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Neurodevelopmental disorders, including autism spectrum disorder, have been
intensively investigated at the neural, cognitive, and behavioral levels, but the
accumulated knowledge remains fragmented. In particular, developmental learning
aspects of symptoms and interactions with the physical environment remain largely
unexplored in computational modeling studies, although a leading computational theory
has posited associations between psychiatric symptoms and an unusual estimation of
information uncertainty (precision), which is an essential aspect of the real world and is
estimated through learning processes. Here, we propose a mechanistic explanation that
unifies the disparate observations via a hierarchical predictive coding and developmental
learning framework, which is demonstrated in experiments using a neural network-
controlled robot. The results show that, through the developmental learning process,
homogeneous intrinsic neuronal excitability at the neural level induced via self-organization
changes at the information processing level, such as hyper sensory precision and
overfitting to sensory noise. These changes led to multifaceted alterations at the
behavioral level, such as inflexibility, reduced generalization, and motor clumsiness. In
addition, these behavioral alterations were accompanied by fluctuating neural activity and
excessive development of synaptic connections. These findings might bridge various
levels of understandings in autism spectrum and other neurodevelopmental disorders and
provide insights into the disease processes underlying observed behaviors and brain
activities in individual patients. This study shows the potential of neurorobotics
frameworks for modeling how psychiatric disorders arise from dynamic interactions
among the brain, body, and uncertain environments.
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INTRODUCTION

Brain function and its disruption involve complex interactions
between multiple functional levels, from genes to molecules,
neurons, neural networks, cognition, and behavior. For decades,
many observations and theories of psychiatric disorders have
been reported in these domains, but the clinical contributions are
limited due to a lack of explanations bridging neurobiology and
symptoms (1). One of the challenges in closing the gap between
neurobiology and symptoms is that some clinical symptoms
partly overlap among different psychiatric disorders. For
example, autism spectrum disorder (ASD) is characterized by
multifaceted symptoms (e.g., deficits in social communication,
behavioral inflexibility, unusual sensory sensitivity, motor
clumsiness, and reduced generalization) (2–4). However,
behavioral inflexibility, a typical symptom of ASD, can also be
observed in schizophrenia and obsessive compulsive disorder (5,
6). In addition, psychiatric disorders partly share putative neural-
level and computational-level characteristics (7, 8). These facts
may mean that the mappings between different levels are
not one-to-one (i.e., different factors can cause seemingly
similar symptoms, and a certain factor can cause different
symptoms) (1).

Computational psychiatry is an emerging field poised to
narrow the explanatory gap between various levels (9–11). By
computationally reproducing “abnormal” perceptions and
behaviors via models of brain functioning, the aim is to
develop frameworks that enable inference of the mechanisms
underlying observed behaviors and brain activities in individual
patients and that provide a basis for predicting treatment effects
and detecting subgroups. Previous computational modeling
studies have mostly focused on simulating psychiatric
symptoms on computers (12–14), but have not thoroughly
considered interactions with physical environments and the
concept of embodiment (15). Because human behavior
involves dynamic interactions among the brain, body, and
environment, a modeling approach using a physical robot
might have potential for elucidating the mechanisms
underlying psychiatric symptoms (16–18). In particular, use of
a robot controlled by a neural network (neurorobotics) allows
consideration of both developmental learning processes and real-
time adaptation to changing physical environments. The aim of
this study was to provide a novel explanation spanning neural,
cognitive, and behavioral characteristics of psychiatric disorder
by using a neurorobotics framework. This study mainly focuses
on neurodevelopmental disorders, particularly ASD, because it
may be a suitable target for the developmental learning
framework and considerable knowledge of ASD has been
accumulated at the neural, cognitive, and behavior levels.

At the cognitive level, computational theories of
neurodevelopmental disorders have been well investigated in a
predictive coding framework (19, 20) (a normative
computational model of cognitive functions). Predictive coding
explains how the brain infers causes of sensory inputs and
acquires knowledge and skills as a process of updating an
internal hierarchical model of the world by minimizing
Frontiers in Psychiatry | www.frontiersin.org 2
differences between real and predicted sensory inputs. Within
this framework, precision of sensory information and precision
of prior belief (prediction) determine how much prediction
errors cause the brain to update its prediction. It has been
proposed that various psychiatric symptoms are associated
with aberrant precision of sensory information or prior belief
(8, 10, 21–25). For example, excessively high precision-weighting
of prediction error, which is caused by overly high sensory
precision (under-estimated sensory uncertainty) or low belief
precision, results in perceptions dominated by highly detailed
aspects of sensory information with difficulties in extracting
abstract meaning. The consequent sensory overload, or
overfitting to sensory noise, can uniformly explain ASD
symptoms, including deficits in social interaction and
hypersensitivity (21–23).

At the neural level, multiple lines of evidence from genetic,
postmortem, and animal model studies have suggested strong
links between neurodevelopmental disorders including ASD and
altered functioning of excitatory and inhibitory synapses or ion
channels (7, 26–28). Synaptic and channel dysfunctions may
critically affect regulation of ion balance in a neuron, which sets
its excitability, leading to altered network excitability. In
particular, it has been proposed that an increased or decreased
excitatory/inhibitory (E/I) ratio and the consequent network
hyper- or hypo-excitability may be associated with
neurodevelopmental disorders (29–31). However, recent
studies suggest that reported relationship between the direction
of E/I imbalance and ASD is inconsistent (7, 32), and both
excitation and inhibition can be altered, such that altered neural
excitability may not be adequately reflected by the E/I ratio alone
(33). Thus, neurobiological studies may posit altered neural
excitability in neurodevelopmental disorders, but specific
factors and mechanisms associated with symptoms remain
unclear. Although a previous neurorobotics study has
investigated the relationship between unusual sensory precision
(uncertainty) and behavioral inflexibi l i ty (17) , the
comprehensive relationship among altered neural excitability,
aberrant sensory precision, and psychiatric symptoms
remain unclear.

To clarify the relationships among them during the
developmental learning process, we hypothesize that symptoms
of neurodevelopmental disorders can be explained as a
disruption, caused by altered neural excitability, of efficient
temporal coding. In particular, this study focuses on
heterogeneity (neuron-to-neuron variability) of neuronal
excitability because it has been suggested that appropriate
heterogeneous neuronal excitability (firing threshold) is
important for efficient coding (34–36). Alterations in the
heterogeneity of intrinsic excitability might thus disrupt
efficient temporal coding. This study investigated the effects of
heterogeneity of intrinsic neuronal excitability on learning and
subsequent real-time adaptation in dynamic uncertain
environments. To test behavioral flexibility and ability in
generalizing learned skills as well as motor control we used a
ball-pass interaction task examined in a previous study (17). In
the experiment, robots controlled by neural network models with
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distinct heterogeneity of intrinsic neuronal excitability were first
trained to generate multiple visuomotor patterns. Then, the
trained robots interacted in real time with an experimenter. In
the experiment, the robots were required to generalize learned
behaviors and flexibly switch their behavior by recognizing
unpredictable environmental changes. The experimental results
show that the robots controlled by homogeneous networks
exhibited behavioral inflexibility, low generalization ability, and
motor clumsiness, despite being able to mentally reproduce
learned visuomotor patterns. In addition, analyses of trained
neural networks suggest these behavioral alterations might result
from overfitting to sensory noise (i.e., underestimated sensory
uncertainty) and alterations in hierarchical neural representation
of the visuomotor patterns. These results may indicate abductive
reasoning consistent with the accumulated knowledge about
ASD or other neurodevelopmental disorders at the neural,
cognitive, and behavioral levels.
RESULTS

Robot Experiment
Neurorobotics Framework
In the experiment, a humanoid robot controlled by a recurrent
neural network (RNN) model performed a ball interaction with a
human experimenter. The neural network model used in the
experiment is a version of a hierarchical predictive coding model
called a stochastic-continuous time RNN with parametric bias
(S-CTRNNPB) (37, 38). During task execution, the S-CTRNNPB
receives sensory inputs xt comprising eight-dimensional
proprioception of joint angles and two-dimensional vision of
the ball position. From the inputs and context information stored
in the context neurons ct and parametric bias (PB) neurons pt,
the S-CTRNNPB generates predictions about the mean yt and
variance vt (uncertainty) of future inputs. The robot acts
according to the mean proprioceptive prediction. The robot
controlled by the S-CTRNNPB first learned two types of
visuomotor patterns, temporal sequences for which were
prepared in advance (Figure 1A). In the “right” and “left”
behaviors, the robot was required to wait for the ball from the
experimenter and then return it, following a rule associated with
ball positions. The S-CTRNNPB learned to reproduce the target
visuomotor patterns by repeatedly updating the synaptic weights
w and internal states of PB neurons to minimize the precision-
weighted prediction error Lt accumulated through the time
length of the target sequences (Figure 1B). Through the
learning process, context activity comes to represent short-
term visuomotor patterns, and the associations between
specific patterns of PB activity and corresponding target
sequences are self-organized. In this sense, PB activity
corresponds to a higher-level neural representation of abstract
characteristic of ongoing behavior, while context activity
corresponds to a lower-level neural representation of sensory
association. Thus, PB activity is regarded here as the higher-level
“intention” of the robot. We prepared six sequences (3 training
datasets and 3 test datasets) for each behavioral pattern. In
Frontiers in Psychiatry | www.frontiersin.org 3
addition, random noise with a Gaussian distribution N
(0,0.002) was added to the prepared sequences at each time
step for all dimensions to provide a baseline of sensory variance
for the S-CTRNNPB to estimate in learning.

After learning, the trained robot interacted in real time with
an experimenter for the test phase, with the robot updating its PB
activity (intention) in real time, aiming to minimize visual
precision weighted prediction errors (synaptic weights were
fixed) (Figure 2A). In the test phase, the sensory experiences
(e.g., the timing and speed of the ball) were not exactly the same
as the training data because of the intrinsic uncertainty of the
environment. In addition, unexpected changes in the ball
position were induced by the experimenter. The goal of the
robot was to generalize learned behaviors and flexibly recognize
environmental changes by switching PB activity (intention).

Simulation of Altered Heterogeneity of Intrinsic
Neuronal Excitability
Altered heterogeneity of intrinsic neuronal excitability was
simulated by manipulating neuron-to-neuron variability in the
values of bias, b, the parameter that determines the intrinsic
excitability of each neuron (Figure 1B). The biases of context
neurons were initialized with random values following a
Gaussian distribution N(0, k) (k ∈{0.1, 1,10, 100, 1000}) and
were not updated during learning. Here, the parameter k
indicates the heterogeneity of intrinsic neuronal excitability.
We manipulated the variance k from one hundredth to 100-
fold of k = 10, a value close to the variance in the firing threshold
found in cortical neurons (39, 40). We obtained results from
eight trained networks with different initial synaptic weights for
each setting of k. With k = 1000, the networks could not
successfully learn target sequences, so the acquired data were
omitted from the analysis.

Real-Time Interaction
Figure 2B shows an example of successful real-time interaction
in a heterogeneous condition (k = 10) (see also Supplementary
Video S1). The robot first successfully performed the correct
interaction with the experimenter during time steps 0–100. The
fact that the robot could perform the learned task in the real
environment, where the visuomotor experiences depend on the
physical interactions between the robot and the object, indicates
the robot could generalize the learned visuomotor sequence.
Then, during time steps 100–200, the situation (ball position)
was switched by the experimenter (the switch occurred at time
step 120). Due to the situation switching, a discrepancy between
the situation and the robot’s intention caused a strong precision-
weighted prediction error signal. However, the robot could
flexibly switch its intention in the direction of minimizing the
generated precision-weighted prediction error, resulting in the
successful interaction in the subsequent left interaction during
time steps 200–300. This suggests that the robot could flexibly
recognize the environmental change.

In contrast, in a homogeneous condition (k = 0.1), alterations in
the performance were observed (Figure 2C and Supplementary
Video S2). During time steps 0–100, the robot attempted to
August 2020 | Volume 11 | Article 762
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generate learned behavior but failed to return the ball to the
experimenter. This suggests low generalization ability of the robot.
In addition, the robot’s intention was invariant through the trial,
although the robot experienced huge precision-weighted prediction
errors. The deficit in changing intention led to an unresolved
discrepancy between the new situation and the robot’s intention,
resulting in an attempt to keep waiting for the ball to come to the
right hand side and an abnormal periodic action of the robot during
time steps 200–300.

To quantitatively analyze the observed behavioral alterations,
we obtained the results of 48 trials in each heterogeneous k
condition and the results are summarized in Figures 3A, B. The
success rate of the ball-pass task during time steps 0–100 is
shown in Figure 3A and was regarded as a measure of
generalization ability. The performance was evaluated based on
whether the robots could return the ball over the white line
drawn on the workbench (Figure 2A). The generalization
abilities were found to be significantly lower in homogeneous
Frontiers in Psychiatry | www.frontiersin.org 4
conditions (k = 0.1,1) than in heterogeneous conditions (k =
10,100). The success rate of recognizing a new situation is shown
in Figure 3B and was regarded as a measure of cognitive
flexibility. For the assessment of cognitive flexibility, we
evaluated whether PB activity at time step 300 (the end of a
trial) was appropriate (see “Evaluation of mental simulation and
cognitive flexibility” in Materials and Methods for more details).
The cognitive flexibilities were significantly lower in the
homogeneous conditions (k = 0.1,1) than in the heterogeneous
conditions (k = 10,100). These results suggest that robots with
homogeneous networks had low cognitive flexibility and
difficulty in applying learned experiences to unlearned
situations (low generalization ability). However, questions
remain about neural network-level characteristics underlying
these behavior-level alterations and whether robots with
homogeneous networks can learn the visuomotor patterns in
the first place. To address these questions, a detail analysis will be
given in the following parts.
A

B

FIGURE 1 | Task design and computational framework. (A) Two ball-pass behaviors of the robot. Time-series represent the target visuomotor sequences the
stochastic-continuous time RNN with parametric bias (S-CTRNNPB) learned to reproduce. Of 10 sensory dimensions, 4 are shown. (B) The S-CTRNNPB utilized in
this study has five groups of neurons: input, context, mean, variance, and PB. Input neurons receive current sensory inputs xt. Based on the inputs, context activity
ct (lower-level sensory association), and PB activity pt (higher-level intention), the S-CTRNNPB generates predictions about the mean yt and variance vt (uncertainty)
of future inputs. Parameters, such as synaptic weights w and the internal state of PB neurons, are optimized by minimizing precision-weighted (inverse variance-
weighted) prediction error Lt calculated using predictions about sensory states yt, their variance vt, and actual target sensory states yt̂. For simplicity, the time-
constant term in the equation of internal states ut of context neurons is omitted from the figure, and ht represents synaptic inputs. Bias b characterizes the intrinsic
excitability of each neuron. The neuron-to-neuron variability of the bias b of context neurons was manipulated to set the heterogeneity of intrinsic neuronal excitability,
and the biases were not updated during learning. The shown distribution of bias in each network condition is the average from eight networks. PE, prediction error.
August 2020 | Volume 11 | Article 762
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Mental Simulation and Motor Control
To confirm whether trained neural networks could successfully
learn the visuomotor patterns, the robots were required to
generate learned behaviors when separated from the external
environment. Specifically, each trained network was required to
generate visuomotor sequences by means of “closed-loop”
generation, where own prediction about sensory states at a
certain time step was used as the next sensory input (Figure
4A). Here, initial sensory inputs were taken from training data
and the PB activity was set at the corresponding value. This
reproduction process, where the robot’s action relies on only its
internal model, can be regarded as a mental simulation.
Examples of generated time-series for each condition are
shown in Figures 4B, C. In the heterogeneous conditions, the
Frontiers in Psychiatry | www.frontiersin.org 5
robot’s action was smooth and the network correctly estimated
the baseline of sensory variance (0.002) (Figure 4B and
Supplementary Video S3). In addition, the neural activity of
the context neurons clearly extracted the periodic characteristic
of the target visuomotor pattern.

In the homogeneous conditions as well, the robot could
repeatedly reproduce learned behavior (Figure 4C and
Supplementary Video S4). However, the predicted mean and
variance fluctuated, and the estimated sensory variance tended to
be lower than the baseline. Due to the fluctuating proprioceptive
predictions, the robot seemed to jitter. In addition, the context
activity also fluctuated, and the periodicity was weak (see also
frequency analysis of context activity, illustrated in Supplementary
Figure S1). We quantitatively evaluated the performance of the
A

B C

FIGURE 2 | Test of behavioral generalization and flexibility in real-time ball interaction. (A) Experimental design of the real-time interaction. The experiment consists
of three phases: generalization, switch, and recognition phases. Parametric bias (PB) activity was optimized in real time through a trial while other parameters were
fixed. The robot was required to not only generate learned behaviors but also flexibly update intention (PB activity) in response to visual precision-weighted prediction
errors. PL (PR), the coordinate of the inner end of the left (right) white line as captured by the robot’s camera. (B) An example of a successful interaction in a
heterogeneous condition. The robot was able to successfully return the ball to the partner during time steps 0–100 and flexibly switch its intention toward minimizing
sensory precision-weighted prediction error generated by an environmental change. (C) An example of behavioral alterations in a homogeneous condition. The robot
failed to return the ball to the partner during time steps 0–100. In addition, the robot could not switch its intention in response to the environmental change, although
the robot experienced huge precision-weighted prediction errors. The invariant intention led to abnormal periodic action during time steps 200–300. “Joint angle”
indicates the mean prediction of joint angle (2 of 8 joint angles are shown). “Ball position” indicates vision inputs of ball position. “PWPE” indicates precision-weighted
prediction error for vision sense after updating PB activity. “PB” indicates the activity of PB neurons. “Hetero” and “homo” indicate heterogeneous and homogeneous
cases, respectively. R, right; L, left.
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mental simulation by comparing the generated time-series against
training data (see “Evaluation of mental simulation and cognitive
flexibility” in Materials and Methods for more details). Figure 4D
shows the success rate varying with the heterogeneity of intrinsic
neuronal excitability k. For each network condition, 48 trials were
performed (3 trials were performed for each behavior in each trained
network). From the graph, both homogeneous and heterogeneous
networks could perfectly reproduce learned behaviors. These results
suggest that low performance of homogenous networks during the
real-time interaction was not caused by poor learning of the
visuomotor patterns. Instead, alterations in the network process
seem to be caused by overfitting to sensory noise in the
learning process.

Perception of Sensory Uncertainty
To confirm the assumption that overfitting to training data
occurred in homogeneous networks, we analyzed the
prediction error and estimated sensory variance for training
data and test data (unseen data not used in training). The
prediction error and estimated sensory variance were
calculated using generated time-series data from trained
networks, where sensory inputs were obtained from training
data or test data. Changes in the average levels of prediction error
and estimated sensory variance are shown in Figures 5A, B. The
values are averages of all 1,060 time steps, 10 sensory dimensions,
six target datasets (3 datasets for each of left and right), and eight
trained networks. In homogeneous networks (k = 0.1,1), the
levels of the prediction error for training data were significantly
smaller than those in heterogeneous networks (k = 10,100), but
for test data the opposite was true (Figure 5A). These results
suggest that network prediction in the homogeneous conditions
was highly reliable for training data but not applicable to test data
Frontiers in Psychiatry | www.frontiersin.org 6
(i.e., overfitting to sensory noise was present). In addition, the
estimated sensory variance in the homogeneous conditions (k =
0.1,1) were significantly lower than estimates in the
heterogeneous conditions (k = 10,100) and the baseline
(ground truth of 0.002) (Figure 5B).

Higher-Level Neural Representation
To investigate why robots controlled by homogeneous networks
had problems in switching intention during the real-time
interaction, we analyzed how the two learned behavioral
patterns were represented in PB activity (higher-level neural
activity). The S-CTRNNPB had two PB neurons, hence, the
neural representation of each behavior can be shown in a two-
dimensional space. Each learned behavioral pattern can be
considered to be encoded in PB activities for which the
prediction errors calculated using the corresponding training
data are small. Heat maps in Figure 6 show the prediction error
varying with PB activity for training data of left (upper) or right
(lower) behavior. The prediction errors were averaged over all
three sequences consisting of 1,060 time steps. The deep blue
regions in the heat maps represent the PB activities encoding the
learned behaviors. As shown in the figure, left and right
behaviors were represented in different PB activities for both
the homogeneous and the heterogeneous conditions, indicating
the difference in behaviors was recognized by the trained
networks. However, in the homogeneous conditions, each
behavior was very locally, or sharply, represented in the PB
space. Quantitative analyses indicated larger distances between
the PB activities (which encode each learned behavior) and
smaller areas of the PB activities in the homogeneous
condition (Supplementary Figure S2). The tightly organized
higher-level neural representation might reflect a high
A B

FIGURE 3 | (A) Generalization ability and (B) cognitive flexibility, varying with heterogeneity of intrinsic neuronal excitability. (A) Success rates of generalizing learned
behaviors. One-way analysis of variance indicated significant differences in success rates among the four conditions (F(3,28) = 38.31, p <0.001). Post hoc multiple
comparisons using the Holm method revealed that the generalization abilities were significantly lower in the homogeneous conditions (k = 0.1,1) than in the
heterogeneous conditions (k = 10,100) (all p <0.001). (B) Success rates of recognizing situation switch. One-way analysis of variance indicated significant differences
in the success rates among the four conditions (F(3,28) = 17.59, p <0.001). Post hoc multiple comparisons revealed that cognitive flexibilities was significantly lower
in the homogeneous conditions (k = 0.1,1) than in the heterogeneous conditions (k = 10,100) (all p < 0.001). Six trials were performed by each trained network (i.e.,
48 trials in each k condition). All reported results are averages of eight trained networks and expressed as mean ± SD. “Hetero” and “homo” indicate heterogeneous
and homogeneous cases, respectively.
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confidence in the higher-level prediction (intention), which can
lead to a tendency to maintain own intention in the face of
environmental changes.

Development of Synaptic Weights
Finally, we analyzed the development of synaptic weights. Figure
7A shows the initial distribution of weights of connections
between context neurons, and Figures 7B, C show the weight
distribution after learning in each heterogeneous condition. The
probabilities of the weights are averaged over eight trained
networks in each condition. Because the synaptic weights in all
conditions were initialized with random values following the
same uniform distribution, the differences in distribution were
induced solely by the differences in the heterogeneity of intrinsic
neuronal excitability. The distribution of synaptic weights was
broader in the homogeneous conditions than in the
heterogeneous conditions, indicating the synaptic weights
became excessive in the homogeneous condition. This result
Frontiers in Psychiatry | www.frontiersin.org 7
also suggests that there was a smaller number of weak or
unwanted connections in homogeneous networks.
DISCUSSION

Aiming to simulate the neural, cognitive, and behavioral
characteristics of a psychiatric condition, this study investigated
the effects of altered heterogeneity of intrinsic neuronal excitability
on learning, generalization ability, motor control, and real-time
adaptation by using a humanoid robot controlled by a hierarchical
RNNmodel. The robot first learnedmultiple visuomotor patterns of
ball-pass behaviors based on a precision-weighted prediction error-
minimization mechanism. As the result of learning, the short-term
visuomotor patterns and the abstract characteristic of the different
behaviors were represented in lower level (short-term) and higher-
level (abstract) neural activities of the RNN. Then, the trained robot
was tested via real-time interaction with an experimenter, during
A

B

D

C

FIGURE 4 | Mental simulation performance. (A) The robots controlled by trained networks performed mental simulation in which the neural network received
previous network predictions as sensory inputs and the robot joint angles were controlled by network proprioceptive predictions. PB, parametric bias. (B, C) An
example of generated time-series data in each condition. The robots in both the heterogeneous and the homogeneous conditions could repeatedly reproduce the
learned behaviors. However, motor control, neural activity, and estimated sensory variance fluctuated in the homogeneous conditions. In addition, the estimated
sensory variance tended to be lower than the variance of noise added to training data, which is described as baseline (0.002). “Mean” indicates the outputs of 4 of
10 mean neurons (mean prediction). “Variance” indicates the outputs of 4 of 10 variance neurons (estimated sensory variance). “Context” indicates the activities of 10
of 100 context neurons. (D) Success rate of the mental simulation in each heterogeneous condition. In all conditions, the robot could successfully reproduce learned
visuomotor patterns in the mental simulation. Six trials (3 left and 3 right) were performed by each trained network (i.e., 48 trials in each k condition). The displayed
results are averages of eight trained networks and expressed as mean ± SD. “Hetero” and “homo” indicate heterogeneous and homogeneous cases, repectively.
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which the robots were required to generalize learned behaviors and
flexibly recognize environmental changes by updating the higher-
level neural activity (intention) on the basis of minimizing the
precision-weighted prediction error. The robots controlled by
heterogeneous networks successfully generalized learned behaviors
and flexibly switched behavior in response to unpredictable
environmental changes. In contrast, the robots controlled by
homogeneous networks exhibited behavioral inflexibility (strong
tendency to maintain own intention), difficulty in generalizing
learned behaviors, and fluctuating motor control. Lines of analysis
revealed that behavioral differences in homogeneous networks were
caused by overfitting to sensory noise in the learning process. Due to
overfitting, homogeneous networks were also characterized by
underestimated sensory uncertainty (hyper sensory precision) and
fluctuating neural activity. We confirmed that these changes were
not observed when mean intrinsic neuronal excitability was shifted
(increased or decreased) (Supplementary Figures S3–S6).
Therefore, the observed changes are regarded as effects specific to
the changes in heterogeneity of intrinsic neuronal excitability. The
Frontiers in Psychiatry | www.frontiersin.org 8
proposed mechanisms and observed characteristics underlying
symptoms might provide an explanation that accounts for various
levels of observations and theories of ASD or other
neurodevelopmental disorders.

At the neural level, our results suggest a possible relationship
between previous accumulated observations in neurobiology and
symptoms. Previous biological studies have proposed that ASD
and related neurodevelopmental disorders are associated with
altered E/I balance and subsequent alterations in network
excitability (7, 26). For example, most studies about ASD have
suggested increased E/I ratios, partly because of the associations
with epilepsy (29, 41). In fact, Rosenberg et al. (14) conducted
neural network simulations suggesting perceptual characteristics
of vision in ASD (e.g., a sharper gradient of attention) could be
induced by decreased inhibition (an increased E/I ratio).
However, there are other studies that have reported decreased
E/I ratios in ASD (42, 43). A recent article reviewing empirical
studies pointed out that the direction of E/I imbalance associated
with the condition is not clear (32). Furthermore, both excitation
A B

FIGURE 5 | (A) Alterations in learning performance and (B) perception of sensory uncertainty. (A) Blue and orange bars respectively show training error and test
error (error between mean prediction and target sensory state). The prediction errors were averaged over all 1,060 time steps, 10 sensory dimensions, and six input
time-series data in each trained network. The difference between training error and test error became larger as the heterogeneity of intrinsic excitability k became
smaller, suggesting overfitting to sensory noise in homogeneous networks. Two-way analysis of variance (ANOVA) indicated a significant main effect of heterogeneity
k (F(3, 28) = 5.51, p = 0.0042) and data type (training data or test data) (F(1,28) = 992.45, p < 0.001). Regarding the main effect of heterogeneity, multiple
comparisons revealed that the level of prediction error was significantly lower with k = 10 than with k = 0.1 (p = 0.0039) and k = 1 (p = 0.037). The two-way ANOVA
also indicated a significant interaction between heterogeneity and data type (F(3,28) = 224.14, p < 0.001). To investigate the significance of the interaction between
heterogeneity and data type, simple main effect analyses were performed. Significant simple main effects of heterogeneity on training error (F(3,28) = 31.51, p <
0.001) and test error (F(3,28) = 709.51, p < 0.001) were found. In addition, there was a significant simple main effect of data type for k = 0.1 (F(1,7) = 390.32, p <
0.001), k = 1 (F(1,7) = 733.69, p < 0.001), and k = 10 (F(1,7) = 109.52, p < 0.001). Multiple comparisons of the effect of heterogeneity on training error revealed that
training errors were significantly lower in the homogeneous conditions (k = 0.1,1) than in heterogeneous conditions (k = 10,100) (all p < 0.001). On the other hand,
test errors were significantly higher in the homogeneous conditions (k = 0.1,1) than in the heterogeneous conditions (k = 10,100) (all p <0.001). In addition, the test
error was significantly higher when k = 0.1 than when k = 1 (p <0.001). (B) Blue and orange bars respectively show levels of estimated sensory variance for training
and test data. The estimated sensory variances were averaged over 1,060 time steps, 10 sensory dimensions, and six input time-series data in each trained
network. Underestimated sensory variance was observed in homogeneous networks, where the baseline of sensory variance was 0.002. Two-way ANOVA indicated
a significant main effect of heterogeneity k (F(3,28) = 103.79, p < 0.001), but no significant main effect of data type (F(1,28) = 0.034, p = 0.86) nor interaction
between heterogeneity and data type (F(3,28) = 0.22, p = 0.88). Multiple comparisons regarding the main effect of heterogeneity indicated that estimated sensory
variances were significantly smaller in the homogeneous conditions (k = 0.1,1) than in the heterogeneous conditions (k = 10,100) (all p < 0.001). In addition, the level
of estimated sensory variance with k = 100 was significantly larger than that with k = 10 (p = 0.011), although the difference was milder. All reported results are
averages of eight trained networks and expressed as mean ± SD. “Hetero” and “homo” indicate heterogeneous and homogeneous cases, respectively.
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and inhibition can be altered through homeostatic plasticity (i.e.,
primary deficits in excitation or inhibition may induce secondary
compensatory changes in the other) (33). As an alternative to an
increased or decreased E/I ratio model, this study simulated
differences in the heterogeneity of intrinsic neuronal excitability.
Heterogeneity of intrinsic neuronal excitability is the neuron-to-
neuron variability of intrinsic excitability, which may be
Frontiers in Psychiatry | www.frontiersin.org 9
controlled by synaptic and channel functions regulating neural
excitability that has been proposed to be different in
neurodevelopmental disorders. The reason for focusing on this
characteristic of neural excitability is that it is considered to be
important for efficient coding (34–36), and a part of psychiatric
symptoms could be regarded as resulting from disruptions in
efficient coding of sensory information (overfitting to sensory
A B

FIGURE 6 | Alterations in higher-level neural representation. (A, B) Heat maps show levels of prediction error for training data varying with parametric bias (PB)
activity (higher-level neural activity). Upper and lower panels respectively show prediction errors for training data of left and right behavior. The prediction errors are
averages of three training datasets consisting of 1,060 time steps. Deep blue regions of upper heat maps represent PB activities encoding left behavior and those of
lower heat maps represent PB activities encoding right behavior. Compared with the heterogeneous conditions, the homogeneous conditions were characterized by
more sharply and tightly structured representations of each behavior. “PB1” and “PB2” indicate PB neurons. “Hetero” and “homo” indicate heterogeneous and
homogeneous cases, respectively.
A B C

FIGURE 7 | Alterations in synaptic development. (A) Distribution of synaptic weights before learning. The result is the average of eight networks with different initial
weights. (B, C) Distribution of synaptic weights after learning in each condition. The result is the average of eight trained networks in each heterogeneous condition.
The distribution was broader in the homogeneous conditions than in the heterogeneous conditions. This indicates that synaptic connections were overdeveloped,
and there was a smaller number of weak connections. “Hetero” and “homo” indicate heterogeneous and homogeneous cases, respectively.
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noise) (23, 44). Indeed, our results show that homogeneous
networks with low levels of variance in intrinsic neuronal
excitability (k = 0.1,1) led to overfitting to sensory noise,
whereas heterogeneous networks with high levels of variance
(k = 10,100) exhibited good performances in behavioral
flexibility and generalization ability. Although it may be
difficult to directly connect the levels of the variance in
neuronal excitability in our abstract-level model and the real
neural system, the difference in the variance settings of
homogeneous networks and heterogeneous networks can be
regarded as roughly reasonable based on previous studies. For
example, the variance in firing threshold found in biological
neurons is typically about 10mV 2 but is highly variable, such that
it can range from approximately one hundredth to 10-fold of the
typical value (39, 40, 45). The level of variance in neuronal
excitability deviating from this range may be considered to result
in abnormal network functions, as our results suggest.
Furthermore, a previous numerical study (34) using a spiking
neural network model showed that the coding efficiency was
lowest when the variance in firing threshold was around 0mV 2

and highest when the variance was approximately 16mV 2, which
is within the range of the variance in normal heterogeneous
settings in our study. Our findings on the association between the
neural-level characteristic and the set of multifaceted behavioral
alterations might have implications for underlying mechanisms
of neurodevelopmental disorders. We focus in particular on
temporal coding and processing, where sensory information is
essentially encoded in temporal patterns of neuronal activities
(not activity levels themselves). Thus, although excitatory and
inhibitory circuits are not explicitly considered in the utilized
neural network model, the results obtained in this study might
have general implications for dynamic neural systems.

Our results might provide insights into alterations in synaptic
development and neural activity in neurodevelopmental disorders.
In terms of network development, psychiatric disorders are thought
to be associated with alterations in pruning, the process of
eliminating excess synaptic connections (46). For example,
excessive synapses due to deficits in pruning were observed in
postmortem brains from human subjects with ASD (47), and
synapse elimination was observed to be increased in individuals
with schizophrenia (48). In the present study, homogeneous
networks induced excessive development of synaptic weights, and
the number of weak or unwanted synaptic connections was lower
than in heterogeneous networks. This suggests that the number of
synaptic connections eliminated via pruning might be lower in
homogeneous networks. In addition, functional magnetic resonance
imaging studies have suggested that neural responses in ASD are
unreliable and noisy (49, 50), which is consistent with our
experimental results showing fluctuating neural activity in
homogeneous networks. These findings about the characteristics
of neural networks provide potential targets for future studies,
such as evaluation of associations between these network-
level characteristics and symptoms in human subjects and
animal models.

Overall, this study suggests heterogeneity of intrinsic neuronal
excitability is important for network function and efficient temporal
Frontiers in Psychiatry | www.frontiersin.org 10
coding. Many techniques have been proposed to realize robust
network functions by avoiding overfitting in machine learning,
including neural networks. A simple technique is to use a variety
of training data (e.g., data augmentation) to attenuate over-
specificity to a specific training data and increase generalization
ability. A recent perceptual learning study has shown that
inflexibility in individuals with ASD might be attributable to over-
specificity and could be significantly attenuated by adding a dummy
trial in the learning phase (51). This finding might support our
results suggesting that inflexibility in ASD may be associated with
overfitting to training data. In addition, reducing the number of
non-negligible synaptic weights is also effective for avoiding
overfitting. A representative example is the “weight decay”
method, which introduces weight penalties that drive synaptic
weights to have smaller magnitude (52). Another method,
“dropout,” stochastically thins the number of synaptic weights to
reduce overfitting (53). In our experiment, synaptic weights
remained at low values in heterogeneous networks but developed
excessively in homogeneous networks, indicating the same outcome
can also be realized by controlling neuron-to-neuron variability of
intrinsic excitability. This result shows that important characteristics
underlying efficient coding (e.g., synaptic weight values and
heterogeneity of excitability) may be mutually linked. In addition,
the proposed condition induced by the disruption of efficient coding
could be generated from either a defect in controlling weight values
(e.g., a defect in synaptic pruning) or altered heterogeneity of
neuronal excitability.

At the cognitive level, our findings using a predictive coding
framework may extend the computational understanding of
psychiatric symptoms. Previous computational theories have
posited that aberrant precision-weighting of prediction error is
associated with psychiatric disorders (22–25). In particular,
symptoms of ASD and related neurodevelopmental disorders
have been explained as excessively high precision-weighting of
sensory prediction error (21–23, 44). However, within a
framework in which precision-weighted prediction error causes
the brain to update its prediction, how can insistence on
sameness or behavioral inflexibility (tendency to maintain own
prediction), one of the typical characteristics of ASD, be explained?
The discrepancy could be explained by considering hierarchical
representations shaped by overfitting to sensory noise and
discriminating between learning and real-time adaptation.
Overfitting to sensory noise observed in homogeneous networks
shaped with fluctuating strong predictions, which was very reliable
for learned data but not for unlearned situations. In addition, the
effects of overfitting affected the higher level of the hierarchy
representing different types of visuomotor patterns. As the result,
each behavioral pattern was very locally and sharply represented in
the higher-level neural activity. The tightly organized higher-level
representation might be considered to cause strong confidence in
own intention (higher-level prediction) and a tendency to maintain
the intention during real-time adaptation. The co-occurrence of
under-estimated sensory uncertainty (hyper sensory precision) and
strong predictions might also have implications for the relationship
between ASD and schizophrenia because hallucinations, which is a
hallmark symptom of schizophrenia, have been proposed to be
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associated with strong prior beliefs (25). Furthermore, not only
underestimated sensory uncertainty but also increased variability of
estimated sensory uncertainty was observed in homogeneous
networks. The unusual modulations of estimated sensory
uncertainty might explain the heterogeneous characteristics of
symptoms of ASD (e.g., the coexistence of hypersensitivities and
hyposensitivities) as described in a recent study (54), and might
provide additional insight into an empirical study showing adults
with ASD overestimate the volatility of sensory environments (55).

In summary, our findings might explain the relationships
among neural, cognitive, and behavioral characteristics of ASD or
other neurodevelopmental disorders. Our results suggest that
perceptual or sensorimotor-level symptoms (e.g., reduced
generalization, and motor clumsiness) may result from overfitting
to sensory noise during learning while behavioral inflexibility may
be associated with strong confidence in own higher-level
prediction, which has been shaped by the overfitting. Other than
inflexibility, reduced generalization, and motor clumsiness, the
proposed model might also be able to explain unusual sensory
sensitivity in ASD as unusual sensory precision. Given the
consistency with the neural-level data (e.g., variability in neural
activity and synaptic development) and the computational-level
understanding, as well as the various behavior-level observations,
our model might capture the characteristics of ASD in particular. A
key point is that we observed the multifaceted behavioral
symptoms in a physical robot interacting with an unpredictably
changing real environment. Although few computational modeling
studies of psychiatric disorders have used a physical robot, the
robotic approach might be useful to understand symptoms
emerging from the interaction among the neural network, body,
and environment, which are analogs of essential components
forming human behavior (16–18). Because psychiatric disorders
partly share symptoms, the mechanism that we have proposed may
have implications for various psychiatric conditions, such as
schizophrenia, obsessive compulsive disorder, and attention
deficit hyperactivity disorder (5, 6). The produced hypothesis
about the mechanism may be testable by investigating the
relationships among neural, cognitive, and behavioral
characteristics in human subjects and animal models. Such a
comprehensive assessment of patients might contribute to the
establishment of precise diagnostic categories and an approach
for treatment that accounts for the characteristics of each person
(“precision psychiatry”) (56, 57). In addition, a computational
understanding of mechanisms underlying psychiatric symptoms
might help clinicians, patients, and their relatives to strictly
establish a concept of symptoms and the presence of those
symptoms (44). A limitation of this study is that we investigated
the effect of heterogeneity of only neuronal excitability but there
may be other ways of modeling altered neural heterogeneity that
may affect efficient coding, such as manipulations of neuronal gain
and firing intensity (58, 59). Comparing the effects of these
parameters will be important for understanding individual
differences in psychiatric patients. Furthermore, whether the
proposed model can explain the deficits in language and social
interaction in ASD is also an important issue. Future study
involving quantitative comparisons between robot models and
Frontiers in Psychiatry | www.frontiersin.org 11
human subjects on the same basis in terms of behaviors and
brain activities can be expected to contribute to finer
understanding of psychiatric disorders by combining
computational and clinical studies.
MATERIALS AND METHODS

Neural Network Model
The current S-CTRNNPB model is a type of continuous-time
RNN (CTRNN). A CTRNN implements a feature of biological
neurons in the sense that neuronal activities are determined by
the past history of neural states as well as current synaptic inputs
(60, 61). The neuronal model is based on the conventional firing
rate model. In the firing rate model, it is assumed that the
essential information is carried by the mean firing rate in a given
time interval, and the relation between the output of a neuron
and the internal state is described by a sigmoid function, which
models the saturation of the firing rate. The current model
cannot consider consistency in physiological details, such as
features of individual spikes and characteristics of individual
synapses. Therefore, the results obtained in this study can be
discussed at the macro level as mechanisms of biological
neural systems.

Forward Prediction
The internal state of the ith neuron at time step t, notated u(s)t,i (t ≥
1), is calculated as

u(s)t,i =

u(s)t−1,i      (i ∈ IP),

1
ti o
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wijx
(s)
t,j + o
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wijp
(s)
t,j +bi

 !

+ 1 − 1
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u(s)t−1,i            (i ∈ IC),

o
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wijc
(s)
t,j + bi           (i ∈ IM , IV ),

8>>>>>>>>>>><
>>>>>>>>>>>:

(1)

where II, IM, IV IC, and IP are index sets of the input, mean,
variance, context, and PB neurons, respectively; wij is the
weight of the synaptic connection from the jth neuron to the
ith neuron; x(s)t,j is the jth input at time step t of the sth sequence;
c(s)t,j is the jth context activity; p(s)t,j is the jth PB activity; ti is the
time constant of the ith neuron; and bi is the bias of the ith
neuron, which determines the intrinsic neuronal excitability.
From the equation above, PB neurons can be regarded as a
specific type of context neurons whose time constant is infinite.
In this study, we set the initial values of the internal states of the
context neurons to zero, and those of the PB neurons are
optimized for each target temporal sequence of learning. This
indicates that differences among multiple target temporal
sequences are represented in the activities of PB neurons and
dynamics of context activities. The output of each neuron is
calculated using the following activation functions:
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Parameter Optimization
The S-CTRNNPB performs parameter optimization via the
gradient descent method, aiming to minimizing the negative
log-likelihood. The negative log-likelihood is formally given as
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ŷ
(s)

t, i
− y

(s)

t, i

 !2

2v
(s)

t, i

: (6)

Here, ŷ(s)t,i is the target value of the ith mean neuron
corresponding to the sth sequence. Minimizing this negative
log-likelihood can be regarded as minimizing the precision-
weighted (inverse variance-weighted) prediction error.
Therefore, in this study, the negative log-likelihood is referred
to as the precision-weighted prediction error.

During learning, parameters—including synaptic weights wij,
biases bi of mean and variance neurons, and initial internal states
of PB neurons u(s)0,i  (i ∈ IP) —are updated, and the biases bi of
context neurons are not updated in order to fix the distribution.
Parameter optimization is performed by minimizing the sum of
the negative log-likelihood over all sensory dimensions, time
steps, and sequences as

L = o
s∈IS
o
T(s)

t=1
o
i∈IM

L
(s)

t, i
, (7)

where IS and T(s) represent the index set and the length of the sth
target temporal sequence, respectively. The partial derivative of
each parameter, (∂L)/(∂q), can be solved using the back-
propagation-through-time method (37, 62).

During real-time interaction after learning, only the internal
states of the PB neurons are updated; other parameters are fixed.
In this phase, the negative log-likelihood within a short time
window W is accumulated as

L = o
t

t 0=t�W+1
o
i∈IM

L
(s)

t 0, i
: (8)

The time window slides with the increment of the network
time step t. Using the accumulated negative log-likelihood, the
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internal states of the PB neurons at time step t−W are optimized.
The partial derivative of the internal states of PB neurons is also
calculated by the back-propagation-through-time algorithm.

In both the learning and real-time interaction phases,
parameters permitted to be optimized are collected by q, and q
at the nth epoch is updated by gradient descent on the
accumulated negative log-likelihood L:

q (n) = q (n� 1) + Dq (n), (9)

Dq (n) = �a
∂ L
∂ q

+ hDq (n� 1) : (10)

Here, a is the learning rate and h is a coefficient representing
the momentum term. In this study, a and h are set at 0.0001 and
0.9, respectively.

Experimental Environment
We used a small humanoid robot, NAO T14 (SoftBank Robotics,
Paris, France), that has a body corresponding to only the upper
half of the human body. The robot was placed in front of a
workbench and carried out a ball-playing interaction with an
experimenter standing at the opposite side. The robot’s action
involved only movements of the arms, with 4 degrees of freedom
for each arm (2 degrees for shoulders and 2 for elbows). In
addition, a camera installed in the robot’s mouth obtained the
center of gravity coordinates for the yellow object, which
corresponds to the two-dimensional visual inputs for ball
position. Using the minimum and maximum values of each
sensory input, the values of joint angles and the ball position
were normalized to values ranging from −0.8 to 0.8. During task
execution, the robot received the sensory states every 100 ms.
The dimensions of the workbench and diameter of the ball were
approximately 45 × 5 × 30 cm and 9 cm, respectively. White lines
were drawn on both ends of the workbench at 20 cm from the
robot, and they were used to evaluate the performance of
the ball-passing task in the real-time interaction experiment.
The coordinates of the inner end of the white lines as captured by
the robot’s camera were (−0.40,0.16) (left line) and (0.40,0.16)
(right line) (Figure 2A).

Training
The neural network was trained by predictive learning using
target perceptual sequences recorded in advance. The target
sequences were recorded while the robot repeatedly performed
each ball-pass behavior, where the arm movement was generated
exactly by following preprogrammed trajectories instead of the
ones generated by the neural network model. Each sequence of
the two behavioral patterns was obtained as a sequence of 10-
dimensional vectors (8-dimensional proprioception of joint
angles and two-dimensional vision sense of ball position). In
the experiment, six sequences were prepared for each behavioral
pattern, and the time lengths of the sequences were 1,060 time
steps (10 cycles) for both right and left behaviors. Three
sequences of each behavior were used as training data and the
others were used as test data. The neural network learned to
reproduce the sequences of training data. The objective of
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learning was to find the optimal values of the parameters
(synaptic weights and internal states of PB neurons) by
minimizing negative log-likelihood or, equivalently, the
precision-weighted prediction error. Initially, the network
produced random sequences with randomly initialized
parameters. The parameters were updated toward minimizing
the negative log-likelihood accumulated through the time length
of the target sequences. After repeating the update process many
times, the network began to produce visuomotor sequences with
the same stochastic properties as the training data. In addition,
the associations between a particular pattern of target sequence
and specific internal states of PB neurons were self-organized.

Real-Time Adaptation
In the real-time interaction phase, the robot’s intention (PB
activity) was first set at a certain state corresponding to a learned
behavior and the robot performed the corresponding interaction
with the experimenter. Then, the situation (ball position) was
unpredictably changed by the experimenter. The goal of the
robot was to flexibly recognize the environmental changes using
visual observations. The real-time adaptation process during the
task execution of the robot was performed based on an
interaction between top-down prediction generation and
bottom-up parameter modulation. In the top-down prediction
generation process, the network generated a temporal sequence
corresponding to time steps from t−W +1 to t, based on the
sensory inputs at time step t −W + 1 and the constant PB activity
(intention). The visuomotor sequence was generated by a
“closed-loop” process, using the prediction of mean values of
sensory states at each time step as inputs to the next time step.
The initial inputs for joint angles at time step t −W + 1 are the
generated mean predictions at time step t −W, and the vision
states characterize the vision data captured by the camera at time
step t −W + 1. In the bottom-up modulation process, the
precision-weighted prediction error at each time step within
time windowW was calculated from the vision-state predictions,
variance, and actual observation (see Figure 2A). The PB activity
(intention) was updated in the direction of minimizing the
accumulated precision-weighted prediction error. A temporal
sequence within the time window was re-generated from the
updated PB activity. After repeating these top-down and bottom-
up processes for a certain duration, the network generated
predictions for time step t + 1; the predicted joint angles were
sent to the robot as the target for the next joint positions. This
procedure, in which the recognition and prediction in the past
are reconstructed from the current sensory information, is a
“postdiction” process (63, 64), and the predictions generated for
time steps from t−W +1 to t are “postdictions” from the past,
rather than literal predictions.

Parameter Settings for the Experiments
The numbers of input, mean, and variance neurons were NI =
NM = NV = 10, respectively, corresponding to the dimension of
the robot’s sensory states, and the number of PB neurons was
NP = 2. The number and time constant of context neurons were
NC = 100 and ti = 4, respectively. For learning, the weights of the
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synaptic connections wij (j ∈ II,IC) were initialized with random
values that follow uniform distributions on the intervals ½− 1

NI
,

1
NI
� (j ∈ II) and ½− 1

NC
, 1
NC
� (j ∈ IC). Biases of the mean and

variance neurons bi (i ∈ IM,IV) were initialized with random
values following a uniform distribution on the intervals [−1,1],
and the internal states of PB neurons were initialized to 0. These
parameters were updated 300,000 times during learning. Biases
bi of the context neurons were initialized with and fixed to
random values following a Gaussian distribution N(0,k)
(k ∈{0.1,1,10,100}). In the real-time adaptation process, the
internal states of the PB neurons were updated 50 times at
each time step for a time window of length W = 10.

Evaluation of Mental Simulation and
Cognitive Flexibility
In the mental simulation experiment, trained networks generated
temporal sequences by the “closed-loop” process and the robot’s
joint angles were controlled based on the mean proprioceptive
predictions. To judge whether the robot’s action during the
mental simulation is appropriate, the generated time-series of
sensory states was compared with the target (learned) data. A
simple way to compare two time-series is to calculate the
distances between values at corresponding time steps within a
certain time window. However, this method is not necessarily
appropriate for comparing the general characteristics of time-
series because a phase shift will increase the distance between the
series, even when the series is appropriate. To address this, our
study characterized the visuomotor sequences as probability
distributions of sensory states by compressing time-series data
in the time axis direction and used the Kullback–Leibler (KL)
divergence for comparison. In the evaluation, the probability
distribution of each sensory state was found, with the one-
dimensional space (−1,1) divided into Nbin = 50 subspaces.
Using the acquired probability distributions, we calculated the
KL divergence between the distribution of a certain sensory state
in the mental simulation and the distribution of the
corresponding sensory state in target data for each sensory
state. Then, the sum of the KL divergences over all sensory
states was calculated and this was regarded as a similarity score.
The robot’s action was judged as correct if the similarity score
was less than a threshold x, set here as 0.5 times the minimum
value of similarity scores between each pair of training data.

SS(pjjq) = o
k∈IMjoint

DKL(pyk jjqyk ) (11)

SS(pjjq) < x = 0:5�minqi∈UL ,qj∈UR ∨ qi∈UR ,qj∈UL
SS(qijjqj) (12)

Here, SS(p||q) is the similarity score between the probability
distribution of sensory states in the experiment p and the
probability distribution in target data q; UL is a set of the
probability distributions of sensory states in training data of
left behavior; and UR is that of right behavior.

The above methods were also used for the evaluation of
cognitive flexibility in the real-time interaction experiment. In
this case, the networks were required to generate temporal
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sequences by the “closed-loop” method using PB activity
(intention) at the end of each trial (time step 300). The idea is
that if the neural network successfully recognized the
environmental change, the time-series generated by the
network with the PB activity at time step 300 is expected to be
similar to the target time-series of the new situation. The success
rates were calculated by comparing the time-series generated by
the networks with the target sequences (training data), as with
the mental simulation.

Statistical Analysis
In the analysis of prediction error and estimated sensory
variance for training data or test data, two-way analysis of
variance (ANOVA) was used. In other statistical analyses, we
used one-way ANOVA followed by non-paired Holm tests. All
statistical tests were two-tailed and the significance level was set
at p <0.05. No statistical methods were used to predetermine
sample size. Data analysis was conducted using R software
(version 3.3.2).
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