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Prenatal infections have been linked to the development of schizophrenia (SCZ) and other
neurodevelopmental disorders in the offspring, and work in animal models indicates that
this is to occur through the maternal inflammatory response triggered by infection. Several
studies in animal models demonstrated that acute inflammatory episodes are sufficient to
trigger brain alterations in the adult offspring, especially in the mesolimbic dopamine (DA)
system, involved in the pathophysiology of SCZ and other disorders involving psychosis.
In the current review, we synthesize the literature on the clinical studies implicating
prenatal infectious events in the development of SCZ. Then, we summarize evidence from
animal models of maternal immune activation (MIA) and the behavioral and molecular
alterations relevant for the function of the DAergic system. Furthermore, we discuss the
evidence supporting the involvement of maternal cytokines, such as interleukin 6 (IL-6)
and leptin (a hormone with effects on inflammation) in mediating the effects of MIA on the
fetal brain, leading to the long-lasting effects on the offspring. In particular, IL-6 has been
involved in mediating the effects of MIA animal models in the offspring through actions on
the placenta, induction of IL-17a, or triggering the decrease in non-heme iron
(hypoferremia). Maternal infection is very likely interacting with additional genetic and
environmental risk factors in the development of SCZ; systematically investigating how
these interactions produce specific phenotypes is the next step in understanding the
etiology of complex psychiatric disorders.
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INTRODUCTION

We are currently undergoing a SARS-CoV-2 pandemic, which like previous viral outbreaks [e.g.,
Zika (1)] can leave behind sequelae of health complications, including direct effects in the nervous
system (2) and alterations of brain development if infections occur during perinatal stages.

Indeed, maternal infection has been identified as a risk factor for several neurodevelopmental
disorders such as cerebral palsy, intellectual disability, autism spectrum disorder (ASD), bipolar disorder
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(BD), and schizophrenia (SCZ) (3–9). We will focus on reviewing
the effects of maternal infection on the dopaminergic
neurotransmitter system and the link with psychosis,
particularly SCZ.

SCZ is one of the top leading causes of disability worldwide
(10) and the seventh most costly medical illness in modern
society (11, 12). SCZ is characterized by psychotic symptoms
such as delusions and hallucinations (also known as the
positive symptom dimension); alterations in drive and volition,
including lack of motivation, blunted affect, social withdrawal,
and reduction in spontaneous speech (the negative symptom
dimension) and alterations in neurocognition, including
difficulties in memory, attention, and executive functioning
(the cognitive symptom dimension) (13–15).

The positive symptoms of SCZ overlap with different
psychiatric disorders. Indeed, psychosis is also frequent during
mood episodes in BD, severe depression, substance use disorder
and neurodegenerative disorders (16–18). Intriguingly, some
SCZ-like psychopathological abnormalities (i.e., paranoid
delusional thinking and auditory hallucinations) are expressed
in an attenuated form in 5–8% of the otherwise healthy
population, especially in individuals with schizotypal or
schizoid personality traits (13, 19). This extensive overlapping
of symptoms and genetic risk factors with other psychiatric and
neurological conditions is suggestive of a common underlying
neuropathophysiology for these disorders, which, rather than
discrete diagnoses, may represent a continuum that extends to
the general population (13, 19, 20).
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THE DOPAMINE THEORY OF SCZ AND
PSYCHOSIS

The classical dopamine (DA) hypothesis of SCZ (21) states that
the hyperactivity of the DA system is responsible for the
symptoms of the disorder. More recently, this hypothesis was
elaborated to include the proposal that the hyperactivity of the
mesolimbic DA system (Figure 1A) contributes to positive
symptoms in SCZ. Meanwhile, impaired function of the DA
system in the prefrontal cortex (PFC, Figure 1A) contributes to
the cognitive symptom dimension (22, 23).

The DA hypothesis of SCZ derives, in part, from the
identification of the mechanisms of action of antipsychotics,
many of which act as DA receptor 2 (D2 receptor) blockers (15).
Furthermore, pharmacological studies show that a single
exposure to amphetamine (AMPH), a stimulant drug that
increases extracellular levels of DA in striatal and cortical
regions via release and reverse transport (24, 25), evokes or
exacerbates positive symptoms in SCZ patients at doses which do
not induce psychosis in healthy subjects (26–28). Imaging studies
demonstrate that a significant number of non-medicated SCZ
patients show marked elevation of AMPH-induced striatal
dopamine release in comparison to healthy volunteers (29–31).
This response correlates significantly with the emergence or
worsening of positive symptoms (31–35).

Understanding the etiology of SCZ is an active area
of research. However, evidence accumulated in the last three
decades on environmental risk factors that affect early
A B C

FIGURE 1 | The dopaminergic system and mediators of maternal immune activation. (A) The meso-limbic DA neurons have their cell bodies in the ventral tegmental
area (VTA) and terminals innervate the nucleus accumbens (NAcc). Other VTA neurons project to the prefrontal cortex (PFC), constituting the meso-cortical system.
The nigro-striatal DA neurons lie in the substantia nigra (SN) and project to the dorsal striatum (STR). (B) Dopaminergic synapse, where dopamine is synthesized by
the conversion of tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA) by the enzyme tyrosine hydroxylase (TH). L-DOPA is then converted to dopamine by the L-
DOPA decarboxylase (DDC). Once packaged in synaptic vesicles and released to the extracellular space, dopamine can act on its receptors (DRs) on the post- and
pre-synaptic membrane. Dopamine neurotransmission is terminated when the dopamine transporter (DAT) reuptakes the neurotransmitter to the pre-synaptic side,
where it can be metabolized into 3,4-dihydroxyphenylacetic acid (DOPAC) by the monoamine oxidase (MAO) and homovanillic acid (HVA) by the catechol-O-methyl
transferase (COMT). (C) Maternal immune activation (MIA) with bacteria or viruses leads to the activation of immune cells that release cytokines, including interleukin
6 (IL-6) and, in turn, IL-17a. Both of these cytokines affect brain development in the fetus, increasing the risk for neurodevelopmental disorders, such as SCZ (SCZ).
These cytokines can act indirectly on the placenta, or in the case of IL-6 through the induction of hypoferremia, a reduction in circulating non-heme iron. Adipose
tissue can also release hormones such as leptin, which affects fetal development.
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neurodevelopment during pregnancy has led to the proposal of
the neurodevelopmental hypothesis for SCZ (36–38). In this
sense, accumulating evidence suggests that perinatal insults also
contribute to an increase risk of developing BD (9), particularly
those cases with psychoses (8).
NEURODEVELOPMENTAL ETIOLOGY OF
SCZ AND OTHER PSYCHIATRIC
DISORDERS

SCZ has been hypothesized to have a neurodevelopmental origin
(22): an outcome of an aberration in developmental processes
within the brain, which begins long before the onset of the
clinical symptoms (36, 39). There are numerous independent
lines of evidence supporting this hypothesis. For example, there
is a conspicuous absence of gross physical damage or signs of
progressive neurodegeneration in SCZ (22, 39). Besides, children
that go on to develop SCZ present behavioral, physical and brain
morphological alterations, before the clinical onset of psychosis
(15, 36, 39–41).

Finally, individuals who develop SCZ are more likely to have
experienced pre- or perinatal adverse events (22, 42), or
adolescent disturbances in brain development, compared to
control individuals (36, 39, 41, 43). These adverse events
include intrauterine growth retardation, pregnancy and birth
complications (44), nutritional deficiencies (45, 46) maternal
stress (47), and maternal infections (48).

There is also mounting evidence for the role of
neurodevelopmental disturbances in the etiology of BD, as
thoroughly reviewed by (9). In this regard, there is high co-
morbidity between BD and other developmental disorders such
as attention-deficit/hyperactivity disorder (ADHD) and ASD (9).
Remarkably, there are increased rates of BD due to obstetric
complications, cesarean section birth and perinatal infection (8,
9, 49, 50).
MATERNAL INFECTION, SCZ, AND
OTHER NEURODEVELOPMENTAL
DISORDERS

Ecological studies, including those based on the subjective report
of illness, suggest that SCZ is more prevalent in the offspring of
women that were pregnant during periods of influenza epidemics
(51, 52), as well as other types of infections, including diphtheria,
pneumonia, measles, varicella zoster, mumps and poliovirus (4,
53–56). Similarly, SCZ is more prevalent among individuals born
to pregnancies that occur during winter, a season associated with
an increased frequency of respiratory infections (36, 51, 57). The
main limitation of these studies is that “exposure to infection”
was defined solely by the fact that the individual was pregnant
during the time of the epidemic (i.e., based on the date of birth of
the offspring).
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It was later shown that SCZ in the offspring is significantly
associated with maternal infections using individual biomarkers of
illness in the maternal serum or clinical diagnoses (4). These
included respiratory infections (58), influenza (59, 60), rubella
(61, 62), Toxoplasma gondii (63, 64), herpes simplex virus-2
(HSV-2) (65, 66), maternal genital or reproductive infections
(67), and maternal bacterial infections (68). Some of these studies
used a broad definition of psychosis, where both non-affective (e.g.,
SCZ) and affective (e.g., major depression or BDs with psychotic
features) psychiatric disorders were included (62, 66, 69). This
suggests that maternal infection may be involved in the
development of psychotic features that may not be necessarily
restricted to those that characterize SCZ, but several other disorders
as well. Indeed, MIA involving influenza has been linked to BD (9)
[and Toxoplasma gondii infections to a lesser extent (70)],
especially for those patients that also develop psychotic features (8).

What remains unclear from these studies is the critical stage
(s) of gestation during which the developing brain may be more
vulnerable to this prenatal insult. Indeed, those studies that
have tried to dissect a specific trimester of gestation where
vulnerability to MIA may be increased, have provided evidence
for all three trimesters (58, 59, 68, 69, 71, 72). Overall, effect sizes
of prenatal infection across gestation and development of SCZ in
the offspring range from 1.5 to 7 for different infections (73),
suggesting the existence of additional factors that confer
vulnerability or resilience (6).

The wide variety of infections associated with SCZ and BD with
psychosis suggests that there may be a common factor underlying
increased susceptibility (74). Therefore, it has been hypothesized
that maternal immune activation (MIA), and the inflammatory
mediators released following all types of infections (4), may be
fundamentally involved. Epidemiological studies have provided
some evidence supporting this hypothesis. Increased levels of
maternal pro-inflammatory cytokines, specifically interleukin (IL)-
8 (72), tumor necrosis factor (TNF)a (69, 71, 75, 76), IL-6 (71, 75,
76), C-reactive protein (77) are associated with a higher risk of
psychosis or SCZ in the offspring. Several animal models have been
developed to investigate the immunological and neurobiological
link between MIA and altered behavior in the offspring, with heavy
emphasis in behavioral alterations.
ANIMAL MODELS OF MATERNAL
INFECTION

Initial approaches used prenatal infection with an influenza virus
[at gestational day (GD) 9 in mice], followed by the application
of a battery of behavioral tests relevant to SCZ in the adult
offspring (78). These studies showed that the adult offspring of
infected mothers presented, compared to the offspring of control
dams, decreased social interaction, reduced exploration in the
open field, impaired performance in the novel object test,
indicative of impaired working memory as observed in SCZ
and diminished PPI of acoustic startle (78). These behavioral
alterations are analogous to aspects of SCZ.
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Viral Mimetic Poly I:C
Further studies investigated the consequences of MIA using
molecular immunogens in rats and mice. The viral mimic
polyinosinic:polycytidylic acid (poly I:C) has been used to
stimulate the maternal immune system (with one or multiple
injections), at several stages of pregnancy in mice or rats, ranging
from GD 8.5 until GD 18.5. The effects of these prenatal
treatments have been extensively reviewed elsewhere (6, 7, 79–
81); thus, we will focus on those consequences more closely
relevant for psychosis. Prenatal stimulation with poly I:C
induced deficits in an operational measure of sensorimotor
gating (82), pre-pulse inhibition of acoustic startle and
increased sensitivity to the locomotor activating effects of
cocaine, AMPH and methamphetamine, whose locomotor
effects depend on the mesolimbic DA system (83–105).

An overall trend regarding these two phenotypes is one where
PPI deficits are more consistently observed when MIA occurs at
gestational stages earlier than GD 16 in both mice and rats. At
the same time, hyper-responsiveness to activators of the
mesolimbic dopaminergic system appears when challenging
the mothers at any developmental age [reviewed in (79)].

Models of Bacterial Infections
The role of bacterial infection has also been investigated by using the
Gram-negative bacterial cell wall component, lipopolysaccharide
(LPS). In rats, injections at several stages of gestation, ranging from
GD 9 until birth, induced, in the offspring, impairments in PPI, and
increases in sensitivity to the locomotor effects of AMPH (106–117).
LPS has also been administered either in alternate days (118) or
daily throughout pregnancy (119, 120). Similarly to acute LPS
administration, these chronic prenatal treatments also induced
impairments in PPI (118–120).

Other Models of Inflammation
Turpentine (TURP) is an inflammatory agent whose injection
[intramuscular (i.m.)] produces localized necrotic damage (121)
and the sequential induction of TNFa and IL-1b at the site of
injury, which trigger IL-6 release into the circulation (122, 123).
Using TURP at GD 15 or 18 in rats, we found that an earlier
challenge with TURP induces greater maternal inflammatory
response compared to later in gestation (124). Furthermore, this
difference in the inflammatory response during pregnancy
correlates with the effect on the offspring, such that treatment
at GD 15 induces impairment in PPI and hyper-responsiveness
to AMPH, while the same treatment at GD 18 does not affect any
of these behaviors (124).

Overall, some of the alterations in behavior induced by either
polyI:C or LPS, have been shown to appear in the adult but not in
the juvenile offspring (84, 93, 120, 125), as occurs in SCZ
patients. Also supporting the validity of the models toward the
disorder is the observation that a number of these alterations,
including deficits in PPI, were shown to be reversed by either
acute or chronic treatment with several antipsychotic drugs in
adult or adolescent animals [i.e., haloperidol, chlorpromazine,
olanzapine, risperidone or clozapine, which constitute the
Frontiers in Psychiatry | www.frontiersin.org 4
primary pharmacological treatment for psychotic illness (78,
83–85, 89, 119, 126–132)].
EFFECTS OF MATERNAL INFECTION ON
DOPAMINE NEUROTRANSMISSION IN
MOUSE MODELS

Given the central role of DA neurotransmission in SCZ, the
findings on the exaggerated locomotor response to AMPH and
other drugs that stimulate DAergic neurotransmission following
MIA, and the effectiveness of antipsychotic treatments to reverse
MIA effects, several studies investigated the effects of prenatal
immune activation on this neurotransmitter system. One often
used approach is the measurement of tissue DA content and its
metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and
homovanillic acid (HVA, Figure 1B).

Prenatal poly I:C treatment at GD 15 induces enhanced release
of DA from striatal explants in the adult offspring (83). In addition,
poly I:C treatment at GD 9 results in increases DA and DOPAC
levels in the PFC and the globus pallidus (GP) and HVA in the
nucleus accumbens (NAcc) and GP of adult mice (133). Increases
in DA are also found in the NAcc following poly I:C treatment at
GD 9 (134). Similarly, several injections of poly I:C (GD 12-17)
result in elevated levels of DOPAC and HVA in the adult STR (84).

Prenatal LPS treatment has been shown to have somewhat
variable effects on DA. For example, daily administration of LPS
throughout the entire pregnancy results in increased DA levels in
the NAcc of adult animals (P 120, 170, or 400), but lower DA
levels in younger animals (P 39) (119, 120). Interestingly, a single
LPS administration at GD 10, results in a decrease of DA in the
dSTR (135–140). Decreased DA is also found in the NAcc, PFC,
amygdala, hippocampus, and hypothalamus, accompanied by
decreased levels of HVA in the NAcc and amygdala (P 120)
(140). Similarly, decreased DA levels in the NAcc at P 83 were
found when escalating doses of LPS were administered daily
from GD 15 until 19 (141).

Using MIA with TURP, we found increases in DA, DOPAC,
and HVA in the NAcc, but not in the dorsal STR or the PFC of
the male offspring in rats (142, 143).

Prenatal poly I:C treatment (GD 9) results in increased tyrosine
hydroxylase (TH) immunoreactivity, the rate-limiting enzyme for
the synthesis of DA, in the mesencephalon of embryonic mice at
GD 13 and 17 (92), as well as in the NAcc and SN of adult mice (P
120) (93). In the NAcc, TH immunoreactivity was decreased at P 35
(93) but increased at P 70 (90, 93). DAT immunoreactivity is also
found to be increased in the fetal mesencephalon (GD 17) (92), but
decreased in the dSTR at P 35, as well as in the NAcc at GD 19 and
P 35 (93). Immunoreactivity of DA receptors, D1 and D2, is
reduced in the adult mice’s PFC (90, 144) and increased in the
NAcc (for both D1 and D2) and dSTR (only D1) (93). In contrast,
Ozawa et al. reported that DA D2 receptor’s binding is reduced in
the STR of adult mice (84). Most of these data are consistent with a
scenario of increased synthesis of DA in the adult brain of MIA
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https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Aguilar-Valles et al. Maternal Immune Activation and Psychoses
offspring, particularly in the meso-limbic, but not in the meso-
cortical pathway.

The effects of prenatal LPS administration on these markers
of DA neurotransmission are rather conflicting. Borrell et al.
(118) found increased TH immunoreactivity in the NAcc and
bed nucleus of the stria terminalis in adult rats whose mothers
were treated with LPS on alternate days during the entire
pregnancy. In contrast, Ling et al. reported in several studies
that a single dose of LPS at GD 10 leads to a significant decrease
in TH immunoreactivity, which was significant in the SN, at
several postnatal ages (P 21, 120, 210, 420, 510) as well as in the
VTA of post-weanling rats (135–140). As above, these results
support the idea that models of bacterial MIA have different
outcomes compared to those involving viral mimetics.

Finally, prenatal TURP administration at GD 15 leads to an
increase of TH levels in the NAcc, but not in other DA terminal
areas such as the dorsal STR or the PFC, nor in the VTA or SN
(124, 142, 143).

Overall, poly I:C and TURP inducemolecular changes consistent
with hyperactivity ofmesolimbicDAneurotransmission, whichmay
underlie the hyperactivity in response to AMPH and other
behavioral alterations that can be corrected by administration
of antipsychotics.
ROLE OF MATERNAL CYTOKINES IN
INDUCING MIA ALTERATIONS

A more causal role for elevated maternal cytokines in SCZ-related
alterations has been established through the administration of
exogenous cytokines to pregnant rats or mice. These
manipulations have been shown to be sufficient to induce several
molecular and behavioral effects in the offspring. For example,
prenatal administration of IL-6 in mice (at GD 9, 5 mg, i.p.) results
in impairments in PPI and other behaviors in the adult offspring,
whereas a similar treatment with IFNg or TNFa does not affect the
offspring (86). Significantly, the effect of an influenza virus and poly
I:C treatments on the fetal brain transcriptome overlapped to those
of IL-6 administration in utero, supporting the idea that many
effects of poly I:C are mediated by this cytokine (145).

Importantly, functional inhibition of poly I:C-induced IL-6 in
pregnant mice prevented several of the behavioral effects of
prenatal poly I:C in the offspring, including impaired PPI (86).
Also, the offspring of IL-6 “knock-out”mothers treated with poly
I:C, do not present these alterations (86). Similarly, knock-out of
IL-6 receptor in the placental trophoblasts prevented several
effects of prenatal poly I:C treatment (146), indicating a crucial
role of this organ in mediating the effects of MIA.

We also observed that co-treatment with an anti–IL-6 antibody
during gestation and TURP prevented the development
of a hyper-active DAergic system (143). This prenatal treatment
effect ively rescued the exaggerated AMPH-induced
hyperlocomotion and behavioral sensitization, elevated DA, and
TH in the NAcc in the offspring of TURP-treated mothers (143).

IL-6 can, in turn, act in more than one way to affect
Frontiers in Psychiatry | www.frontiersin.org
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neurodevelopment (Figure 1C). One such mechanism is
hypoferremia, a reduction in maternal circulating non-heme
iron, which characterizes the acute phase response and is
triggered by all types of infection (147, 148). Proper iron
homeostasis is fundamental for healthy brain development,
especially for the DAergic neurons (149). Indeed, we
demonstrated that maternal iron supplementation, which
counteracts inflammation-induced hypoferremia, prevented the
development of exacerbated responses to a single AMPH
injection and enhanced behavioral sensitization following
repeated exposure to this drug in the offspring (142).
Furthermore, maternal iron supplementation during MIA also
reversed the increased levels of TH, DA and its metabolites in the
NAcc found in the offspring of mothers treated with TURP
(142). Notably, iron levels in the placenta were reduced by MIA
(but not in the fetal brain), which were rescued by maternal iron
supplementation (142), supporting a role for this organ in
mediating the effects of MIA in the development of the brain.

Another potential mediator of MIA, downstream of IL-6, is
IL-17a (Figure 1C), since blocking the latter cytokine with anti–
IL-17a antibodies prevented cortical malformations and the
emergence of abnormal behaviors in adult MIA offspring,
including impaired social interaction and increases marble-
burying behavior (150, 151). Meanwhile, overexpression of the
anti-inflammatory cytokine IL-10 in maternal macrophages
prevented the MIA-induced deficits in PPI, although in itself,
elevated IL-10 also induced other behavioral alterations (91). In
addition to IL-6, the hormone leptin has also been implicated on
the effects of MIA in the DAergic system.

Leptin
Leptin is the product of ob gene (152), a hormone that regulates
food intake and energy expenditure (153–155). Leptin is primarily
produced by adipose tissue and secreted into the circulation, where
levels correlate positively with body fat mass (156, 157). Leptin has
a multitude of physiological roles, including regulation of
inflammatory processes (158, 159). For example, leptin
treatment induces pro-inflammatory cytokines, including TNFa,
IL-1b, IL-6, and IFN-g (160–162). Inflammatory stimuli (e.g.,
TNFa, IL-1b, LPS, and TURP) in turn increase leptin synthesis
(163–167). During the acute inflammatory response, leptin is
involved in the induction of several sickness-type responses,
such as anorexia and fever (168–173).

Despite its clear involvement in several aspects of the
inflammatory response to infection, the role of leptin in brain
development has not yet been extensively studied. We
demonstrated that neutralization of leptin during MIA was
effective in curtailing several alterations induced by prenatal
TURP, including the hype-sensitized locomotor response to
AMPH, and increases in DA in the NAcc (Figure 1C) (143).
Intriguingly, leptin could affect the development of the
dopaminergic system, as constitutive leptin mutant mice have
impaired locomotor response to AMPH, and diminished DA
release in the NAcc (174). Leptin can also exert impairing effects
or the control of cytokines expression in the placenta (175).
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CONCLUDING REMARKS

MIA alters the development of the dopaminergic system and
many other neurotransmitter systems and brain regions (5, 6, 79,
80). Maternal cytokines, particularly IL-6, are central in
mediating these effects (5). However, other neuroendocrine
factors, such as the adipokine leptin, are potentially involved
and deserve further investigation.

Maternal infections and other environmental risk factors for
SCZ and neurodevelopmental disorders may independently
account for a few clinical cases since exposure to them does
not always generate the disorder or are implicated in several
psychiatric illnesses (6, 39, 79, 80, 176, 177). In this
regard, heterogeneity of response characterizes all known
environmental risk factors for psychopathology, including
the most overwhelming of traumas (176). Such response
heterogeneity is associated with pre-existing genetic (175) or
epigenetic (i.e., chromatin modifications) differences (178).

This hypothesis implies that in any given population, individual
predisposition is directly responsible for the vulnerability or
resilience to the environmental causes of many psychiatric
conditions (176), including SCZ (39, 179). Regarding
Frontiers in Psychiatry | www.frontiersin.org 6
vulnerability, there is a significant interaction between maternal
HSV‐2 seropositivity and GRIN2B genetic variation (GRIN2B
encodes for a NMDA glutamate receptor) (180). Also, exposure
to maternal infection has been reported to increase the risk of SCZ
only in cases with a family history of psychiatric disorders (181,
182). Animal models of MIA support this notion, as the effects of
poly I:C are enhanced when they occur in mice mutant for genes
linked to SCZ and other disorders (183–185). Furthermore,
interaction with other environmental risk factors, such as
maternal diet, gut microbiota, or experiences of peripubertal
trauma, can have a synergistic effect with maternal infection or
prevent its detrimental effect (6, 79, 186). Therefore, systematically
generating translational models of the interaction between genetic
and environmental (or environmental and environmental) risk
factors for SCZ and other neurodevelopmental and psychiatric
disorders appears to be the next step in understanding the
etiology of mental illnesses.
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