognitive impairment, which has
been linked to sensory processing deficits (76, 77), is a critical
component of many psychiatric diseases (54). Several high-quality
studies have used calcium imaging to observe population activity
during cognitive tasks (78, 79); however, given the diversity and
complexity of behavioral tests for cognitive impairment, it can be
challenging to extrapolate these findings to disease states. For
example, the studies cited above used the T-maze and novel
object test, but designed their tasks to test decision-making and
object memory respectively [rather than working memory, a
domain of psychiatric disorders (80) for which these tests are
often used (81, 82)]. As the field progresses, we hope to see more
examples of calcium imaging applied to cognitive behavior testing
in psychiatric disease models.
POTENTIAL IMPACT ON DRUG
DISCOVERY RESEARCH

Over the past decade, large-scale efforts have generated sufficiently
powered cohorts to identify significantly disease-associated genes,
which should, in theory, be the key to selecting new drug targets.
However, there are three fundamental gaps that need to be cleared
beforewecanunderstandhowa “hit” genemay impactdisease:first,
howthegene’s functioningaffectsnetworkactivity, second,howthis
network activity supports a disease-related behavioral domain, and
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third, whether this network activity is in fact disrupted in the
disease, and if rescuing it recovers the disease-related behavior.
Answering these questions represents a “pathophysiology-based”
approach to drug discovery (83). Current treatments for psychiatric
disorders, where available, were discovered empirically and are
poorly understood, show limited efficacy, and have numerous side
effects. A better understanding of pathophysiological mechanisms
would allow more rational, and eventually more successful, drug
design (4).

With this goal in mind, there is a compelling case for making
calcium imaging central to modern neuroscience drug discovery
programs. It can dramatically increase the throughput ofmeasuring
neuronal activity in vitro, using primary cultures from transgenic
mice or patient-derived differentiated iPSCs. This approach can
answer the question of how disease-associated mutations impact
neuronal activity, by using patient cells containing themutation, or
introducing the mutation or its corresponding gain or loss of
function into rodent neurons (by gene editing or viral
transduction). Alternatively, it can be used to screen compound
effects on physiology, with the advantage of also allowing
unambiguous matching of neuronal activity to gene expression or
other cellular phenotypes by post-hoc immunostaining. These
effects can then be validated in vivo, enabling better tissue
preservation and higher cell yields than the standard alternative
of slice electrophysiology, aswell as providing the ability to do long-
term drug treatments. With calcium imaging, it is thus possible to
build a screening pipeline that integrates molecular biology and
physiology, and spans in vitro and in vivo models using the
same modality.

Patients with psychiatric diagnoses are not a homogenous
population (75), and a critical challenge in developing new
therapies is to understand the differences between subgroups of
patients and identify likely responders. Biomarkers of brain activity
are necessary in this effort, and calcium imaging has the potential to
reveal more sensitive and informative measures of circuit
functioning than those currently available. Due to the invasive
nature of calcium imaging, these cellular resolution biomarkers
cannot be recorded in humans using current technology; however,
several strategies can be used to obtain translatable insights. Firstly,
recordings using a translatable modality can bemade in parallel, to
directly link cell and population resolution phenotypes. For
example, a study in a mouse model of epilepsy found changes in
calcium activity that accompanied behavioral and EEG
manifestation of seizures (84); in fact, altered calcium dynamics
preceded EEG detection of seizure onset, and provided a potential
mechanism linking seizure activity with cellular damage. Second,
models can be chosen or designed with sufficient construct validity
that we can assume pathophysiological similarity between rodents
and humans. Along these lines, recent studies have characterized
network abnormalities inmodels of cocaine or alcohol dependence
(85, 86), for which the etiology in mice and humans is similar;
equivalent models for psychiatric disorders also exist (such as the
Fmr1 knockoutmice described above). Third, nonhuman primates
are much more comparable to humans than mice. Transgenic
Frontiers in Psychiatry | www.frontiersin.org 5
marmosets expressing GECIs are now available (87), and can be
used to model sophisticated, disease-relevant behaviors (88).

The last, and perhaps most powerful, strategy is to use
existing clinically effective drugs to test the predictive validity
of newly identified cellular resolution biomarkers. For example, a
recent study using a rodent model of Parkinson’s disease (PD)
identified cell type-specific, disease-associated activity patterns in
distinct, genetically defined subpopulations of medium spiny
neurons in the striatum (89). The authors found that clinically
used treatments for PD rescued these patterns, with the greatest
clinical efficacy associated with the drug that rescued altered
activity patterns to the greatest extent. This approach is
profoundly beneficial, as it directly identifies the cell types and
circuit abnormalities associated with disease, while simultaneously
providing a platform to screen new compounds for improved
clinical efficacy. Opportunities exist to apply a similar approach
to psychiatric disorders—for example, dopaminergic signaling is
known to be involved in the pathophysiology of schizophrenia, but
different pathological deficits have been associated with different
brain regions and symptoms (i.e. striatal hyperdopaminergia with
psychosis and cortical hypodopaminergia with cognitive
impairment) (90). The antipsychotic drug aripiprazole, at one
point the best-selling drug in the country, is a partial agonist of
D2R receptors, meaning that its hypothesized mechanism of action
is to stimulate D2R activity in the cortex while simultaneously
competitively inhibiting D2R activity in the striatum (91). This
could be confirmed by using calcium imaging to directly record the
activity of D2R-expressing neurons and their postsynaptic targets
in these regions, following treatment with aripiprazole or other
antipsychotic drugs. Identifying the activity patterns modulated by
existing antipsychotics would provide valuable insight into the
mechanisms underlying psychosis, some of which could be targets
for more clinically effective, domain specific, or conceptually
innovative treatments in the future. As with PD, this approach
could also provide the tools needed (i.e. screening platforms based
on sensitive, informative cellular resolution biomarkers) to enable
pathophysiology-based discovery of new drugs.
CONCLUSION

Calcium imaging is a powerful method to study patterns of
activity in defined neural circuits during behavior, which may be
critical to understanding brain dysfunction in psychiatric
disorders. Exciting progress has been made in applying
calcium imaging to psychiatric disease-relevant paradigms and
models. The field has already yielded several insights linking gene
functioning, cellular physiology, translatable biomarkers, and
behavior; continuing to build on this progress could contribute
to drug discovery in a meaningful way. Applied correctly, cellular
resolution imaging can help generate and evaluate mechanistic
hypotheses, screen drugs and targets, and ultimately provide a
roadmap to more effective medications in the future.
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