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Cannabis use during the critical neurodevelopmental period of adolescence, may lead to
brain structural, functional, and histological alterations that may underpin some of the
longer-term behavioral and psychological harms associated with it. The endocannabinoid
system performs a key regulatory and homeostatic role, that undergoes developmental
changes during adolescence making it potentially more susceptible to the effects of
exposure to cannabis during adolescence. Here, we synthesize evidence from human
studies of adolescent cannabis users showing alterations in cognitive performance as well
as in brain structure and function with relevant preclinical evidence to summarize the
current state of knowledge. We also focus on the limited evidence that speaks to the
hypothesis that cannabis use during adolescence, may pose a greater risk than use
during adulthood, identify gaps in current evidence and suggest directions for new
research. Existing literature is consistent with the association of cannabis use during
adolescence and neurological changes. Adolescence cannabis users show altered
functional connectivity within known functional circuits, that may underlie inefficient
recruitment of brain regions, as largely increased functional activation has been
observed compared to controls. This disruption in some cases may contribute to the
development of adverse mental health conditions; increasing the chances or accelerating
the onset, of their development. Preclinical evidence, further supports disruption from
cannabis use being specific to the developmental period. Future studies are required to
better investigate adolescent cannabis use with more accuracy using better defined
groups or longitudinal studies and examine the permanency of these changes following
caseation of use. Furthermore, research is required to identify heritable risk factors to
cannabis use. There is a need for caution when considering the therapeutic potential of
cannabis for adolescence and particularly in public discourse leading to potential
trivialization of possible harm from cannabis use in adolescence. Current evidence
indicates that adolescence is a sensitive period during which cannabis use may result
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in adverse neurocognitive effects that appear to show a level of permanency
into adulthood.
Keywords: cannabis, marijuana, adolescence, neurodevelopment, neurofuctioning
BACKGROUND

Cannabis is the most used illicit drug worldwide, with those who
go on to become habitual users most commonly beginning use
during adolescence (1, 2). Attitudes are changing globally toward
cannabis, with a trend toward legalization and a push for
exploration into its medicinal potential. Therefore, consideration
of possible harms associated with cannabis use, particularly during
the vulnerable period of adolescence (3, 4), should be a key part of
the discourse. Potentially greater vulnerability to harm from
cannabis use during adolescence and their subsequent
persistence has long been an area of scholarly focus, with
numerous reviews aiming to tease apart the effects of cannabis
use in adolescence compared to adulthood on cognition (5–9),
neuro-structure (6, 10, 11), and neuro-functioning (6, 7, 10).

Adolescence is a critical period of neural development (12)
and a later stage opportunity to sculpt the brain before a person
reaches adulthood (13). Coupled with this, adolescence is also
characterized by behavioral changes such as increased risk taking
behavior (14) which may increase the likelihood of
experimentation with drug taking (15). During infancy and
childhood, brain growth focuses on increasing volume,
producing more gray matter and neuronal synapses (16).
During adolescence this shifts to creating more robust
neuronal pathways. Useful neurons, dendrites, and synapses
are selected for preservation, while others are pruned and
eliminated, with increases in whole brain white matter
occurring up until a person reaches their early twenties (17).
During adolescent brain development, a decrease in grey matter
can be observed in overall brain volume (18) as a result of
pruning and eventual elimination of neurons in a ‘fine tuning’ of
the brain, with cognitive maturation paralleling this elimination
phase (13, 19, 20). Because of these reorganizational processes,
the adolescent brain is highly sensitive to exogenous assault, such
as from psychotropic substances, thereby posing a window of
vulnerability to the emergence of developmental disturbances
resulting from such exposure. This is particularly true of
substances that target the endocannabinoid system, which,
along with its other functions, plays a vital role in adolescent
neuronal maturation (21).

The endocannabinoid system is a homeostatic regulatory
system for various physiological processes (22, 23), playing a
particularly important role during critical periods of
developmental change (24, 25), through its retrograde
inhibitory effect in an individual synapse-specific manner (26)
acting via cannabinoid 1 (CB1) receptors, its main central
receptor (27, 28). Exogenous assaults on this system, such as
through cannabis use, may disrupt performance and cause
desensitization or down regulation of receptors (29, 30).
g 2
Adolescence represents a period of increased susceptibility to
excitotoxicity from glutamate signaling (31, 32), which cannabis
may further exacerbate through the mechanism of inhibiting
GABAergic inhibitory action on glutaminergic neurons (33).
Preclinical evidence suggests that during adolescence, the CB1
receptor shows a steadily increasing cortical expression, until
stabilization in adulthood (34–36). An opposite pattern of
expression is observed in the striatum, implying a role for CB1
receptor signaling in changes in the regulation of cortico-striatal
transmission occurring during neuronal development (37, 38). A
similar opposing pattern of changes are also seen with cortical
and striatal dopamine synthesis levels, with levels going up in
frontal regions and down in the nucleus accumbens and striatum
during adolescence (39, 40). In light of the cross-talk between
these signaling systems (41), dysregulation of both these
neurotransmitter systems may result from exposure to
exogenous cannabinoids during adolescence (42).

Patterns of cannabis use have been shown to be associated
with greater harm in general when used regularly as opposed to
infrequently; daily as opposed to once in a while; and when used
in greater amount as opposed to smaller amounts (4, 43–46).
Recent changes in cannabinoid consumption may have further
increased the potential of harm in adolescent users. Potency of
THC in herbal cannabis, the most common form of cannabis
currently being consumed (47, 48), doubled in the 10 years up to
2005 in the UK (49) with similar patterns in Europe and the USA
(50), and new preparations of cannabis such as resin oils may
have up to a 75% THC content (51). Synthetic cannabinoids,
which bind to the cannabinoid receptor 1 often with higher
affinity making them potentially more harmful, are also being
consumed increasingly nowadays (52, 53). Following legalization
in some jurisdictions, commercialization of cannabis for use in
vaporizing pens (54), drinks, sweets, and lollypops (55), may
have made cannabis use more appealing to younger users and
minimized the perceived harms of the drug (56).

A number of previous reviews have summarized evidence
from animal and human studies focusing on the effects of
cannabis use in adolescence (6–8, 57, 58). Comparing these
alterations to those seen in adults (5, 9, 10), it has been
suggested that adolescence may be a period of greater
sensitivity to cannabinoid exposure. Here, we attempt to
synthesize evidence from human studies of adolescent cannabis
users showing alterations in cognitive performance as well as in
brain structure and function with relevant preclinical evidence to
summarize the current state of knowledge. We aim to also focus
on studies that investigate the hypothesis that cannabis use
during adolescence, a critical period of neurodevelopment, may
pose a greater risk than use during adulthood, identify gaps in
current evidence and suggest directions for new research.
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METHODS

Human studies investigating cognition, brain structure and
function following adolescent cannabis exposure, and animal
studies directly comparing the cannabinoid exposure effects
between adolescent and adult animals, were identified through
a bibliography search of previous systematic and narrative
reviews (5, 6, 10, 59, 60). To capture papers that have been
published since the previous reviews, a search was carried out
using the PUBMED database for relevant studies using the
search terms “cannabis” or “marijuana” or “cannabinoid”, and
“adolescence” or “young adult” or ‘early-onset”, which was
completed on the 6/1/2020. These additional papers were
screened initially through a search of titles and abstracts and
finally a full article review. For the purposes of this review, we
included studies that have specifically investigated alterations
associated with adolescent cannabis use, compared early-onset
cannabis users with later onset users, or used longitudinal design
with a focus on effects of adolescent-onset use. Direct
comparison of adolescent exposure with comparable extent of
exposure during adulthood only in humans is the key piece of
evidence that speaks to the central question addressed in this
review (“Is the adolescent brain at greater vulnerability to the
effects of cannabis as evident from structural, functional, and
cognitive performance alterations?”). However, this is something
that is difficult to directly address in human studies and has never
been systematically investigated in humans to the best of our
knowledge. To address this limitation in extant human evidence,
we have summarized relevant preclinical evidence addressing
this specific gap. We specifically focused on animal studies that
directly compared cannabinoid exposure effects between
adolescent and adult exposed groups as well as histological
studies following adolescent cannabinoid exposure to address
the gap in human evidence. Such controlled experimental
evidence is lacking as far as human studies are concerned for
obvious practical reasons. To further clarify, we have not
systematically summarized the larger body of animal research
related to the effects of cannabinoids, but only that relevant to
our narrower focus on comparative studies using adolescent
versus adult design.
RESULTS

Narrative synthesis of the different strands of evidence (human
cognitive, structural imaging, and functional imaging evidence as
well as preclinical evidence) relevant to the central issue under
examination here are summarized under different sub-sections
below and also presented in Tables 1–4, respectively.

Studies Investigating Alteration in
Cognitive Task Performance in Adolescent
Cannabis Users
Human studies (please also see Table 1 for a list of studies and
summary results) have reported impaired cognition across a
number of domains (executive functioning, processing speed,
Frontiers in Psychiatry | www.frontiersin.org 3
attention, and memory) in adolescent cannabis users when
compared to controls of the same age (8, 116, 117), with some
suggestion that the magnitude of this impairment may be greater
than in adult cannabis users particularly in the domains of
learning and memory (89). Cognitive performance deficits
spanning a range of executive function domains have been
found in cannabis users to be associated with age of onset of
cannabis use, such that earlier onset was related to worse
performance (61–68, 118). In a longitudinal cohort study
following participants up to age 38, adolescent-onset cannabis
users were found to have greater decline in IQ than adult-onset
users when correcting for pre-use educational scores (70).
Another study found a bi-directional relationship between
cannabis use and cognitive performance such that poorer
short-term memory and working memory performance at age
13 (prior to initiation of cannabis use) was associated with earlier
age of onset of cannabis use, and earlier onset and more frequent
cannabis use during adolescence in turn was associated with
decline in verbal IQ, executive function domains of trial, and
error learning and reward processing by age 20 (69). It is worth
noting that a meta-analysis of cross-sectional studies
investigating the association between cognitive performance
and cannabis use in adolescents and young adults reported
only a modest overall effect which was no longer significant
when considering studies of abstinent users, and also did not find
any association with either age of cannabis user or age of onset of
cannabis use (119). However, meta-analysis of existing studies
that included participants with a wide range of age at recruitment
and age of onset of cannabis use, as well as variability in the
measurement of cannabis use, are inherently limited by
heterogeneity in the data that was pooled to estimate the effect
of interest, making any interpretation challenging.

Studies Investigating Brain Structure
Alterations Associated With Adolescent-
onset Cannabis Use
A number of studies have employed magnetic resonance imaging
(MRI) (please also see Table 2 for a list of studies and summary
results)to investigate alterations in brain structure associated
with adolescent-onset of cannabis use and reported greater
reduction in grey matter (73, 75, 83), hippocampal (81), and
white matter (74, 77) volumes in adolescent-onset cannabis users
compared to age-matched non-users. However, reduction in grey
matter (82) and hippocampal (78) volumes have not always been
consistently seen. Interestingly, earlier age of onset of cannabis
use has also been associated with increase in white matter volume
(83), orbitofrontal connectivity (120), and cortical thickness of
the superior frontal gyrus (80). Deficits in white matter structural
integrity have also been found in the prefrontal corpus callosum
of adult cannabis users with onset of use in early adolescence
compared to non-users (71). Further, frontotemporal structural
connectivity has been found to be reduced in adolescent cannabis
users compared to non-users (72), and similar alterations have
been reported in the inferior longitudinal and inferior fronto-
occipital fasciculi (white matter tracts connecting the occipital
and temporal-occipital areas with the anterior-temporal regions
August 2020 | Volume 11 | Article 859
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TABLE 1 | Studies investigating cognitive task performance in adolescent cannabis users.

U (years) Age of NU
(years)

Summary Results Study design

2) 35.5 (11.5) CU recalled significantly fewer words, which had a marginal
correlation with the duration of use.

CU vs NU

24.32 (6.65) No Significant difference seen between CU and NU. No
significant difference seen between early or late onset CU.

CU vs NU
Early (<16 years) Vs Late (>16
years) onset of cannabis use

52) 21.59 (1.94) CU had worse performance, but only significant in the long-delay
cued recall.

CU vs NU

82) 18.07 (0.48) CU recalled significantly fewer words than NU. CU vs NU

) 18.1 (0.5) CU performed significantly worse than NU. CU vs NU
.0 (1.1);
(1.8)

Early onset CU had impaired reaction time than Late CU. Early (<16 years) vs Late (>16
years) onset of cannabis use

.4 (8.3);
0 (4.1)

27.8 (8.0) Early onset had significantly worse performance than Late and
NU at attention, inhibition and executive function. No significant
difference in vocabulary or IQ

Early (<15 years) of cannabis
use vs Late (>15 years) of
cannabis use vs NU

[32.5 -41];
[35.5–50]

40 [34–45] Early onset CU performed worse on Verbal IQ then NU. Late had
no significant difference in performance.

Early (<17 years) onset of
cannabis use vs NU;
Late (>17 years) onset of
cannabis use vs NU

Age-of-onset for CU associated with decreased executive
functioning and verbal IQ

Longitudinal study from age
10–20 years

CU associated with reduced cognitive performance. Adolescent
onset had increased IQ decline.

Longitudinal study at ages—18,
21, 26, 32 years
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Study Task CU (n) NU
(n)

Age of

Battisti et al. (61) Verbal Memory Task 24 24 36.4 (11

Gruber et al (62) Rey-Osterrieth Complex Gigure
(visual memory)
California Verbal Learning Test

34 28 22.76
(6.57)

Levar et al. (63) California Verbal Learning Test 19 22 20.58 (2

Solowij et al. (64) Rey Auditory Verbal Learning
Test

52 62 18.67 (0

Solowij et al. (65) The Information Sampling Task 48 62 18.6 (0.8
Ehrenreich et al.
(66)

Attention Test Early: 48;
Late 51

Early: 15
Late 18.

Fontes et al. (67) Stroop Test
Wisconsin Card Sorting Test
Frontal Assessment Battery
Wechsler Adult Intelligence Scale

Early: 49
Late: 55

44 Early: 30
Late: 30

Pope et al. (68) Battery of Ten
Neuropsychological Tests

Early: 69
Late: 53

87 Early: 36
Late: 44

Castellanos-Ryan
et al. (69)

Wechsler Memory Scales and
Wechsler Adult Intelligence Scale

Cohort – 294

Meier et al. (70) Wechsler Adult Intelligence
Scale-IV

Cohort – 1037

CU, Cannabis Users; NU, Non-Cannabis Using Healthy Controls.
C
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(121) and the frontal lobe with temporal and occipital regions
(122), respectively), with decreasing values at follow up as a
function of the amount of cannabis used (76).

Consistent with this, a longitudinal study indicated that grey
matter alterations found in the hippocampus, amygdala, and
superior temporal gyrus of adolescent onset cannabis users do
not change further following use during adulthood, suggesting
that structural changes may be predominantly occurring in
adolescent users (79), potentially as a result of altered pruning
during adolescence.

Studies Investigating Brain Functional
Alterations Associated With Adolescent-
Onset Cannabis Use
Functional magnetic resonance imaging (fMRI) (please also see
Table 3 for a list of studies and summary results)while performing
cognitive activation tasks or at rest has been used to compare
adolescent cannabis users to non-using adolescent control groups
(84–90, 91, 96). Increased brain activity has been observed in
cannabis-using adolescents compared to age-matched controls (i)
during reward processing, in the middle frontal gyrus, parietal
lobe, occipital gyrus, precuneus, caudate, cingulate, insula, and
claustrum (84, 86); (ii) during inhibition, in the frontal and
occipital gyri, parietal lobe, precuneus, and cingulate (85, 91);
Frontiers in Psychiatry | www.frontiersin.org 5
(iii) during memory performance, in the superior parietal lobe
and cuneus (123), (iv) and during resting-state (96). The
dorsolateral prefrontal cortex was found to have decreased
activation in adolescent cannabis users compared to age-
matched controls during memory performance (123). However,
compared to non-using adolescent controls no altered activation
was reported in adolescent cannabis users during reward (87)
or inhibition (90) processing. Further, region of interest
(ROI) analysis specific to task found hyperactivation in
prefrontal regions during memory processing (124) and in
the amygdala while fear processing (125) compared to controls.
This hyperactivation may be as a result of increased effort
to maintain task performance or reflect reduced cortical
efficiency (117).

Using a whole-brain analysis approach, a meta-analysis of
studies specifically investigating alteration in brain activation
associated with cannabis use in adolescence, reported
significantly greater activation in cannabis users compared to
controls over a range of tasks in the right inferior parietal gyrus
(extending to the superior parietal gyrus and angular gyrus) and
right putamen (extending to the striatum and insula) (126).
These regions are part of the salience and default mode networks
(127, 128), potentially suggesting an impairment in the
functioning of brain regions involved in the control and
TABLE 2 | Studies investigating brain structural alterations using neuroimaging in adolescent cannabis users.

Study CU (n) NU
(n)

Age of CU (years) Age of NU
(years)

Summary Results Study Design

Arnone et al. (71) 11 11 25 (2.96) 23.36 (0.8) CU increased mean diffusivity in the corpus
callosum

CU vs NU

Ashtari et al. (72) 14 14 19.3 (0.8) 18.5 (1.4) CU decreased FA in Bi. posterior internal
capsule, L MTG, R STG

CU vs NU

Battistella et al. (73) 25 22 23 (2.2) 25 (2.8) CU reduced GM in temporal pole and
parahippocampal gyrus

CU vs NU

Bava et al. (74) 36 36 17.9 (0.9) 17.8 (0.8) CU lower FA in L SLF, L postcentral gyrus,
Bi. crus cerebri, R STG, R IFG. CU
increased FA in Cuneus, R. SLF

CU vs NU

Cohen et al. (75) 19 17 21.5 (2.30) 22.7 (2.4) Reduced GM associated with early onset
cannabis use

CU vs NU

Epstein and Kumra (76) 19 29 16.6 (1.5) 16.5 (2.2) CU had altered FA in the L inferior
longitudinal fasciculus and L inferior fronto-
occipital fasculus

CU vs NU

Gruber et al. (77) 25 18 23.16 (5.87) 23.11 (3.51) CU decreased FA in Bi. genu of corpus
callosum and L internal capsule

CU vs NU

Gilman et al. (78) 20 20 21.3 (1.9) 20.7 (1.9) CU increased GM density in the L NA,
subcallosal cortex, hypothalamus and
amygdala

CU vs NU

Koenders et al. (79) 20 22 20.5 (2.1) 21.6 (2.45) No significant difference CU vs NU
Lopez-Larson et al. (80) 18 18 17.8 (1.0) 17.3 (0.8) CU decreased middle frontal, superior

frontal and insula cortical thickness
CU vs NU

Medina et al. (81) 16 16 18 (0.7) 18 (0.9) No significant difference in WM or
hippocampal volume

CU vs NU

Filbey et al. (82) Early: 20
Late: 22

Early: 32.5 (8.01)
Late: 30.25 (7.19)

No Significant difference in cortical thickness Early (<16 years) Vs
Late (>16 years) onset
of cannabis use

Wilson et al. (83) Early: 29 M-13,
F-16 Late: 28

M-9, F-9

Early: M-31.5 (6.5),
F- 33.2 (8.5)

Late: M-27.9 (6.3),
F-33.1 (6.7)

Early CU had increased WM volume Early (<17 years) Vs
Late (>17 years) onset
of cannabis use
August 2020 |
CU, cannabis users; NU, non-cannabis using healthy controls; M, male; F, female; R, right; L, left; Bi., bilateral; WM, white matter; GM, gray matter; STG, superior temporal gyrus; MFG,
middle temporal gyrus; IFG, inferior frontal gyrus; SLF, superior longitudinal fasciculus; NA, nucleus accumbens; FA, functional anisotropy.
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switching between states of carrying out a mental task and rest;
necessary for the efficient allocation of attentional resources
while performing mental tasks. Even following a period of
abstinence long enough to allow cannabis metabolites to have
left the body, these networks in adolescent cannabis users
Frontiers in Psychiatry | www.frontiersin.org 6
persisted to show altered activation (129). Interestingly, in
contrast to the meta-analysis of adolescent cannabis user
studies showing greater activation in cannabis users across a
number of brain regions (126) a meta-analysis of adult only
studies found brain functional alterations in both directions (i.e.
TABLE 3 | Studies investigating brain functional alterations using functional magnetic resonance imaging in adolescent cannabis users.

Study fMRI paradigm CU (n) NU
9n)

Age of CU
(years)

Age of
NU

(years)

Summary Results Study Design

Acheson et al. (84) Win/lose gambling task 14 14 17.3 (1.3) 17.6 (1.0) CU>NU MFG, caudate claustrum;
CU>NU R MFG, R posterior &anterior
cingulate, L insula, Bi. claustrum and
declive.

CU vs NU

Behan et al. (85) Go/no go task 17 18 16.5 (0.2) 16.1 (0.4) NU>CU Bi. white matter adjacent to
anterior cingulate.

CU vs NU

De Bellis et al. (86) Decision-reward
uncertainty task

15 23 16.4 (0.73) 15.4 CU>NU L SPL, L LOC< L. precuneus,
R precuneus.

CU vs non-cannabis
using controls with
psychopathology

Jager et al. (87) Monetary incentive
delay task

21 24 17.2 (1.0) 16.8 (1.3) No significant difference. CU vs NU

Lopez-Larson et al. (88) Finger Tapping 34 24 18.2 (0.7) 18.0 (1.9) NU>CU R cingulate gyrus CU vs NU
Schweinsburg et al. (89) Spacial working

memory task
15 17 18.1 (0.7)

(SD)
17.9 (1.0)

(SD)
CU>NU R SPL, NU>CU R
dorsolateral PFC; CU>NU inferior
cuneus.

CU vs NU

Schweinsburg et al. (90) Verbal Encoding Task 36 38 18.1 (0.9)
18.0 (1.0)

17.6 (0.8)
18.1 (0.7)

No significant difference. CU vs NU
(also included binge
drinking CU and NU
groups)

Tapert et al. (91) Go/NoGo Task 16 17 18.1 (0.7)
(SD)

17.9 (1.0)
(SD)

CU>NU Bi. SFG, Bi. MFG, R Insula,
Bi. MFC, Bi. IPL, Bi. SPL, R lingual
OG, R middle OG; CU>NU R IFG, R
insula, R SFG, R MFG, R SPL, R IPL,
R medial precuneus.

CU vs NU

Becker et al. (92) Verbal Memory n-back
task

Early: 26
Late:17

Early:
21.0 (2.8); Late:

24.5 (3.4)

No significant difference in cerebellum
and DLPFC. Early > Late increased
activation in the L.SPL

Early (<16 years) vs
Late (>16 years) onset
cannabis use

Gruber et al. (93) Multi-Source
Interference Task

Early: 9
Late: 14

Early:
21.44 (3.57);

Late:
23.07 (6.20)

Early > Late onset increased
activation in the mid R cingulum. Late
> Early increased anterior L cingulum.

Early (<16 years) vs
Late (>16 years) onset
cannabis use

Sagar et al. (94) Stroop Colour Word
Test

Early: 24
Late: 26

34 Early:
23.67 (7.26);
Late: 24.27

(6.79)

24.47
(6.49)

Early had activation pattern that
included the L. anterior cingulate. Late
had similar pattern to NU group.

Early (<16 years) vs
Late (>16 years) onset
cannabis users vs NU

Blanco-Hinojo et al. (95) Resting-State
Functional Connectivity

28 29 21 (2) 22 (3) Abnormal FC between striatum and
cortical area; striatum and ACC;
striatum and fusiform gyrus.

CU vs NU

Orr et al. (96) Resting-State
Functional Connectivity

17 18 16.5 (0.2) 16.1 (0.4) CU>NU Increased fALFF in SFG,
RSPG, cerebellum. Decreased
interhemispheric R SF, R SFG,
pyramis of Cerebellum.

CU vs NU

Camchong et al. (97) Resting-State
Functional Connectivity

22 43 17.6 (2.4) 16.5 (2.7) NU increased FC between ACC and
SFG. CU decreased FC in caudal
ACC and dorsolateral and
orbitofrontal cortex.

Longitudinal design;
CU vs NU

Thijssen et al. (98) Resting-State
Functional Connectivity

130 47 17.31 (1.09) 16.90
(1.19)

CU associated with decreased
connectivity in precuneus network,
auditory network, primary visual
network. Increased connectivity
between, R frontal-parietal and
sensorimotor network.

Cohort of adolescence
with (CU) and without
cannabis use
dependence (NU).
August 2020 |
CU, cannabis users; NU, non-cannabis using healthy controls; M, male; F, female; R, right; L, left, Bi., bilateral; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal
gyrus; MFC, medial frontal cortex; IPL, inferior parietal lobe; SPL, superior parietal lobule; OG, occipital gyrus; FC, functional connectivity.
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TABLE 4 | Preclinical studies comparing the effects of adolescent and adult cannabinoid exposure.

Results

ct of drug was seen between groups

ct of drug was seen between groups

ct of drug was seen between groups

cence treated animals had deficits in inhibition
red to control animals. No deficit seen in adult treated
s compared to control animals.
cent animals had deficits in contextual learning
red to control animals. No deficits seen in adult
animals compared to control animals.
cent treated animals performed worse compared to
l animals. No significant difference between adults and
l animals.
ct of drug was seen between groups

cent treated animals maintained increased CB1
or expression

cent treated animals had significantly poorer
ance than adult treated animals

nificant difference in either group
cent treated animals had increased anxiety. No
ant difference in adult treated animals.
cent treated animals had significantly impaired object
ition.
reated animals spent less time exploring novel objects
d significantly different times exploring familiar objects
trol. No significant difference seen between adult
s and control group.
reated animals spent less time exploring novel objects
d significantly different times exploring familiar objects
trol. No significant difference seen between adult
s and control group.
reated animals did not show a significant change to
xploration time, where control did. No significant
ce seen between adult animals and control group.
reated animals did not show a significant change to
xploration time, where control did. No significant
ce seen between adult animals and control group.
reated animals showed significantly impairment of
ition memory. No significant difference between adults
ntrols.
object recognition was significantly lower in drug
animals to controls, however delay time had no
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hyperactivation and hypoactivation) (126). While not directly
comparable, these differences may reflect a range of differences
between study populations in the two meta-analyses, including
differences in the extent of exposure to cannabis as well as other
drugs. A subsequent study performed in adult cannabis users
with a narrow range of age of onset of cannabis use during
adolescence found evidence of inefficient medial temporal and
midbrain function underlying slower verbal learning (130).

Despite being limited, functional imaging studies have also
investigated whether early and late-onset cannabis users differed
in their brain activity (92–94) while performing cognitive tasks.
While performing memory tasks, early onset cannabis users had
increased activation in the superior parietal lobe, the inferior and
superior frontal and superior temporal gyri, insula, and
precuneus (92), compared to late-onset users. While
performing inhibitory processing tasks, early onset cannabis
users had altered functioning where they activated different
regions of the anterior cingulate cortex (ACC) compared to
controls, while late onset users showed activation patterns that
were similar to a control group of non-users (93, 94).

Other studies have investigated alteration in the functional
connectivity between different regions of the brain in the context
of cannabis use to complement and help better understand the
differences in brain activation seen in cannabis users (126). A
longitudinal study of resting state functional connectivity
comparing adolescence cannabis users and non-users found
decreased connectivity between the ACC and the dorsolateral
and orbital frontal cortices in adolescent cannabis users across 18
months of cannabis use, while connectivity between the ACC
and the superior frontal gyrus increased over time in healthy
controls (97). Examination of resting state connectivity between
the central executive network, default mode network and sensory
networks in a cohort of adolescents found decreased connectivity
in all networks as a function of longer duration of cannabis use
(98). Similar alterations were seen in connectivity between the
striatum and frontal–limbic circuit during a comparison of
adolescent cannabis users with non-users, in addition to
attenuation of the negatively correlated functional connectivity
between the striatum and the fusiform gyrus, a region that serves
a critical role in the recognition of significant visual features; it is
important to note that some of these observations appeared to
normalize after abstinence (95). Reduced interhemispheric
connectivity in adolescent cannabis users compared to non-
users has also been observed, associated with dependence
levels (96).
Preclinical Evidence of Neurobiological
Alterations Associated With Adolescent
Cannabis Use
Direct comparison of adolescent exposure with comparable
exposure during adulthood is challenging to address in human
studies. Preclinical studies have further advanced current
understanding of the effects of cannabinoids in adolescence,
with experimental designs allowing for systematic investigation
and better control of potential confounding factors (please see
Table 4 for a list of studies and summary results). Behavioral
T
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studies of animals exposed to CB1 receptor agonists, including
THC (99, 100, 102, 103), during adolescence compared to those
exposed in adulthood found the former to have more significant
cognitive impairments when compared to age-matched controls,
while the latter had minimal impairment (101–104, 107, 108,
131). However, other studies did not find any difference in
impairments comparing the adolescent exposed group to the
adult exposed group (105) and some others did not find any
deficit following chronic cannabinoid exposure in either the
adolescent exposed group or the adult exposed group
compared to controls (99, 100).

Histological investigations in preclinical studies suggest
neurobiological changes in animals exposed to cannabinoids
during adolescence. Adolescent THC-treated rats maintained
increased expression of the CB1 gene compared to adult THC
treated rats (103). Furthermore, adolescent animals had a
reduction in compensatory downregulation of CB1 receptors
following acute exposure to synthetic cannabinoids, compared to
adults exposed animals (109). Protein expression in adolescence
has also been found to be altered in prefrontal regions and the
hippocampus (106, 132), possibly due to altered CB1 receptor-
mediated regulation of downstream signaling proteins. Further,
depression in GABA and glutamate receptors, leading to a
disruption of the excitatory-inhibitory balance, has been
observed in the hippocampus following adolescent cannabinoid
exposure (110, 112) compared to animals treated with a vehicle,
with an opposite effect on GABA receptors seen in adult treated
rats (114). Similar findings in the prefrontal cortex (113, 115)
and hyperactivity of mesocorticolimbic dopaminergic systems
have been found in adolescent treated animals compared to
animals treated with a vehicle (111).
DISCUSSION

As evident from our summary of current research, existing
literature is generally consistent with the idea that cannabis use
in adolescence is associated with neurocognitive changes. Meta-
analytic evidence suggests greater functional activation in
adolescent cannabis users compared to controls, whereas adult
users show a combination of hyper- and hypo- activation in a
number of brain regions. Functional connectivity between brain
regions and within known functional circuits is altered in those
with adolescent cannabis use and may underlie the observed
differences in brain activation, perhaps from inefficient
recruitment of regions required for task performance. Such
disordered organization of brain circuitry during adolescence
may underlie greater functional deficits in adolescent cannabis
users than those starting use as adults. Preclinical evidence
further supports the idea that the detrimental effects of
cannabis use may be greater specifically as result of exposure
during the developmental period.

Adolescence seems to be a period of vulnerability to change,
with brain structural alterations associating with cannabis use
(79). However, structural changes in cortical and subcortical
Frontiers in Psychiatry | www.frontiersin.org 9
regions do not show great consistency in terms of direction of
change (133). Functional alteration in cannabis users, do show
some consistency towards increased activation. However,
evidence of the regional pattern of this change has been less
consistent, possibly due to differences between studies in the
cognitive tasks employed, although brain regions that are part
of the large functional networks, such as the salience and
default mode networks (127, 128) show more robust evidence
for functional alteration in adolescent cannabis users (126,
134). Observed functional network alterations could stem
from altered pruning consistent with evidence of alterations
in white matter volume (74, 77), integrity (71) and connectivity
(72, 76, 121, 122). Brain regions that are key components of
these large scale networks that have been found to be affected in
adolescent cannabis users, have also been shown to be acutely
modulated by THC, the key psychoactive ingredient in
cannabis, in experimental studies (135–137), indicating that
the alterations noted in adolescent cannabis users are likely
related to cannabis use as opposed to being linked to potential
confounding factors that are challenging to control for in
observational studies.

Early onset of cannabis use during adolescence has been
associated with poorer performance in cognitive tasks.
However, the extent to which these deficits persist following an
adequate period of abstinence remains unclear (119, 129).
Whether adaptive changes occur in terms of functioning,
particularly after a period of abstinence, bringing cognitive
performance of abstinent cannabis users up to the level of
non-users despite residual differences in brain functional
activation (129) remains to be tested.

Altered functioning of salience and reward networks as well
as altered inhibitory control from early cannabis use has been
suggested to increase susceptibility to risky behaviors, addiction,
and dependence (138). Also, the acute psychoactive effects of
cannabis have been found to differ between adults and
adolescents (139, 140), with adolescents perceiving them less
(139), which may potentially underlie early onset users often
becoming more persistent users than those with a later age of
onset (70). However, whether these persistent brain functional
alterations underlie short-term or longer-term risks of mental,
social, and behavioral disturbances (4, 141–145) in young people
remains to be tested.

It is possible that altered cognitive function and alteration
in the neural substrates underlying those cognitive processes
as summarized above, may underlie poorer educational
outcomes and increased school drop-out rate (68, 69, 145–
151) in early-onset cannabis users. However, it is worth
noting the lack of evidence in this regard. Further, other
factors such as pre-existing characteristics (139, 149), lower
IQ and poorer executive functioning predating cannabis use
(152–155), and decreased time spent in schooling (156) may
also increase the likelihood of poor educational outcomes
independently. Poor school performance in turn has been
associated with increased likelihood of development of a
psychiatric disorder (157).
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Another important question relates to whether evidence
summarized above helps us understand potential mechanisms
through which cannabis use during adolescence may increase
the risk of onset for psychiatric disorders such as schizophrenia
(3, 158, 159), depression (4, 160, 161) and substance use
disorders (68, 162) in adolescent-onset users compared to
those with onset of use later on in life. The precise
neurobiological mechanisms underlying the association
between cannabis use and increased risk of development of
psychosis, especially what underlies greater risk in those with
onset of use during adolescence remains unclear, though there
are several potential candidate explanatory mechanisms.
Impaired functioning following cannabis use in adolescence
may alter the functioning of components of the salience
network, such as the insula, involved in the switching between
large scale brain networks (125) that is critical to the efficient
allocation of cognitive resources. Involvement of components of
this switching process in conjunction with altered functioning
of cross-modal hubs such as the angular gyrus, involved in the
integration and retrieval of multi-modal information (163) and
in the allocation of attentional resources and attribution of
meaning and salience in association with components of the
salience network, may result in altered attribution of salience
in the context of cannabis use (164), that is also thought
to underlie symptoms of psychosis (165). Functional
connectivity alterations between the default mode network
and salience network as summarized here may underlie the
psychopathology of psychosis (166) indicating a potential
convergent mechanistic substrate. Alterations following
adolescent-onset cannabis exposure in the efficiency of medial
temporal cortex (130) also converge with medial temporal
alterations seen in psychosis (167–169). Using cannabis
during the critical developmental period of adolescence may
also lead to alterations in two neurotransmitter systems, such as
altered glutamate (170) and dopamine (171) signaling, both of
which have been implicated in the etiology of psychosis (172).
Investigation of adolescent-onset cannabis users suggest that
glial function may also be altered following cannabis use (173)
indicating another point of convergence between alterations
noted in the context of cannabis use and in schizophrenia (174)
suggesting a potential mechanistic explanation.
Limitations of Current Evidence and
Directions for Future Research
Research into the adverse effects of psychoactive drug use during
adolescence has numerous challenges (175), particularly in terms
of systematic quantification of extent of cannabis use (176), as
frequency and duration of cannabis use along with participant
age may play a key role in influencing any observed alterations in
brain and behavior (5). Currently, there is a lack of adequately
powered systematic studies with well-defined groups of early-
onset and late-onset cannabis users matched for potential
confounding factors such as levels of cannabis exposure, which
may help begin to address the question whether cannabis use
during adolescence is associated greater brain structural and
Frontiers in Psychiatry | www.frontiersin.org 10
functional alterations than later onset use. Similarly, three-way
analysis of early-onset users, late-onset users, and age-matched
controls would help identify areas of functional and structural
alteration common to all cannabis users as well as alterations that
are specifically associated with adolescent onset use.
Neurochemical changes are also yet to be investigated in a way
that adequately addresses difference between adolescent or adult-
onset cannabis users and should be a consideration for future
studies. In terms of its remit, this current review has been limited
to the brain alterations associated with adolescent cannabis use,
as indexed by evidence of structural, neurophysiological, and
cognitive performance alterations. There is also a wider body of
evidence regarding the association between adolescent cannabis
use and an increased risk of development of emotional
disturbances, psychosis or addiction, which were not reviewed
here. Future efforts should also attempt to systematically
summarize the longer-term mental health consequences of
adolescent cannabis use and integrate them with biological
evidence that may underpin them.

Important potential confounding factors that have
not always been considered adequately but are worth
consideration include abstinence (119, 129) and tolerance
(177, 178) to the effects of cannabis. Future studies need to
take these factors into consideration at the design stage.
Another important consideration in this context relates to the
issue of cause and effect relationship. In light of the cross-
sectional design of the majority of studies, much of the
currently available human evidence is unable to disentangle
the nature of the relationship between adolescent cannabis use
and neurocognitive alterations, i.e., whether adolescent
cannabis use is a cause or consequence of these alterations or
whether their association is linked to an underlying
predisposition that increases the likelihood of both adolescent
cannabis use and certain neurocognitive outcomes. More
systematic longitudinal studies, which have been limited thus
far, are necessary to start addressing some of these questions.
Other approaches such as sibling/twin study designs (179, 180)
or analytic approaches (4, 179, 181) as have been employed in
the context of cannabis use and other adverse outcomes may
also offer alternative methods of addressing these questions
even in the absence of experimental data that constitute the
gold standard evidence for establishing causal relationships.
Future studies in large samples are also necessary to disentangle
whether different sub-groups of adolescent cannabis users have
differential vulnerability to the effects of cannabis, potentially
mediated by genetic differences (182–185). Future studies also
need to investigate whether the emergence of new cannabis
preparations and increasing use of synthetic cannabis may have
altered the usage patterns in adolescence and resulted in greater
harm from adolescent use.
CONCLUSIONS

While there is growing interest in the therapeutic potential of
cannabis (186–188) and evidence of benefit only for certain
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cannabinoids such as cannabidiol for certain childhood epilepsies
(189, 190), or potential for benefit for neurodevelopmental disorders
such as schizophrenia (191–195) that typically have an onset in late
adolescence and early adulthood, evidence summarized above
indicate the need for caution. This is a particular concern as
specific cannabinoids (such as cannabidiol) with therapeutic
potential are often conflated with cannabis/medicinal cannabis in
the public discourse leading to potential trivialization of possible
harm from cannabis use in adolescent users and reinforcement of
the narrative that cannabis use is a harmless recreational activity in
young people. Collectively, despite the obvious limitations outlined
above, current evidence indicates that adolescence is a sensitive
period during which cannabis use may result in adverse
neurocognitive effects that appear to show a level of permanency
into adulthood.
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