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Cognitive deficits in people with schizophrenia are among the hardest to treat and strongly
predict functional outcome. The ability to maintain sensory precepts in memory over a
short delay is impacted early in the progression of schizophrenia and has been linked to
reliable neurophysiological markers. Yet, little is known about the mechanisms of these
deficits. Here, we investigated possible neurophysiological mechanisms of impaired visual
short-term memory (vSTM, aka working memory maintenance) in the first-episode
schizophrenia spectrum (FESz) using magnetoencephalography (MEG). Twenty-eight
FESz and 25 matched controls performed a lateralized change detection task where
they were cued to selectively attend and remember colors of circles presented in either the
left or right peripheral visual field over a 1 s delay. Contralateral alpha suppression (CAS)
during the delay period was used to assess selective attention to cued visual hemifields
held in vSTM. Delay-period CAS was compared between FESz and controls and between
trials presenting one vs three items per visual hemifield. CAS in dorsal visual cortex was
reduced in FESz compared to controls in high-load trials, but not low-load trials. Group
differences in CAS were found beginning 100 ms after the disappearance of the memory
set, suggesting deficits were not due to the initial deployment of attention to the cued
visual hemifield prior to stimulus presentation. CAS was not greater for high-load vs low-
load trials in FESz subjects, although this effect was prominent in controls. Further,
lateralized gamma (34–40 Hz) power emerged in dorsal visual cortex prior to the onset of
CAS in controls but not FESz. Gamma power in this cluster differed between groups at
both high and low load. CAS deficits observed in FESz were correlated with change
detection accuracy, working memory function, estimated IQ, and negative symptoms.
Our results implicate deficits in CAS in trials requiring broad, but not narrow, focus of
attention to spatially distributed objects maintained in vSTM in FESz, possibly due
to reduced ability to broadly distribute visuospatial attention (alpha) or disruption of
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object-location binding (gamma) during encoding/consolidation. This early pathophysiology
may shed light upon mechanisms of emerging working memory deficits that are intrinsic
to schizophrenia.
Keywords: first-episode schizophrenia, magnetoencephalography, visual short-term memory, working memory,
alpha, gamma
INTRODUCTION

People with schizophrenia have reduced capacity to maintain
visual information in the focus of attention and working memory
over short periods of time (1, 2). This deficit in visual short-term
memory (vSTM), otherwise known as visual working memory
maintenance (3, 4), may contribute to a variety of cognitive
impairments in schizophrenia (5, 6). Working memory
impairment is observable even at the first episode of psychosis
(7, 8), and has been linked to functional outcome (9, 10).
Neurophysiologically, people with schizophrenia show reduced
activity during the delay between encoding and retrieval in frontal
(11, 12) and parieto-occipital cortical areas (13, 14) whenmultiple
items are held in vSTM. The mechanism of these impairments,
however, remains unclear. Some have proposed that inefficiency
of specific aspects of working memory performance, such as
selective attention or consolidation, may account for observed
vSTMdeficits (13, 15). Although psychomotor processing speed is
generally reduced in schizophrenia (16), covert attentional
orienting/selection of stimuli during encoding is not delayed or
reduced (17), ruling out problems in initial processing. Similarly,
duration of the maintenance period does not seem to impact
schizophrenia-related deficits in performance beyond about 1 s for
visual stimuli (8, 18, 19), ruling out interference from distraction
or increased decay of the percept. Thus, vSTM impairments in
schizophrenia likely occur early in maintenance, possibly during
consolidation of the percept.

A common method for assessing vSTM is visual change
detection. In a typical change detection task, subjects maintain an
image in working memory over a short delay period and indicate
whether any item(s) in a later probe image has/have changed. The
number of items presented (memory load) is manipulated and
performance (e.g. K, an estimate of the number of items stored in
memory) is compared between trials of varying load (3, 20).
Although the task is quite simple, the outcome (K) depends on
multiple factors. Poor performance could stem from errors during
encoding, maintenance, or retrieval and could be related to poor
orienting, feature selection/analysis, consolidation, accelerated
decay of representations in working memory, interference from
other sources of information, problems with executing an
appropriate behavioral response, or any combination thereof. By
directing attention to specific visual fields, some of these factors can
be separated. In the lateralized change detection task, stimuli are
presented peripherally, and participants are asked to remember the
items from one visual hemifield while ignoring the other. This
results in lateralized perceptual representations in posterior cortical
areas not only during encoding, but also throughout the delay
period, and concomitant lateralized neurophysiological responses
sin.org 2
measurable with magnetoencephalography (MEG). This enables
comparison of neurophysiology between cortical hemispheres,
providing a powerful within-subject control condition for
measurement of group differences.

Contralateral alpha suppression (CAS) is the reduction from
baseline of alpha band (8–12 Hz) spectral power contralateral to the
focus of visual attention. CAS reflects the spatial focus of selective
attention to external stimuli and to internally-generated perceptual
representations (21, 22), making CAS a prime candidate for
investigating selective attention during vSTM maintenance. Alpha
oscillations in posterior cortex generally index the inhibition of
ongoing neural activity (23), and may have a causal role in
perceptual attention, with increased alpha in areas with inhibited
processing of distractor stimuli, and reduced alpha activity in areas
representing to-be-remembered perceptual activity. When applied
externally via transcranial magnetic stimulation, perturbations in
parieto-occipital alpha-band oscillations (but not beta- or theta-
band) alter neural excitability, with diminished visual perceptual
ability in visual field contralateral to the stimulated hemisphere, and
increased ability in the ipsilateral visual field (24). In contrast, prior
research on visual stimulus evoked oscillations suggests that low-
frequency (LF) gamma band (30–40 Hz) spectral power
these represents local excitatory/inhibitory network activity.
Further, parieto-occipital LF gamma power perturbations
contralateral to the attended visual stimulus are thought to index
attentional perceptual mechanisms such as feature binding, scene
segmentation, and/or stimulus representation (25). It is unknown if
contralateral LF gamma power modulation can be identified within
cortical generators of CAS or whether these phenomena are
correlated. Gamma deficits in schizophrenia have been observed in
a variety of contexts, including auditory (26, 27) and visual (28)
sensation, and in frontal areas during working memory updating
(29). However, effects of schizophrenia on contralateral parieto-
occipital LF gamma power modulation during vSTM have not been
investigated previously.

Reduced CAS during covert visual attention (30) and reduced
(non-lateralized) alpha suppression during vSTM maintenance
(22) have been reported in long-term schizophrenia. However,
schizophrenia-related deficits in CAS have not been assessed
during vSTM maintenance, and CAS deficits have not been
reported early in the disease course. Here we used MEG to
investigate CAS as a possible neurophysiological mechanism of
vSTM impairment in people at first episode of schizophrenia-
spectrum psychosis (FESz). This population is ideal for
investigating cognitive deficits in early-stage schizophrenia, as
medication effects have not yet become a confound for
assessment of behavioral and neurophysiological responses.
Further, to investigate whether cortical generators of CAS show
August 2020 | Volume 11 | Article 743
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co-localized and concomitant LF gamma power modulation, and
given the long history and wide literature base showing deficits in
selective attention (31–33) as well as disruptions in LF gamma
oscillatory responses in both first-episode and long-term
schizophrenia (27, 34–36), we examined broader spectral power
differences in parieto-occipital sources of CAS.
METHODS

Participants
Twenty-eight individuals with FESz and 25 HC participants were
included in the study. Subjects were screened for colorblindness
using pseudoisochromatic plates and had at least nine years of
schooling as well as an estimated IQ over 85. None of the
participants had: a) history of concussion or head injury with
sequelae, b) history of alcohol or drug addiction or detox in the
last five years, or c) presence of neurological disease or disorder.
Participants provided voluntary informed consent and were
compensated for participation. Procedures were approved by
the University of Pittsburgh Institutional Review Board (IRB).

All participants completed the MATRICS Cognitive Consensus
Battery (MCCB) (37), the Hollingshead Index of Socioeconomic
Status (SES) (38) and theWechsler Abbreviated Scale of Intelligence
(WASI-I) (39). See Table 1 for demographic measures. Research
diagnoses were based on a consensus conference of baseline
research assessment and confirmed 6 months after initial clinical
assessment based on all longitudinal data at the 6-month follow-up
assessment. Diagnostic status for all FESz and HC participants was
based on findings from the Structured Clinical Interview for DSM-
IV (SCID-IV) and consensus conference review. One FESz
participant was lost to follow-up and therefore remains with the
diagnosis of Schizophreniform Disorder (Provisional). Symptoms
Frontiers in Psychiatry | www.frontiersin.org 3
were rated using the Positive and Negative Symptom Scale
(PANSS), Scale for Assessment of Positive Symptoms (SAPS), and
Scale for Assessment of Negative Symptoms (SANS). All interviews
and tests were conducted by an expert (Masters’- or PhD-level)
clinical assessor (see Table 2 for clinical measures). Of the 28 FESz
participants, 18 received diagnoses of schizophrenia (paranoid: n=8;
undifferentiated: n=8; residual: n=2), 4 of schizoaffective disorder
(depressed subtype), and 6 of psychotic disorder not otherwise
specified (NOS). All FESz participated within their first episode of
psychosis and had less than 2 months of lifetime antipsychotic
medication exposure. Eleven FESz (39.2%) were medication-naive.

Procedures
Participants performed a lateralized change detection task
(Figure 1). They were cued to covertly attend one visual
hemifield (direction cue, 1.5° visual angle, 500 ms duration).
An array of 1 (low-load) or 3 (high-load) filled colored circles
was then presented in each hemifield (memory array) for 200 ms.
One second later, another array was presented (probe) and
participants indicated by button press with the right pointer or
middle finger whether one of the circles in the attended hemifield
had chane per hemifield). Participants were instructed to
ignore changes in the unattended hemifield. The mapping of
buttons (pointer/middle) to responses (change/no-change) was
counterbalanced across participants. The following trial
categories were equiprobable: no change, attended hemifield
change, unattended hemifield change, or change in both
hemifields. Thus, target responses (change/no-change) were
also equiprobable. Participants had 2,000 ms to respond before
the next trial. Circles could be one of 6 colors selected for
equivalent luminance and color contrast. Circles subtended
0.65° and spatial locations were randomly selected from a 3° x
7° grid presented 1.5° to the left/right of central fixation. Stimuli
TABLE 1 | Participant Demographics and Neuropsychological Scores.

Mean ± SD t/c2 p

FESz HC

Sociodemographic data
Age (years) 23.0 ± 4.8 21.6 ± 4.5 1.1 0.268
Sex (M/F) 18/10 16/9 0.1 0.983
Participant SES 29.6 ± 13.1 33.9 ± 15.2 −1.0 0.303
Parental SES 41.9 ± 13.6 47.9 ± 12.9 −1.6 0.117
Education (years) 12.6 ± 2.5 13.8 ± 3.1 −1.5 0.136
Neuropsychological Tests
WASI IQ 107.9 ± 16.9 107.1 ± 9.4 −0.2 0.829
MCCB—Processing speed 42.5 ± 15.3 51.6 ± 8.3 2.7 0.009
MCCB—Attention 40.8 ± 11.5 46.2 ± 9 1.9 0.063
MCCB—Working memory 41.9 ± 14.5 46.8 ± 8.7 1.5 0.138
MCCB—Verbal learning 44.5 ± 11.2 51.1 ± 8.7 2.4 0.020
MCCB—Visual learning 40.6 ± 13 44.9 ± 8.1 1.4 0.157
MCCB—Reasoning 44.7 ± 12 50.9 ± 8 2.2 0.030
MCCB—Social cognition 45.6 ± 13.7 54.5 ± 9.1 2.8 0.008
MCCB—Total 38.6 ± 14.8 49.1 ± 6.7 3.3 0.002
Au
gust 2020 | Volume 11 | Artic
Descriptive and inferential statistics are reported for first-episode schizophrenia subjects (FESz) and healthy controls (HC). Significant p-values are bolded. All other differences are non-
significant (p > 0.05).
FES, first-episode schizophrenia; HC, healthy control; SES, Socioeconomic Status; WASI, Wechsler Abbreviated Scale.
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were presented in five blocks of 75 trials, with short (~2 min)
breaks between trials. The direction cue orientation, trial
category, number of circles presented (low or high load), and
spatial locations of the circles within the 3° x 7° grid were all
randomly selected at the start of each trial.

MEG
MEG data were obtained in a magnetically shielded room
(Imedco AG, Hägendorf, Switzerland) using a a 306-channel
whole-head MEG system (Elekta Neuromag) with a sampling
rate of 1,000 Hz (online half-power band pass filter = 0.1–330
Hz). Bipolar leads were placed above and below the left eye
(VEOG) and lateral to the outer canthi of both eyes (HEOG).
Bipolar ECG leads were placed just below the left and right
clavicle. Four head position indicator (HPI) coils were placed on
the head and locations (relative to the nasion and preauricular
points) were recorded using a 3D-digitizer (ISOTRAK;
Polhemus, Inc., Colchester, VT). Head position was tracked
continuously throughout the experiment.

Structural MRI
Structural MRIs were obtained for use in MEG source modeling.
Sagittal T1-weighted anatomical MR images were obtained using
a Siemens TIM Trio 3 Tesla MRI system with a multi-echo 3D
MPRAGE sequence [relaxation time/echo time/inversion time =
2530/1.74, 3.6, 5.46, 7.32/1260 ms, flip angle = 7°, field of view
(FOV) = 220 x 220 mm, 1 mm isotropic voxel size, 176 slices,
GRAPPA acceleration factor = 2].

MEG Signal Preprocessing
The temporal extension of the Signal Space Separation method
(40, 41) was used to remove noise sources outside of the MEG
helmet and MEG sensor data were corrected for head motion
using the Neuromag MaxFilter software (40). Using the
MATLAB-based EEGLAB Toolbox (42), channels/segments
with excessive noise or transient muscle artefacts were
removed via visual inspection and a high-pass filter (0.5 Hz;
12 dB/oct) was applied. Adaptive Mixture ICA (AMICA) (43–
45) was then performed to detect and remove one eye-blink
and a maximum of 2 ECG components (representing
pulsation and/or QRS artefacts) for each subject. Some
subjects (N=5) did not present detectable ECG artefacts in
the MEG signal. Components were identified based on their
topography and temporal dynamics. All removed components
Frontiers in Psychiatry | www.frontiersin.org 4
were well-isolated (i.e. no additional blink/pulsation/QRS
component was identified).

MEG Analysis
TheMEG sensor locationswere registered to structural images using
MRIlab (Elekta-Neuromag Oy, Helsinki, Finland). The locations of
possible dipole sources were constrained to the gray/white matter
boundary segmented from the structural MRI data using Freesurfer
(http://www.surfer.nmr.mgh.harvard.edu) (46–48). This boundary
was tessellated into an icosohedron with 5 mm spacing between
vertices, resulting in a source model with ∼5,000 current locations
per hemisphere. A forward solution was modeled as a single-shell
(homogenous tissue) boundary-element model. The noise
covariance matrix (calculated from the baseline interval of each
trial) and forward solution were then used to create a linear inverse
operator using a loose orientation constraint of 0.4 (0=current
dipoles must be normal to the cortex; 1=no constraint) (49), with
depth weighting applied. Continuous MEG data were filtered
(100 Hz low-pass; 24 dB/oct) and source activity was then
estimated from 204 planar gradiometer channels using MNE (50).
After source modeling, correct trials were segmented from 300 ms
before direction cue onset (i.e. 800 ms prior to memory array onset)
to 500 ms after probe stimulus onset (i.e. 1,700 ms prior to memory
array onset), and trials were rejected in which the magnetic field in
any gradiometer exceeded 5 pT difference from baseline or eye
movements were detected. Eye movements were detected in the
HEOG channel using a step function, with a moving window or
200 ms duration with rejection criterion of +25 µV (51). Morlet
wavelet deconvolution was then applied using 5 cycles at 1 Hz
increments from 3 to 40 Hz, and event-related spectral perturbation
was calculatedas the relative change frombaseline for each frequency
measured. ROI analyses were performed on these native-space data,
while vertex-wise analyses were performed on data morphed into a
common space (fsaverage/MNI-305) with 10 mm smoothing.

Analysis of source-level time-frequencydata thenproceeded ina
two-step analysis. First, to identify the generators of CAS, mean 8–
12 Hz frequency power during vSTMmaintenance (averaged from
200 to 1,200 ms after memory set onset) was assessed with vertex-
wise one-sample t-tests across all subjects, separately for remember-
left and remember-right trials. Parametric maps were corrected for
multiple comparisons using spatial-cluster-based permutation
testing with 1,000 iterations, using a cluster-forming threshold of
p<0.05 and minimum cluster size of eight vertices (52). Regional
labels corresponding to clusters of significant differences between
FIGURE 1 | Graphical depiction of the lateralized visual short-term memory (vSTM) task. An example trial is shown for the attend-right high memory load condition.
Timing of stimuli presented is shown below each stimulus.
August 2020 | Volume 11 | Article 743
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high- and low-load were then identified from the Destrieux atlas
implemented in Freesurfer. In the second step, average time-
frequency maps were generated for each ROI, separately for each
cortical hemisphere and stimulus condition. ROI-averaged time-
frequency data ipsilateral to the attended hemifield were subtracted
from those contralateral, and contralateral-ipsilateral difference
spectra in high and low load conditions were compared between
groups across the 3–40 Hz frequency spectrum and 200–1,200 ms
retention interval time windowusing two separate time-frequency-
cluster-based permutation tests (1,000 iterations, cluster-forming
threshold of p<0.05, minimum cluster size of 8 contiguous time-
frequency data points). Power within group-difference lateralized
time/frequency cluster were then compared using separate 2
(group: HC vs. FESz) x 2 (load: high vs low) repeated-measures
ANOVAs to identify possible group X load interactions.

Demographic, Clinical, and Behavioral
Data Analysis
Demographics and neurocognitive measures were compared
between groups using independent samples t-tests and chi-square
tests where appropriate. Task behavioral data including vSTM
capacity (K) and reaction time (correct trials only) were subjected
to a 2 (group: HC vs. FESz) x 2 (load: high vs low) repeated-
measures ANOVA. Kwas calculated according to Rouder et al. (53)
as the number of items to be remembered (S), multiplied by the
ratio of the difference between hit rate (H) and false alarm rate (FA)
to the correct rejection rate (1-FA), expressed as K=S*(H-FA)/(1-
FA). Pearson correlations were computed separately for HC and
FESz to explore relationships between behavioral and
neurophysiological measures of working memory (K, RT, and
contralateral-ipsilateral differential alpha/LF gamma power in
high and low load conditions), and clinical/cognitive variables.
RESULTS

Behavior
vSTM capacity (K) was lower in FESz than HC (F(1,50)=7.5;
p=0.008; Table 3). An interaction between group and memory
load (F(1,50)=4.7; p=0.035) was driven by greater vSTM capacity
differences across groups at high memory load (t50 = 2.61;
p=0.002) as compared to low load (t50 = 2.97; p=0.005).
Frontiers in Psychiatry | www.frontiersin.org 5
Differences between conditions were significant within both
groups (p’s<0.001).

Response times were significantly slower for FESz compared
to HC (F(1,50)=7.7; p=0.008), and for high memory load
compared to low load (F(1,50)=99.3; p<0.001). Further, an
interaction was found (F(1,50)=8.2; p=0.006), where differences
between FESz and HC were greater at low (t(50)=3.3, p=0.002)
than high (t(50)=2.2, p=0.03) memory load. The simple memory
load effect was significant within both groups (p’s<0.001).

Alpha Power
Mean alpha power during working memory maintenance was
significantly reduced from baseline within dorsal lateral occipital
cortex in both high and low memory load (Figure 2), with the
most pronounced suppression in visual regions contralateral to
the attended visual hemifield at high memory load. ROIs were
generated in each hemisphere for the cortical vertices spanning
the middle occipital sulcus, sulcus lunatus, superior occipital
gyrus, superior occipital sulcus, and transverse occipital sulcus.
Within average contralateral-ipsilateral difference spectra, only
one time-frequency cluster was identified in the alpha band for
high-load trials, spanning 7–11 Hz and 320–1,016 ms after onset
of the memory array (Figure 3). No clusters were identified for
low-load trials. Mixed methods ANOVA confirmed an
interaction between group and memory load (F(1,51)=4.1;
p=0.048; Table 4), which was driven by greater CAS in HC
than FESz in high (t(51)=3.3, p=0.002), but not low load trials
(p>0.1). Further, CAS was greater in high load than low load
trials for HC (t(24)=2.5, p=0.021), but not FESz (t(51)=−0.1, n.s.).

LF Gamma Power Within CAS Clusters
A time-frequency cluster was identified in the LF gamma band
spanning 34–40 and 276–600 ms after sample stimulus onset in
high load trials, where contralateral LF gamma power increased
from baseline in HC, but not FESz (Figure 3). No clusters were
identified in low-load trials. ANOVA results did not indicate a
group x memory load interaction (p>0.1). Rather, a trend-level
main effect of group was found (F(1,51)=3.6; p=0.063; Table 4),
indicatinggreater lateralizedLFgammapower inHCvsFESzacross
memory load conditions. The main effect of memory load was not
significant (p>0.1).

Neurocognitive and Clinical Relationships
No significant correlations were found between oscillatory
responses and reaction times; however, accuracy (K) was
TABLE 3 | Descriptive statistics for behavioral and neurophysiological effects.

HC FESz

K
Low Load 0.95 ± 0.01 0.85 ± 0.03
High Load 2.19 ± 0.09 1.77 ± 0.13

Reaction time (ms)
Low Load 725 ± 27 863 ± 30
High Load 822 ± 27 916 ± 31
August 2020 | Volume 11
Descriptive statistics (mean ± SEM) are reported for first-episode schizophrenia subjects
(FESz) and healthy controls (HC).
TABLE 2 | Patient Characteristics.

Symptoms
PANSS—General 39.7 ± 6.8
PANSS—Negative 17.9 ± 4.9
PANSS—Positive 21.1 ± 5.1
PANSS—Total 78.7 ± 13.7

Medication data
Cpz. equivalent dose (mg)* 218.6 ± 142.9
Medicated**/unmedicated 17/11
Descriptive statistics (mean ± SD) are reported for clinical variables and medication status
for first-episode schizophrenia subjects.
** Of the 17 medicated participants, 13 were prescribed Risperidone, 5 were prescribed
Olanzapine, and 2 were prescribed Aripriprazole (3 participants were prescribed two
medications).
*Cpz equivalent dose is calculated only for medicated participants
PANSS, Positive and Negative Symptom Scale.
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moderately correlated with CAS within high load trials in HC
(r = −0.35; p=0.097) and FESz (r = −0.32; p=0.093). Additional
correlations were detected only within FESz. Greater WASI IQ
was significantly correlated with greater CAS in FESz (r = −0.41;
p=0.028). Similarly, greater MCCB working memory scores were
related to greater CAS in FESz for both high-load (r = −0.49;
p=0.008) and low-load (r = −0.41; p=0.032) trials. The same was
Frontiers in Psychiatry | www.frontiersin.org 6
true for the reasoning and problem-solving scale (high-load:
r = −0.42; p=0.025; low-load: r = −0.42; p=0.025). Among
FESz, greater negative symptom severity (as measured by the
PANSS) was related to reduced alpha for both high-load
(r = 0.53; p=0.007) and low-load (r = 0.49; p=0.015) trials.
After controlling for WASI IQ, these correlations remained
significant except for correlations between CAS and MCCB
TABLE 4 | Descriptive statistics for spectral effects.

CAS (dB) Gamma Power (dB)

HC FESz HC FESz

Low Load
Left Visual Field

−0.41 ± 0.59 0.03 ± 0.64 0.53 ± 0.35 0.68 ± 0.29

Right Visual Field −1.94 ± 0.55 −1.07 ± 0.76 0.11 ± 0.33 −0.22 ± 0.31
High Load
Left Visual Field

−2.09 ± 0.66 −0.48 ± 0.56 0.29 ± 0.39 0.37 ± 0.32

Right Visual Field −2.22 ± 0.61 −0.47 ± 0.57 0.73 ± 0.44 −1.17 ± 0.35
August 2020 | Volume 11
Descriptive statistics (mean ± SEM) are reported for first-episode schizophrenia subjects (FESz) and healthy controls (HC).
FES, first-episode schizophrenia; HC, healthy controls.
FIGURE 2 | Spatial distribution of source-resolved contralateral alpha suppression (CAS) in high-load trials in healthy controls, first-episode schizophrenia (FESz),
and all participants. Source-resolved activity is shown for stimuli presented in the right (upper) and left (lower) visual field. These images represent average alpha
power between 8–12 Hz and 200–1,200 ms after the onset of the memory set stimulus, which was done as an initial analysis step prior to time-frequency cluster
analysis (see Figure 3).
A B

FIGURE 3 | Average contralateral minus ipsilateral time-frequency spectra from dorsal occipital ROIs. Lateralized suppression of alpha and enhancement of gamma
power during the maintenance period is evident in healthy controls, but not first episode schizophrenia patients. Unfilled and filled boxes below the x-axis represent
onsets/durations of the attention cue and memory set stimuli, respectively. Power values are shown as relative change from baseline in decibels (dB). Time-frequency
clusters surviving correction for multiple comparisons are depicted by black outline.
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reasoning/problem-solving scale, where magnitudes of r-values
for low and high load trials were reduced to −0.35 and −0.39,
respectively. No correlations were identified between CAS and
LF gamma power, nor was LF gamma modulation correlated
with any other variable (p’s>0.1).

Medication Effects
As nearly half of our FESz sample was unmedicated, we compared
behavioral performance (K, RT) and neurophysiological measures
(CAS and lateralized LF gamma power) between medicated and
unmedicated FESz participants to investigate the effects of
medication. There were no significant differences between
medicated and nonmedicated FESz on any of these measures, nor
were any of these measures correlated with chlorpromazine-
equivalent dosages in medicated patients (p’s>0.1).
DISCUSSION

Attentional control is fundamental tonearly all aspects of cognition,
from learning and memory to social cognition and complex
decision making (54–57). This is perhaps most evident in the link
between attention and working memory. Attention and working
memory are so tightly intertwined that some have even argued
against a short-term memory storage system that exists separately
fromattention and long-termmemory, suggesting thatwhatwe call
working memory is actually a combination of attentional selection,
rehearsal, and consolidation/off-loading to activated long term
memory (56, 58, 59). Many others assert that attention cannot
sufficiently explain allworkingmemoryphenomenaobserved anda
separate system is needed for working memory, but still
acknowledge the role of attention in controlling the processes of
working memory (60, 61). In the current study, we examined the
effects of schizophrenia on attentional control during working
memory maintenance by investigating CAS, a robust and
objective neurophysiological marker of the focus of attention.

Our results show reducedCAS in dorsal occipital cortex in FESz
when multiple items are maintained in lateralized vSTM. CAS
differences between groups begin ~300 ms after onset of the
memory array and persist throughout the delay period in healthy
subjects, but not FESz. This extends upon previous findings of
reduced CAS during visual attention in long-term schizophrenia
(30), and has strong implications for previous findings of reduced
delay period activity, despite no difference in encoding and
orienting of attention. Visual objects maintained in vSTM are
quickly bound with their spatial locations into an internalized
visual scene after sensation (~100–200 ms) and attention
selection/orienting (~250–400 ms) (62). In this way, contextual
aspects of the individual items can be registered and linked to
representations in long-term memory (63, 64). During vSTM
maintenance, this global context is assembled from the individual
items held in working memory and itself maintained throughout
the delay period. vSTM is facilitated when global patterns exist,
suggesting that scene assembly during vSTM is adaptive (65).
Delay-period CAS represents the focus of attention in this
maintained visual scene (66). Our results suggest that something
Frontiers in Psychiatry | www.frontiersin.org 7
has gone awry with deployment of attention to multiple items
during maintenance in schizophrenia. Indeed, individuals with
schizophrenia are impaired in the ability to simultaneously attend
to multiple locations (67), although the ability to narrowly focus
attention to a single location is preserved (17) if not enhanced (68,
69).Deficits areobserved in the shift of attention fromglobal to local
spatial context as well (70). Thus, individuals with schizophrenia-
spectrum psychotic disorders may have limited access to global
representations of objects maintained in vSTM due to reduced
ability todistribute attentionbroadly, ordue to disruptionof object-
location binding.

We also found that manipulating the number of items
maintained in vSTM resulted in LF gamma-band oscillatory
response in contralateral dorsal visual cortex, where LF gamma
power increased for multi-object arrays in healthy controls.
Interestingly, this LF gamma burst onsets before CAS, and shortly
after attentional orienting. LF gamma power increase in dorsal
occipital areas may indicate consolidation of visual objects in
working memory and construction of internal scenes. Reported
evidence of occipitoparietal LF gamma increases with unconscious
learning of visual search arrays has similar timing to the effects
observed here (71). LF gamma responses were absent in FESz at
both low and high load here. Thus, we propose that FESzmay have
reduced ability to form visual scenes that can be searched in vSTM.
This is concordant with previous findings of deficits in the
allocation of spatial attention to multiple items (68, 72), as well as
findings of reduced ability to shift between local and global context
in visual scenes (70, 73, 74).However, it is important tonote thatwe
did not find that CAS was statistically correlated with LF gamma
power modulation in this sample. It is also possible that gamma
power increases spannedhigher frequencies than those investigated
here; however, we decided to focus on LF gamma power here
following prior studies which have investigated wider-band
frequency spectra in similar contexts (25, 71)

Although our results are consistent with literature showing
reduced ability to focus broadly in individuals with schizophrenia
compared to healthy controls, there are some inconsistencies
between results observed in the low load condition here and what
has been described in previous research. Specifically, Leanard,
Luck, and colleagues (14) have shown larger responses in
people with long-term schizophrenia compared to healthy
controls in low memory load conditions, which has been
interpreted as hyperfocusing on individual items during
encoding and maintenance (68, 69). We did not find evidence
of hyperfocusing here. It is possible that hyperfocusing may arise
with progression beyond the early stage of the illness—we have
investigated individuals at first episode of psychosis here and
cannot speak to this hypothesis. Longitudinal studies are needed
to determine the validity of this statement. Further, the study by
Leonard et al. did not utilize the spatial cuing approach used
here. Rather than using a directional cue to orient the
participants prior to encoding, they used different shapes on
either side of fixation. The spatial cue used in the current design
may have given the opportunity for the control group to focus
spatial attention before memory display onset more intensely
than they would in a design without that forewarning. Indeed,
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deficits in cued redirection of covert spatial attention have been
reported in long-term schizophrenia (75, 76), and controls here
were more accurate than FESz at low load, which has not been
reported previously.

In conclusion, our results show reduced lateralization of the
focus of attention during vSTM, possibly due to impairment in the
ability to broadly distribute spatial attention or reduced object-
locationbinding. Forminghierarchical scene-based representations
using visual information, semantic information, and objects is
useful for organizing and summarizing information held in
working memory. Healthy observers do this naturally in visual
arrays, even when they do not explicitly contain patterns (65).
Problems with the formation and/or utilization of scenes in vSTM
could impact multiple aspects of schizophrenia, including visual
learning, the ability to detect visual patterns (real or illusory), and
the guidance of attention during social interaction. Deficits in the
ability to represent high-level conceptual information along with
object representations in working memory may prove fruitful for
explaining complex aspects of working memory dysfunction that
are hallmark of schizophrenia.
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impairments in first-episode psychosis and chronic schizophrenia.
Psychiatry Res (2009) 165:10–8. doi: 10.1016/j.psychres.2007.10.006

9. Dickinson D, Coursey RD. Independence and overlap among neurocognitive
correlates of community functioning in schizophrenia. Schizophr Res (2002)
56:161–70. doi: 10.1016/S0920-9964(01)00229-8

10. Milev P, Ho B-C, Arndt S, Andreasen NC. Predictive Values of
Neurocognition and Negative Symptoms on Functional Outcome in
Schizophrenia: A Longitudinal First-Episode Study With 7-Year Follow-Up.
AJP (2005) 162:495–506. doi: 10.1176/appi.ajp.162.3.495

11. Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, et al.
Beyond hypofrontality: a quantitative meta-analysis of functional
neuroimaging studies of working memory in schizophrenia. Hum Brain
Mapp (2005) 25:60–9. doi: 10.1002/hbm.20138

12. Van Snellenberg JX, Girgis RR, Horga G, van de Giessen E, Slifstein M, Ojeil
N, et al. Mechanisms of Working Memory Impairment in Schizophrenia. Biol
Psychiatry (2016) 80:617–26. doi: 10.1016/j.biopsych.2016.02.017

13. Bachman P, Kim J, Yee CM, Therman S, Manninen M, Lönnqvist J, et al.
Efficiency of working memory encoding in twins discordant for
schizophrenia. Psychiatry Res: Neuroimaging (2009) 174:97–104. doi:
10.1016/j.pscychresns.2009.04.010

14. Leonard CJ, Kaiser ST, Robinson BM, Kappenman ES, Hahn B, Gold JM, et al.
Toward the Neural Mechanisms of Reduced Working Memory Capacity in
Schizophrenia. Cereb Cortex (2013) 23:1582–92. doi: 10.1093/cercor/bhs148

15. Schlösser RG, Koch K, Wagner G, Nenadic I, Roebel M, Schachtzabel C, et al.
Inefficient executive cognitive control in schizophrenia is preceded by altered
August 2020 | Volume 11 | Article 743

https://doi.org/10.1037/0021-843X.112.1.61
https://doi.org/10.1037/0021-843X.114.4.599
https://doi.org/10.1037/0021-843X.114.4.599
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1037/h0043158
https://doi.org/10.1017/S003329171000019X
https://doi.org/10.1037/a0032060
https://doi.org/10.1016/j.schres.2006.07.021
https://doi.org/10.1016/j.psychres.2007.10.006
https://doi.org/10.1016/S0920-9964(01)00229-8
https://doi.org/10.1176/appi.ajp.162.3.495
https://doi.org/10.1002/hbm.20138
https://doi.org/10.1016/j.biopsych.2016.02.017
https://doi.org/10.1016/j.pscychresns.2009.04.010
https://doi.org/10.1093/cercor/bhs148
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Coffman et al. WM Oscillatory Deficits in FESz
functional activation during information encoding: an fMRI study.
Neuropsychologia (2008) 46:336–47. doi: 10.1016/j.neuropsychologia.
2007.07.006

16. Morrens M, Hulstijn W, Sabbe B. Psychomotor slowing in schizophrenia.
Schizophr Bull (2007) 33:1038–53. doi: 10.1093/schbul/sbl051

17. Luck SJ, Fuller, Braun EL, Robinson B, Summerfelt A, Gold JM. The speed of
visual attention in schizophrenia: electrophysiological and behavioral
evidence. Schizophr Res (2006) 85:174–95. doi: 10.1016/j.schres.2006.03.040

18. Lee J, Park S. Working memory impairments in schizophrenia: A meta-
analysis. J Abnormal Psychol (2005) 114:599–611. doi: 10.1037/0021-843X.
114.4.599

19. Salisbury DF. Semantic activation and verbal working memory maintenance in
schizophrenic thought disorder: insights from electrophysiology and lexical
ambiguity. Clin EEG Neurosci (2008) 39:103–7. doi: 10.1177/1550059
40803900217

20. Pashler H. Familiarity and visual change detection. Percept Psychophysics
(1988) 44:369–78. doi: 10.3758/BF03210419

21. Bacigalupo F, Luck SJ. Lateralized Suppression of Alpha-Band EEG Activity
As a Mechanism of Target Processing. J Neurosci (2019) 39:900. doi: 10.1523/
JNEUROSCI.0183-18.2018

22. Erickson M, Albrecht M, Robinson B, Luck S, Gold J. Impaired Suppression of
Delay-Period Alpha and Beta Is Associated With Impaired Working Memory
in Schizophrenia. Biol Psychiatry: Cogn Neurosci Neuroimaging (2016) 2:272–
9. doi: 10.1016/j.bpsc.2016.09.003

23. Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G. Pulsed
out of awareness: EEG alpha oscillations represent a pulsed-inhibition of
ongoing cortical processing. Front Psychol (2011) 2:99. doi: 10.3389/
fpsyg.2011.00099

24. Romei V, Gross J, Thut G. On the role of prestimulus alpha rhythms over
occipito-parietal areas in visual input regulation: correlation or causation?
J Neurosci (2010) 30:8692–7. doi: 10.1523/JNEUROSCI.0160-10.2010

25. Muller MM, Gruber T, Keil A. Modulation of induced gamma band activity in
the human EEG by attention and visual information processing. Int J
Psychophysiol (2000) 38:283–99. doi: 10.1016/S0167-8760(00)00171-9

26. Hirano Y, Oribe N, Kanba S, Onitsuka T, Nestor PG, Spencer KM.
Spontaneous Gamma Activity in Schizophrenia. JAMA Psychiatry (2015)
72:813–21. doi: 10.1001/jamapsychiatry.2014.2642

27. Oribe N, Hirano Y, del Re E, Seidman LJ, Mesholam-Gately RI, Woodberry
KA, et al. Progressive reduction of auditory evoked gamma in first episode
schizophrenia but not clinical high risk individuals. Schizophr Res (2019)
208:145–52. doi: 10.1016/j.schres.2019.03.025

28. Spencer KM, Niznikiewicz MA, Shenton ME, McCarley RW. Sensory-Evoked
Gamma Oscillations in Chronic Schizophrenia. Biol Psychiatry (2008) 63:744–
7. doi: 10.1016/j.biopsych.2007.10.017

29. Barr MS, Rajji TK, Zomorrodi R, Radhu N, George TP, Blumberger DM, et al.
Impaired theta-gamma coupling during working memory performance in
schizophrenia. Schizophr Res (2017) 189:104–10. doi: 10.1016/
j.schres.2017.01.044

30. Kustermann T, Rockstroh B, Kienle J, Miller GA, Popov T. Deficient attention
modulation of lateralized alpha power in schizophrenia. Psychophysiology
(2016) 53:776–85. doi: 10.1111/psyp.12626

31. Carter CS, Mintun M, Nichols T, Cohen JD. Anterior cingulate gyrus
dysfunction and selective attention deficits in schizophrenia:[15O] H2O
PET study during single-trial Stroop task performance. Am J Psychiatry
(1997) 154:1670–5. doi: 10.1176/ajp.154.12.1670
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