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The apicomplexan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, can
infect all warm-blooded animals. T. gondii can subtly alter host behaviors—either through
manipulation to enhance transmission to the feline definitive host or as a side-effect, or
“constraint,” of infection. In humans, T. gondii infection, either alone or in association with
other co-infecting neurotropic agents, has been reliably associated with both subtle
behavioral changes and, in some cases, severe neuropsychiatric disorders, including
schizophrenia. Research on the potential impact of T. gondii on the behavior of other long-
lived naturally infected hosts is lacking. Recent studies reported a large number of wild red
foxes exhibiting a range of aberrant behavioral traits, subsequently classified as Dopey
Fox Syndrome (DFS). Here we assessed the potential association between T. gondii and/
or other neurotropic agents with DFS. Live, captive foxes within welfare centers were
serologically tested for T. gondii and, if they died naturally, PCR-tested for vulpine
circovirus (FoxCV). Post-mortem pseudo-control wild foxes, obtained from pest
management companies, were PCR-tested for T. gondii, FoxCV, canine distemper
virus (CDV), canine adenovirus type (CAV)-1 and CAV-2. We also assessed, using non-
invasive assays, whether T. gondii–infected foxes showed subtle behavioral alterations as
observed among infected rodent (and other) hosts, including altered activity, risk, and
stress levels. All foxes tested negative for CAV, CDV, CHV, and DogCV. DFS was found to
be associated with singular T. gondii infection (captives vs. pseudo-controls, 33.3% (3/9)
vs. 6.8% (5/74)) and singular FoxCV infection (66.7% (6/9) vs. 11.1% (1/9)) and with T.
gondii/FoxCV co-infection (33.3% (3/9) vs. 11.1% (1/9)). Overall, a higher proportion of
captive foxes had signs of neuroinflammation compared to pseudo-controls (66.7% (4/6)
vs. 11.1% (1/9)). Consistent with behavioral changes seen in infected rodents, T. gondii–
infected foxes displayed increased attraction toward feline odor (n=6 foxes). These
preliminary results suggest that wild foxes with DFS are infected with T. gondii and
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likely co-infected with FoxCV and/or another co-infecting neurotropic agent. Our findings
using this novel system have important implications for our understanding of both the
impact of parasites on mammalian host behavior in general and, potentially, of the
infectious causation of certain neuropsychiatric disorders.
Keywords: neurotropic, inflammation, fox, host, schizophrenia, Toxoplasma gondii, behavior, Dopey Fox Syndrome
INTRODUCTION

The ability of parasites to alter the behavior of their hosts
fascinates both scientists and non-scientists alike. However,
while there are now numerous examples of parasite-altered
behavior among invertebrate hosts (1), there remain few clear
examples of vertebrate host-parasite systems, despite their
potential profound theoretical and applied implications.
Research in this field has, however, begun to shift toward
obtaining a mechanistic understanding of parasite-altered host
behavior. Likewise, interest is gathering on the potential
infectious causation of acute and chronic diseases, and in
particular, the possibility that infection with neurotropic
pathogen(s) may be a contributing factor in the etiology of
some human psychiatric illnesses. Toxoplasma gondii, the
causative agent of toxoplasmosis, is a highly successful
apicomplexan protozoan parasite capable of infecting all
warm-blooded animals. Between 20% and 80% of the global
human population are thought to be seropositive (2). Cats and
their wild relatives (Felidae) are the only known definitive hosts
of T. gondii. Gametogenesis and sexual reproduction of parasites
occurs within the small intestine of infected cats, resulting in the
shedding of oocysts containing infectious sporozoites in the cat’s
feces (3). Asexual reproduction in intermediate hosts (e.g.,
rodents and birds, likely to be predated by felines) and
(accidental) secondary hosts (including humans, livestock, and
other domesticated and wild mammals) is typified by rapidly
dividing motile tachyzoites and slowly dividing sessile
bradyzoites, the latter of which encyst in various tissues
including the brain, heart, and skeletal muscle, potentially
persisting for the lifetime of the host (4). In addition to
congenital transmission (5), and potentially also sexual
transmission (6), all hosts are primarily infected upon
ingesting either oocysts (through contaminated food, soil or
water), or bradyzoite-containing tissue cysts (through eating
raw or undercooked infected meat, including via scavenging or
predation). Since sexual reproduction of T. gondii can be
accomplished only in felines, there are likely to be strong
selective pressures on the parasite to evolve mechanisms to
enhance transmission from the intermediate host to the
definitive feline host. The predilection of T. gondii for the
brain also places this parasite in a privileged position to
specifically manipulate intermediate host behavior in order to
enhance transmission (7, 8). On the same premise, the
localization of T. gondii in the brain may be predicted to alter
the behavior of other infected secondary host species. In this
case, behavioral alterations do not occur via selective
manipulation to enhance transmission but do so as a “by-
g 2
product” of infection, even if of no current adaptive value to
the parasite. Therefore, from an evolutionary selection
perspective, the latter can thus be referred to as “parasite
constraint” rather than “parasite manipulation” (9).

The severe sequalae of congenital infection, as well as post-
natal or adult-acquired infections among immunosuppressed
humans and animals, are well established (10, 11). However,
there is now also a compelling and convincing body of evidence
demonstrating, often subtle, changes in behavior associated with
latent T. gondii postnatally and/or perinatally acquired infections
across both rodent intermediate hosts, consistent with parasite
manipulation (9) and human secondary hosts, consistent with
parasite constraint (12). For example, both wild and laboratory-
bred rats, Rattus norvegicus, infected with T. gondii exhibit
higher activity or exploratory levels and, under particular
conditions, an increased propensity to be trapped in cages
relative to their uninfected counterparts (13, 14). T. gondii–
infected rodents have also been shown to be less vigilant of
predators (7, 8, 13–20) and, most notably, T. gondii infection
appears to manipulate the perception of infected rodents to cat
urine, whereby their strong innate aversion becomes a suicidal
“fatal feline attraction” (21, 22). Such attraction appears to be
specific to cat odor (urine), since infection has been
demonstrated not to affect behavioral responses to odors of
other non-predatory (such as rabbits) nor predatory (such as
dogs or mink) mammals (23, 24). Similarly in humans with
adult-acquired latent toxoplasmosis, research has demonstrated
behavioral changes akin to that seen in infected rodent
intermediate hosts (e.g. increased activity and decreased
reaction times), and changes in human-specific traits including
personality profiles (7, 12, 25–28). Furthermore, observational
studies suggest that individuals with latent toxoplasmosis may be
at increased risk of road traffic accidents compared to the
uninfected general population, potentially consistent with
increased risk-taking and/or diminished psychomotor
performance (25, 29–32). T. gondii–infected male undergraduate
students have even been demonstrated to rate the odor of domestic
cats as more pleasant compared to uninfected individuals,
suggesting that increased feline attraction may occur in infected
secondary as well as intermediate hosts (33).

While the potential mechanism(s) of action regarding
T. gondii’s ability to alter host behavior remains largely
unknown, as is the situation across parasite-induced behavioral
change in vertebrates in general (34), evidence from rodent
models suggests that this behavioral alteration is specific to
T. gondii rather than resulting from a generalized response to
parasitic infection. For example, no such behavioral changes were
observed in rodents infected with other directly transmitted
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https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Milne et al. Infectious Causation of Abnormal Host Behavior
parasites infections, including those associated with encephalitis,
and all other key indicators of fitness, from body condition to
social status, have been demonstrated to be indistinguishable
from those of uninfected rodent (19, 35). There is, however,
gathering evidence on the role of neuromodulation in
behavioral change associated with T. gondii infection across
both rodents and humans (36). Recent in vitro and in vivo
research shows that, for example, T. gondii alters dopamine
levels within the host brain. Moreover, it has been shown that
the parasite’s genome contains two genes which encode tyrosine
hydrolase, the enzyme which converts tryptophan to the
dopamine precursor, L-DOPA (34, 37, 38). Expression of one of
these genes is induced in the bradyzoite stage, resulting in a
concentration of dopamine up to 3.5 times higher in T. gondii–
infected compared to uninfected cells (38). T. gondii–infected cells
often occupy key positions at functional synapses (39) and may
therefore have considerable local influence on dopaminergic
signaling. These findings are therefore consistent with a higher
prevalence of schizophrenia in T. gondii latently infected
populations (40–42), since dopamine dysregulation is a key
characteristic of schizophrenia (43).

Physiological changes resulting from infection in
intermediate rodent hosts likely have broader implications for
infection of other host species. While rodents may be a suitable
short-lived intermediate host model for understanding T. gondii-
host interactions—and specific manipulation—one may predict
similar behavior changes but also a range of other nonadaptive
“unintended” consequences in longer lived hosts. Accordingly,
analogous to the aberrant behavior of infected rodents,
behavioral changes have been documented in, for example,
California sea otters, Enhydra lutris nereis, where those with
moderate to severe toxoplasmic encephalitis are at a 3.7 times
higher risk of shark attack than T. gondii-uninfected conspecifics
(44). Similarly, in humans, mounting evidence has associated
T. gondii infection with a range of neurological disorders
including addiction (42), bipolar disorder (42, 45), epilepsy
(46–48) and most compellingly, schizophrenia (9, 40–42, 49–
51). Indeed, the association of T. gondii with schizophrenia is of
substantial current concern (21, 41, 42, 50) and one that cannot
be thoroughly investigated given current animal models. While
rodent studies to date, from both the laboratory and field, have
provided a great deal of information relevant to the T. gondii
model of schizophrenia [e.g. (9, 50)], there remains a need for
further work on infections in naturally longer-lived mammalian
hosts (relative to rodents), especially those likely to be repeatedly
exposed to T. gondii from multiple sources.

The red fox Vulpes vulpes may provide key research
opportunities to further understand the impact of T. gondii
(and co-infecting neurotropic pathogens) on the behavior of
longer-lived hosts for several reasons. Wild foxes often have high
seroprevalences of T. gondii with for example, 35%
seroprevalence found in populations in Austria (52) and 100%
in Czech Republic (53). This is consistent with high levels of
exposure to the parasite often seen in human populations: for
example in Brazil, human population seroprevalence can reach
up to 80–90% (54, 55), in France 89% (56) and in Northern
Frontiers in Psychiatry | www.frontiersin.org 3
Ireland 85% (57). Wild foxes also have longer lifespans relative to
the commonly studied rodent animal models, allowing time for
the accumulation of by-product effects of neurotropic infection
that are seen in humans. Similarly, akin to human transmission,
foxes acquire “trickle” infections—low level persistent re-
exposure to the parasite—from a variety of sources, including
via accidental ingestion of oocysts (e.g. via environmental
contamination of food, water sources) and bradyzoites (via
carnivory of a variety of infected wildlife). Perhaps, however,
most notable of all, a presentation of clinical neurological signs
has been recently characterized in red foxes, coined Dopey Fox
Syndrome (DFS), for which the causative agent(s) remain(s)
undetermined (58). Wild foxes with DFS have been reported to
exhibit a range of abnormal behavioral traits, many of which are
consistent with behaviors seen in T. gondii–infected rodents,
including an apparent lack of fear and increased affection (59).
Further pathological behavioral symptoms observed within DFS
foxes include, but are not exclusive to, constant pacing, facial
muscle twitching and anorexia. A minority of foxes with DFS
also have encephalitis as well as visual abnormalities and/or
blindness (59), consistent with ocular T. gondii infection (60).

Alternative, though not necessarily conflicting, hypotheses
are that DFS may result from infection with an alternative
infectious agent or from co-infection of T. gondii with another
neurotropic agent in a “two-hit” manner (50). A two-hit model,
which could encompass either gene-environment interactions
and/or the combined effects of two co-infecting agents, has been
proposed for certain T. gondii-associated behavioral alterations
in animals and for some human neuropsychiatric disorders (50).
For example, in a large cohort study, co-infection with T. gondii
and other neurotropic agents, including CMV, measles, and
vaccina viruses, but not singular infections, predicted an 18%
to 34% increased risk of schizophrenia (61) [for meta-analyses
see (62, 63)]. Several infectious inflammatory encephalitides of
canids have been reported, including, for example, rabies virus,
canine distemper virus (CDV) and a recently detected Borna
disease virus (BoDV-1) (64–66). Members of the families
Adenoviridae and Herpesviridae are also known to cause
neurologic signs as part of a systemic disease process (67).
Notably, circovirus is a pathogen that has been recently
reported to neurologically affect foxes, with a recent study
demonstrating a high prevalence of circovirus infection
among UK wild foxes with unexplained meningoencephalitis
(59). This fox-specific circovirus (FoxCV) is distinct from
the dog circovirus (DogCV) that infects the domestic dog
(Canis familiaris) (68). As circoviruses are known to have
immunosuppressive effects (69), one could predict that these
infections may occur in concert with other neurotropic agents
and may therefore be associated with behavioral alterations
in hosts.

Red foxes may therefore be a highly appropriate natural
system to help elucidate the potential impact of T. gondii on
longer-lived host organisms (such as humans), as well as to
increase our understanding of the impact of neurotropic
pathogens on mammalian host behavior in general. Here, we
present preliminary data from a series of recent pilot studies,
September 2020 | Volume 11 | Article 513536
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which aimed to test the hypotheses that DFS in wild red foxes is
caused by: (a) T. gondii infection; (b) another neurotropic agent;
and/or (c) T. gondii co-infection with another neurotropic agent
(part of the “two-hit” hypothesis). We addressed these questions
using a battery of diagnostic tests and non-invasive behavioral
assays, comparing results between (i) foxes with DFS and other
foxes maintained in welfare sanctuaries; and (ii) “pseudo-
control” foxes provided by local pest control agencies.
MATERIALS AND METHODS

Ethical Approvals
Full ethical approvals were provided by the Royal Veterinary
College Clinical Research and Ethical Review Board (CREB)
(URN numbers: 2018 RP2_004-2 and 2017 RP2_1768-3). As all
behavioral studies performed on captive foxes were non-invasive
and non-stress inducing, and no animals were euthanized for the
research, there was no need for home office PIL or PPL licensing.
Captive foxes were those caught from the wild, brought into and
—where rehabilitation and release were not possible—
maintained within large outdoor enclosures within local fox
sanctuaries. Serological material from living foxes was collected
by local veterinarians as part of routine health screening.
Additional material for identifying alternative infectious agents
was supplied by routine fox cadavers, brought into the RVC from
local pest control services and any foxes dying or being humanely
euthanized independently from this research within the
collaborating fox welfare sanctuaries (National Fox Welfare
Society and the Gin Pat Trust).

Fox Populations
During the study period, the rescue centers had fewer than 30
foxes in each center, both of which are located in
Northamptonshire, UK. Foxes arrived at these sanctuaries
when they have been found injured or diseased; many had
been involved in road traffic accidents or had neurological
abnormalities indicative of DFS. The pens were a variety of
sizes but averaged approximately 5 × 10 m and housed between
two to six foxes. Foxes showing signs of illness were serologically
tested for T. gondii and other infections as part of their general
health screening. Foxes that were returned to fitness were
released via hard release sites at their point of capture, or via
soft release sites by opening the door to their pen. Cadavers
(n=9) were obtained opportunistically from captive fox
populations following humane euthanasia only in cases where
welfare was compromised and where recovery was deemed not
possible by consulting veterinarians.

A London-based pest control company provided cadavers
(n=74). We used these wild caught foxes as a proxy for a
“healthy” control group for comparison to the captive foxes.
Hereafter we will refer to this group as pseudo-controls, since we
acknowledge that foxes shot by pest control may be, for example,
younger and/or less risk-averse relative to the average free-living
wild fox population.
Frontiers in Psychiatry | www.frontiersin.org 4
Necropsy Examinations
A total of 83 foxes underwent full gross necropsy examination
(74 pseudo-controls and nine captive foxes). A full external
examination, which included sexing and ageing (70) was
performed on all foxes. Gross lesions and signs of parasitic
infection seen during the necropsy examination were recorded.
Tissues were sampled from the brain (71). The head was
detached by breaking the atlanto-occipital joint. The brain was
externalized, and samples were taken of rostral cerebrum, mid
cerebrum including hippocampus and amygdala and cerebellum
including brainstem. The samples were then divided to be either:
i) frozen at −80°C (and/or placed in RNAlater) for subsequent
PCR testing; or ii) fixed in 10% neutral-buffered formalin for
subsequent pathology.

Determining Fox Infection Status
Sample Preparation
DNA was extracted from approximately 1 to 2 g homogenized
cerebrum of 83 fox brains (74 pseudo-control samples and nine
captive samples) using a previously described protocol (72).
Extraction controls, processed identically to homogenized tissue,
were used to monitor for potential cross-sample contamination.

RNA extractions from brain tissue for detecting other
potentially co-infecting neurotropic agents were performed
using the RNeasy Mini Kit (Quiagen) according to the
manufacturer’s instructions, with some modifications as follows.
After determining unacceptable levels of contamination via
spectrophotometry for 30 mg brain tissue in 600 ml RLT buffer
(excluded from analyses), 200 ml of the tissue-in-saline
homogenate prepared for DNA extraction was mixed with 600
ml RLT buffer. RNA was eluted with 50 ml nuclease-free water and
stored at −80°C.

Reverse transcription was performed to a reaction volume of
20 ml. Final reaction concentrations were as follows: 1× ImProm-
II reaction buffer (Promega), 3 mMmagnesium chloride, 0.5 mM
dNTPs, and 1 µ ImProm-II Reverse Transcriptase (Promega).
Briefly, 5 ml of RNA was incubated with 1 ml (0.5 mg) random
hexamer primers at 70°C for 10 min, and then cooled on ice for
5 min. Reactions were incubated with Master Mix at 37°C for 1 h.
cDNA was stored at −20°C for short-term and −80°C for long-
term storage.

T. gondii Serology
To test the hypothesis that the aberrant behavior of foxes
with DFS is associated with T. gondii infection (either alone
or in combination with other neurotropic agent(s)), the
seroprevalence of T. gondii in 21 captive foxes was evaluated in
relation to behavioral profiles. Sera were obtained from live
captive foxes by local veterinarians/rescue centers undertaking
routine health screening testing (and/or at necropsy if any fox
required euthanasia). T. gondii antibodies (IgG and IgM)
were detected using a combination of commercial enzyme-
linked immunosorbent assays (ELISA) (IDEXX) and Indirect
Latex Agglutination Tests (ILAT) (Toxoreagent; MAST). For
both the ELISA and ILAT, titers of ≥1:32 were considered
September 2020 | Volume 11 | Article 513536
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positive [full details, including validation, has been published
previously (21)].

T. gondii PCR
A nested PCR was performed using DNA extracted from 83 fox
brains (74 pseudo-control samples and nine captive samples),
targeting the internal transcribed spacer 1 (ITS1) region between
the 18S and 5.8S rRNA genes of T. gondii. PCR amplifications
were carried out in quadruplicate to improve sensitivity, using
conditions described previously (72) (Tables 1, 2). Extraction
controls as well as negative and positive controls were included
in each PCR.

(Co)-Infection With Other Neurotropic Agents
To test the hypothesis that the aberrant behavior of foxes with
DFS is associated with infection with a neurotropic agent other
than T. gondii, either alone or in combination with T. gondii
(two-hit model), we developed a multiplex assay which was
performed on nucleic acid extracted from 18 fox brains (nine
of each pseudo-controls and captives). The following pathogens
were targeted due to their documented high prevalence in wild
foxes and/or ability to cause neurological symptoms in other host
species, using serological analyses and in-house PCR assays:
canine-specific circovirus (DogCV) (76), the novel fox-specific
circovirus (FoxCV) (59), canine herpes virus (CHV), canine
distemper virus (CDV) (75) and infectious canine hepatitis
caused by canine adenovirus type 1 and 2 (CAV-1, -2) (74).
The reference gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was amplified from all tissue samples to ensure the
quality of nucleic acid extractions (73). A nested PCR was added
to the protocol to detect Angiostrongylus vasorum after finding
evidence of parasitic infection.

Where positive controls were not available for DogCV, and
FoxCV PCRs, plasmids were constructed using the Invitrogen
Frontiers in Psychiatry | www.frontiersin.org 5
GeneArt service (ThermoFisher Scientific). Conventional PCR
reactions were performed with 2 ml cDNA or gDNA to a final
reaction volume of 50 ml, with the following reagent
concentrations: 1× GoTaq reaction buffer (Promega), 0.5 mM
each forward and reverse primers, 0.2 mM dNTPs, and 1 unit/ml
GoTaq enzyme (Promega). Magnesium chloride concentrations
varied as follows: GAPDH (2.5 mM), CAV (1.5 mM), CDV (2.5
mM), CHV (2 mM) and A. vasorum (1.5 mM) (77). Reagent
concentrations for qPCR reactions were as follows: 1× JumpStart
Taq ReadyMix (Sigma-Aldrich), 0.5 mM of each forward and
reverse primers, 0.25 mM of the appropriate conventional
hydrolysis probe, and 1 ml gDNA to a final reaction volume of
50 ml. Primer and probe specifications for all PCR reactions are
listed in Table 1.

All conventional PCR assays were performed using GoTaq
with an initial step of 95°C for 5 min and a final extension of
72°C for 10 min. All other cycling parameters, including those
for qPCR assays, can be found in Table 2. End-point PCR
products were visualized on agarose gel for all relevant targets
(all but DogCV and FoxCV; Table 2). For qPCR targets—
DogCV and FoxCV—positive control plasmids were validated,
and a 10-fold dilution series was established to obtain an
absolute detection limit and an internal standard curve for
qPCR analysis. Brain tissue samples that amplified by 36 cycles
(100–1000 template copies) were considered positive,
with any signal obtained between 36 and 38 considered
potentially positive.

Sequencing
FoxCV qPCR products from two individuals (N2 and N3) were
sent to the Medical Research Council Protein Phosphorylation
and Ubiquitylation Unit (MRC PPU) for sequencing. Two
reactions were analyzed: one with each forward (VS756) and
reverse (VS757) primers.
TABLE 1 | Primer and probe sequences for PCR assays.

Assay F primer, R primer, probe Sequence 5′ to 3′ Reference

Reference gene GAPDH1
GAPDH2

GCC AAA AGG GTC ATC ATC TC
GGC CAT CCA CAG TCT TCT

(73)

CAV-1, -2 VP1
VP2

CTG GGC GGG ATT TAG AGG GTG G
CAA GGG CGT GGG CGG AGT TAG A

(74)

CDV DISTF (p1)
DISTR (p2)

ACA GGA TTG CTG AGG ACC TAT
CAA GAT AAC CAT GTA CGG TGC

(74, 75)

CHV HERP1 (CHV-1)
HERP2 (CHV-2)

AAG AGC TCG TGT TAG TGA AAA T
TAA ACC CGC TGG ATG ATA C

(74)

DogCV Dog-CV-Forward
Dog-CV-Reverse
Dog-CV-probe

CCT GCG AGA GCT GCT CCT TAT AT
CTC CAC TTC CGT CTT CCA GTT C
FAM-TCC GGA GAT GAC CAC GCC CC- TAMRA*

(76)

FoxCV VS756
VS757
VS758

TCC GAG ATA GCC GGC GTG GTA
CCC GGC CAC AGA TCA AGT ACT TA
FAM-ATC CAA CTC CGG AGG AGG AGG A-TAMRAł

(59)

T. gondii first round NN1
NN2

TCA ACC TTT GAA TCC AAA
CGA GCC AAG ACA TCC ATT

(72)

T. gondii second round Tg-NP1
Tg-NP2

GTG ATA GTA TCG AAA GGT AT
ACT CTC TCT CAA ATG TTC CT

(72)

A. vasorum Nad3-F1
Nad3-R1

ATC GTG AGA TAG AAT TGT TTA TCT TG
CCA ACT CTA CAC CAA TCA CAT CAA C

(77)
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Brain Histology
We next aimed to determine whether the aberrant behavior of
foxes with DFS was associated with neurotropic inflammation,
and whether this inflammation was associated with specific
neurotropic agents. To do this, inflammation was assessed in
relation to group (pseudo-control and captive) and species of
infecting neurotropic agent. Fixed brains were sectioned
transversely including representative portions of cerebral
cortex, with the inclusion of midbrain with thalamus and
hypothalamus, cerebellum and brain stem. Sections were cut at
4 µM (RVC Diagnostic Laboratories) and brain tissues
stained with hematoxylin and eosin, Giemsa and Periodic
acid–Schiff. Sections were systematically evaluated for: a)
distribution, degree, and character of inflammation and
degenerative change; and b) the presence of parasite cysts or
free T. gondii zoites.

To compare brain inflammation between pseudo-control and
captive foxes, brain sections were taken for histological analysis
from T. gondii positive and negative individuals of the same age,
sex, and body condition score, for a total of 15 samples (nine
Frontiers in Psychiatry | www.frontiersin.org 6
pseudo-controls and six captives). Two slides were prepared for
each brain, one containing the amygdala and one containing
the nucleus accumbens. The former brain region was included
due to its known association with emotional responses;
including, notably, the role of the amygdala in fear processing
(37). Likewise, though inconsistent, there is evidence of a
potential tropism of cysts for amygdalar regions, which may in
turn be associated with host behavioral changes (23, 78). The
nucleus accumbens was also included due to its role in
motivation, reward, pleasure, and fear and its predicted—
though inconsistently shown—involvement in T. gondii-altered
behavior (78).

Slides from the nucleus accumbens were made following an
incision rostral to the thalamus and caudal to the olfactory bulb.
Amygdala slides were made following cutting through the
center of the rostral quarter of the thalamus. Stained sections
were taken for microscopic examination by a board-certified
veterinary pathologist.

Fox Behavior in Relation to T. gondii
Infection Status
To determine whether T. gondii–infected captive foxes displayed
behavioral alteration similar to those seen in T. gondii–infected
intermediate rodent hosts, a modified, ethically appropriate form
of the “fatal feline attraction” behavioral assay was performed
within large outdoor enclosures (20–22). Testing for FoxCV
could not be performed in live foxes since no specific
serological test yet exists, and current DogCV serology does
not cross-react to FoxCV (see Results). Of particularly pertinence
is the observation that several of the T. gondii–infected foxes
admitted to rescue centers had facial wounds indicative of cat
attacks. Whether this increased proximity to cats may be simply
related to, for instance, increased scavenging or increased risk
behavior, or akin to the T. gondii-specific “fatal-feline-
attraction,” was yet to be determined.

We recorded the continuous exploratory behavior of six
randomly selected T. gondii seropositive captive foxes in 52 m
pens (or matched equivalent). Following our previously
published protocol (22), the ground was covered with
woodchips and the layer changed between each test iteration.
Assays were initially performed between 10:30–12:30 and 14:30–
16:30, however due to low fox activity levels and the crepuscular
nature of the animals, assays were subsequently performed
between 19:00 and 21:00.

The pens were split into four equal sized quadrants. Each
quadrant contained a covered area for hiding, a water bowl and
objects for behavioral enrichment (e.g. tunnel or stuffed toy).
There was a neutral zone in the middle of the pen with no scent,
which contained the drinking water, food, and most behavioral
enrichment objects. The total time an individual spent in a zone
was recorded (continuous sampling) and the zonal location of
the individual at the end of each 5-min time interval (point
sampling) was also recorded (79).

Dog and cat urine were obtained from veterinary practices.
Dog urine was chosen because it has been shown that fatal feline
attraction is specific to felines rather than being a general
TABLE 2 | Target genes and cycling conditions for PCR assays.

Assay Target gene Amplicon
size (bp)

Cycling
parameters*

Reference

Reference
gene

GAPDH 250 35 cycles:
95°C—1 min
55°C—40 s
72°C—1 min

(73)

CAV-1, -2 Capsid protein 704 35 cycles:
95°C—1 min
60°C— 40 s
72°C—1 min

(74)

CDV Nucleoprotein 287 35 cycles:
95°C—1 min
55°C—40 s
72°C—1 min

(74, 75)

CHV Homologous region to
UL37 of HSV-1**

494 35 cycles:
95°C—1 min
49°C—40 s
72°C—1 min

(74)

DogCV Rolling circle replicator
initiator protein gene

66 Initiation: 94°
C—2 min
40 cycles:
94°C—15 s
60°C—1 min

(76)

FoxCV Rolling circle replicator
initiator protein gene

126 Initiation: 94°
C—2 min
40 cycles:
94°C—15 s
60°C—1 min

(59)

T. gondii ITS1 227 35 cycles:
95°C—1 min
55°C—1 min
72°C—1 min

(72)

A.
vasorum

Full NADH3 and partial
rrnL genes

438 40 cycles:
95°C—30 s
55°C—30 s
72°C—1 min

(77)
*Unless otherwise indicated, each round began with a denaturation step by heating to
95°C for 5 min and ended with a final extension at 72°C for 5 min. Cycling conditions were
similar for rounds 1 and 2.
**Herpes simplex virus type 1.
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response to mammalian predators (20). Moreover, dog odor has
also been used before as a control scent in previous “fatal feline
attraction” studies in mammals (20, 23, 80). By using this
approach, we also avoided including odor from a fox prey
animal (e.g. rabbit). Species-specific urine was pooled to
minimize inter-individual differences, since castrated cats have
been shown to be less attractive to T. gondii–infected rats (81–
83). The water bowls of two quadrants were mixed with 20 drops
of dog urine and the water bowls of the remaining two quadrants
mixed with 20 drops of cat urine. Bowls containing cat urine
were placed diagonally opposite to one another to limit bias due
to foxes avoiding zones near to the observer.

Foxes were observed for 2 to 4 h to assess baseline behavior.
Then, over 2 h we recorded the relative amount of time each fox
spent in different zones using a continuous sampling approach
(79). Wherever possible, the observer was blinded to T. gondii
infection status of individuals. Behaviors such as spinning,
grooming or digging were noted. Control experiments were
performed by observing the behavior of foxes in the absence of
dog or cat urine in water bowls. Foxes were observed for a total of
42 h (18 h control group and 24 h treatment group).

Biomarkers of Stress in Relation to Fox
T. gondii Infections Status
While it has been proposed that T. gondii infection results in the
alteration of anxiety levels, which may be responsible for
behavioral changes, to our knowledge, no studies to date have
explicitly tested this question. As chronic cortisol may be
predicted to be an indicator of differential long-term anxiety
profiles, we examined whether this phenomenon was observed in
secondary fox hosts by detecting chronic stress levels through
cortisol competitive immunoassays performed on fur samples
(Salimetrics, #1-3002). Fur samples were chosen since it has been
demonstrated that fur (and hair) reliably indicates long-term
average cortisol levels, instead of providing a measure of acute
stressors as do other samples including blood and saliva (84–86);
the latter of which would be expected to be particularly biased
since sampling methods for obtaining blood or saliva can stress
the animal and lead to temporary cortisol release, independent of
its longer term profile (87, 88).

A minimum of two 12 inch samples of fur were taken from the
thigh muscle region of each animal, at consistent distances from
the hair follicle (to minimize sampling variation in cortisol
concentration across the hair length) and stored at −20°C. The
color of each fur sample was recorded, as this may impact the
cortisol reading. Blood-stained regions of fur were avoided. Fur
samples were ground using a Retsch MM300 ball mill (30
rotations/s, 40 min). The ground fur was added to 2 ml
methanol and left overnight at room temperature for 19 h on a
horizontal orbit microplate shaker (0.12” orbit, 150 ± 50 rpm).
The methanol was placed in Eppendorf tubes and tube lids
pierced to allow evaporation to dryness (50°C, 2 h). Samples were
re-suspended in 100 ml assay diluent and loaded onto a plate
coated with cortisol antibody and horseradish peroxidase
conjugate. The rest of the assay was performed according to
the manufacturer’s instructions (Salimetrics, #1-3002). To
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calculate the intra-assay coefficient of variance, an internal
control cortisol standard was measured several times, giving a
value of 9.03%.

Statistical Analyses
All statistical analyses were performed in R (89). We used chi-
square tests to assess the difference in the proportion of pseudo-
control and captive foxes testing positive for: T. gondii infection
alone, infection with alternative neurotropic agent(s), and T.
gondii co-infection with another neurotropic agent. Chi-square
tests were also used to compare the proportion of pseudo-control
vs. captive foxes with evident signs of histological inflammation
according to infection with specific neurotropic agents. We used
the Friedman test to analyze the amount of time T. gondii-
positive foxes spent in cat odor zones relative to dog odor zones
in behavioral assays, in order to account for the non-normal data
distribution and the repeated measures performed on individual.
A chi-square test was performed to determine differences in
cortisol concentration according to T. gondii infection status. For
analyses using matched pairs of foxes, Wilcoxon signed-rank
tests were used. Due to small sample sizes, test conditions for
conventional chi-square tests could not be satisfied. Hence, to
calculate p values Monte Carlo simulations were performed—
each with 1000 replicates—by creating a reference distribution
through random sample generation and comparison of our data
to this reference (90). For this reason, degrees of freedom were
not specified for this test.
RESULTS

Toxoplasma gondii and Alternative
(Co-) Infectious Agent Status
To test whether DFS was associated with T. gondii infection, we
compared the prevalence of infection in captive to pseudo-
control populations. Overall, 6.8% (5/74) of pseudo-control
foxes and 33.3% (3/9) of captive foxes tested positive for
T. gondii by PCR, suggesting quite strong evidence of a
difference between groups (c2 = 6.51, p = 0.037). Furthermore,
66.7% (14/21) of captive foxes (longitudinally serologically tested
for T. gondii infection) tested seropositive for T. gondii exposure
by ELISA during at least one time point. Interestingly, two foxes
showed evidence of IgG seroreversion; one of these foxes had two
sequential tests performed over 10 days.

We next considered whether DFS may be instead associated
with neurotropic agent(s) other than T. gondii (or in
combination with, see below) in a small sample of pseudo-
control and captive foxes, matched for age, sex, and body
condition score, in addition to identifying histological signs
of inflammation (Table 3). Only captive foxes with severely
compromised welfare were humanely euthanized (independently
of the current study), and hence, PCR testing could not be
performed on living captives. Of the captive foxes (where N
denotes neurologically affected (captive) foxes), N1, N5, and N9
were negative for all infectious agents tested, suggesting an
alternative and thus far undetermined, possibly non-infectious,
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etiology for their clinical signs. Formalin-fixed samples were not
available from N1 and N5 for histological analysis. For N9, no
histological signs of neuroinflammation were noted. Captive
foxes N3 and N6 were positive for vulpine circovirus (FoxCV)
alone in brain tissue; pseudo-control foxes (where C denotes
control foxes) C2 and C6 returned borderline results, defined as
amplifying close to the assay cycle threshold cut-off with low
efficiency and with two of the triplicate reactions returning signal
(these samples were considered negative in all subsequent
analyses). Of note, no FoxCV PCR-positive foxes tested
positive for DogCV exposure by ELISA, indicating little to no
cross-reactivity of the DogCV ELISA with a related circovirus
species. Considering all captive foxes for which FoxCV tests had
been performed, there was reasonably strong evidence of a higher
FoxCV prevalence in captives versus matched pseudo-controls
(66.7% (6/9) and 11.1% (1/9) respectively; c2 = 5.84, p = 0.038;
Table 3).

Having confirmed that DFS was associated with both
T. gondii and FoxCV infection, we next looked to determine
whether prevalence of co-infection differed between captive and
pseudo-control fox populations, and thus whether DFS could
result from neurotropic co-infection. Both the captive and
pseudo-control populations showed a degree of co-infection:
N2, N4, and N7 were positive for both FoxCV and T. gondii;
and N8 and C1 were positive for both FoxCV and A. vasorum
(C1 was also co-infected with T. gondii) (Table 3). There was a
higher prevalence of co-infection with any agent in captive
compared to pseudo-control foxes, with respective estimates of
44.4% (4/9; 3 FoxCV/T. gondii, 1 FoxCV/A. vasorum) and 11.1%
(1/9; FoxCV/T. gondii/A. vasorum) (c2 = 2.49, p = 0.30). The
Frontiers in Psychiatry | www.frontiersin.org 8
overall prevalence of T. gondii/FoxCV co-infection in captive
compared to pseudo-control foxes was 33.3% (3/9) vs. 11.1% (1/
9) (c2 = 1.29, p = 0.57).

Sequencing of FoxCV PCR products from N2 and N3
confirmed specificity of the primers and amplification of the
expected region of the genome. BLAST searches revealed 94%
sequence identity with the three strains previously documented
(48) (GenBank accession nos. KP260925–7) and 92% sequence
identity with DogCV strains documented by Li and colleagues
(61) (GenBank accession nos. KC241982–4).
Gross Necropsy Examination
and Histology
To determine whether DFS was associated with neurological
inflammation, gross necropsy was performed on a total of 83
foxes. For 15 foxes (six captive neurologically affected foxes and
nine pseudo-control foxes), paired histology and infection status
data were available for a range of neurotropic agents, excluding
three captive foxes for which there were no formalin fixed
samples (excluded from further analysis). Histological evidence
of non-suppurative inflammation was detected in 5 samples:
N2, N4, N6, and N8 showed lesions consistent with
meningoencephalitis largely centered on the grey matter
(polioencephalitis) (Figures 1–4), while C1 showed meningitis
alone without concurrent involvement of the neuropil (Figure
5). All five affected tissues displayed prominent perivascular
cuffing of inflammatory cells, with varying degrees of
infiltration of the neuropil. Inflammatory infiltrates ranged
from mainly lymphocytic (N2, Figure 1) to mixed
lymphoplasmacytic (N4, Figures 2, 3; N8, Figure 4). Changes
included mild gliosis, mild satellitosis, and neuronal changes,
including hypereosinophilia, shrinkage, and angular cell bodies
indicative of degeneration. N4 in particular showed marked
effacement of the normal hippocampal architecture (Figure 2).
On histological examination of sections from N8 (Figure 4), the
presence of an intravascular larva was noted, prompting the
addition of the A. vasorum PCR assay.

Overall, histological inflammation was not evident for any of
the six fox samples that were negative for all pathogens tested (5/
9 pseudo-controls and 1/6 captives). Of the remaining nine foxes,
eight were positive for FoxCV (five captives and three pseudo-
controls). 80% (4/5) of FoxCV-infected captive foxes showed
signs of histological inflammation (observed in in 2/3 cases of T.
gondii/FoxCV co-infection, one singular FoxCV case, and one
case of FoxCV/A. vasorum co-infection). 33.3% (1/3) of FoxCV-
infected pseudo-controls showed signs of histological
inflammation (FoxCV/T. gondii/A. vasorum co-infection).
Singular FoxCV infection did not result in evident histological
inflammation for C2 nor C6; but inflammation was observed for
N6 which had particularly high FoxCV cerebral copy numbers
(Table 3). There were no cases of singular infection with T.
gondii—all 4 cases occurred in FoxCV-positive subjects. C3 was
singularly infected with A. vasorum without evident histological
inflammation. Therefore, 66.7% (4/6) of captive foxes showed
signs of histological inflammation compared to 11.1% (1/9) of
pseudo-control foxes (c2 = 5, p = 0.084).
TABLE 3 | PCR and histology for foxes tested for various neurotropic pathogens
using brain samples.

Fox ID FoxCV* T. gondii A. vasorum Histological inflammation

N1 − − − N/A
N2 2.6 × 104 + − +
N3 265 − − N/A
N4 2072 + − +
N5 − − − N/A
N6 6.0 × 106 − − +
N7 492 + − −

N8 25 − + +
N9 − − − −

C1 237 + + +
C2 28† − − −

C3 − − + −

C4 − − − −

C5 − − − −

C6 13† − − −

C7 − − − −

C8 − − − −

C9 − − − −
Template copy numbers are listed for quantitative PCR reactions (FoxCV). Positive and
negative symbols indicate results from end-point PCR reactions and assessment of
histological inflammation. Fox IDs N1-9 indicate neurologically affected captive foxes and
C1-9 indicate (presumed healthy) cull pseudo-control foxes. N/A, not available.
*Detection limit 10−100 template copies.
†Borderline results amplifying close to the cycle threshold with low efficiency and with two
of the triplicate reactions returning signal. Considered as negative in analyses.
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Fox Behavior in Relation to Infection Status
We next examined whether the fatal feline attraction behavior
seen in T. gondii–infected rodent intermediate hosts is also found
in T. gondii–infected foxes with DFS, using a modified version of
Frontiers in Psychiatry | www.frontiersin.org 9
a previously validated behavioral assay (22–24). Using a point-
sampling approach in which six T. gondii–infected fox’s zonal
location was recorded every 5 min, there was no evidence of a
difference between the number of entries that foxes made into
FIGURE 1 | N2, H&E stain, 100×: Inflammation of the superficial grey matter with primarily lymphocytic infiltrates (non-suppurative polioencephalitis; arrowhead) with
meningitis (arrow). Moderate gliosis and satellitosis are also present. At higher magnifications, shrunken, angular, hyper-eosinophilic neuronal cell bodies are
observed, consistent with neuronal degeneration and early necrosis.
FIGURE 2 | N4, H&E stain, 40×: Non-suppurative encephalitis at the border of the cortical white and gray matter. Inflammatory infiltrates are primarily lymphocytic,
with a small proportion of plasma cells. The arrowhead indicates the border where the normal structure of the hippocampus becomes disrupted by infiltrating
inflammatory cells.
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either the dog or cat zones before any odor was added versus
after (Both dog and cat odor zones: c2 = 12, p = 1). However,
after odor was added, there was suggestive evidence for an
increased number of entries into the cat odor zones, relative to
that within the dog odor zones (Friedman test: df = 20, p = 0.06).
Frontiers in Psychiatry | www.frontiersin.org 10
Biomarkers of Stress in Relation to Fox
T. gondii Infection Status
The cortisol content of fox fur was determined using a
commercially available cortisol ELISA, as described previously
for badger and dog (91, 92). Two samples were unavailable for T.
FIGURE 3 | N4, H&E stain, 400×: Perivascular “cuff” composed primarily of lymphocytes (arrows) and plasma cells (arrowheads) filling the Virchow-Robins space.
FIGURE 4 | N8, H&E stain, 40×: Longitudinal section of Angiostrongylus vasorum larva within a blood vessel (arrow). Low numbers of lymphocytes, plasma cells
and macrophages are present around the vessel. The presence of aberrant A. vasorum migration in the brain was confirmed with PCR. Multifocal hemorrhages and
hemosiderin pigment were noted and suspected to be associated with aberrant larval migration.
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gondii PCR testing because the brains were damaged during
culling, leaving a total sample size of 65 pseudo-control foxes for
which paired data were available on cortisol concentrations and
T. gondii infection status. Cortisol concentrations followed a left-
skewed distribution, with an interquartile range of 3.53–7.93 mg/
dl and median of 7.93 mg/dl (overall range 1.39, 30.48 mg/dl).
There was no evidence of a difference in cortisol concentrations
between T. gondii-negative and T. gondii-positive foxes (c2 = 65,
p = 0.89). However, there was a tendency for T. gondii-positive
foxes to have slightly higher median concentrations of cortisol
(T. gondii-negatives, 5.57 mg/dl (IQR 3.53, 7.75); T. gondii-
positives, 7.64 mg/dl (IQR 4.99, 12.09); Figure 6). Paired foxes
were matched for age, sex and body condition score to
understand the effect of T. gondii infection on cortisol
concentration in the absence of major confounders. This
analysis revealed no evidence of a difference in cortisol
concentration between matched pairs of T. gondii negative and
positive foxes (Wilcoxon signed rank test: p = 0.63, n = 4 pairs),
although there was a trend for slightly higher cortisol
concentrations in T. gondii positive foxes compared to
matched uninfected foxes in three out of four pairs (Figure 7).
DISCUSSION

In this series of trials, we aimed to test the hypotheses that the
aberrant behavior of foxes with Dopey Fox Syndrome (DFS) is
associated with infection with: a) Toxoplasma gondii; b) another
FIGURE 5 | Fox C1, H&E stain, 200×: Mild perivascular cuffing and non-suppurative meningitis. Phagocytosed pigment (arrows) consistent with hemosiderin was
observed in the cortical tissue as well as meninges, suggesting the presence of small multifocal hemorrhages.
Frontiers in Psychiatry | www.frontiersin.org 11
FIGURE 6 | Concentration of cortisol in fox fur samples quantified by
enzyme-linked immunosorbent assay in relation to Toxoplasma gondii
infection status measured by nested polymerase chain reaction (T. gondii
prevalence = 6.15%; 4/65). Colored areas represent the density distribution of
the data.
September 2020 | Volume 11 | Article 513536

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Milne et al. Infectious Causation of Abnormal Host Behavior
infectious neurotropic agent; or c) T. gondii in addition to
another infectious neurotropic agent (the two-hit hypothesis).
Predictions were tested using a population of UK red foxes,
including culled foxes (pseudo-controls) and live foxes housed in
sanctuaries. We make the case that the red fox is a highly suitable
model to examine naturally occurring parasite-altered host
behaviors, especially those of no current evolutionary advantage
(parasite constraint rather than parasite manipulation). More
generally, this model system could help to elucidate possible
links between chronic infection and neurological disorders across
vertebrate hosts.

Behavioral Abnormalities Associated With
T. gondii Infection
We found support for the hypothesis that DFS is associated with
T. gondii infection, since the prevalence of T. gondii was higher in
captive compared to pseudo-control foxes, with respective
estimates of 33.3% (3/9) and 6.8% (5/74). Captive foxes used in
this study were brought into sanctuaries generally as a result of
aberrant behaviors, spanning from reduced fear of humans to
more pathological signs including anorexia and circling
behaviors, which are all consistent with DFS. In contrast,
pseudo-control foxes were those shot by pest control
companies and thus could be argued to be a reasonably
representative sample of the UK healthy wild fox population.
We do acknowledge, however, that 6.8% of our pseudo-control
(non-captive) foxes shot by pest-controllers were T. gondii
positive, which is below the documented 20% average for the
UK fox population (93). This lower than expected prevalence
Frontiers in Psychiatry | www.frontiersin.org 12
could be due to the high number of young foxes included in this
study: where age data were available, 37% (24/65) were under a
year old and so their likelihood of encountering T. gondii—either
by consumption of infected meat or via contact with oocysts in
the environment—would be lowered.

Further support for the association of T. gondii with DFS was
provided by our behavioral analyses which indicated a preference
of foxes for cat odor zones compared to dog odor zones among
infected individuals. While sample size was small (six foxes), this
finding tentatively supports an expansion of the fatal feline
attraction (19) behavior as observed in rodents and other
intermediate/secondary hosts (21, 22, 44). Qualitative
observations also confirmed a lack of fear of humans and
increased inquisitiveness among T. gondii-seropositive captive
foxes with DFS. Further research using larger samples of foxes
should be performed using a similar experimental design to
confirm the biological significance of the current findings.
Contrary to our prediction that T. gondii–infected foxes would
display lower levels of cortisol (an indicator of chronic stress)
compared to uninfected foxes, we found no significant evidence
of an association between cortisol concentration and infection
status in a sample of 65 red foxes. Nevertheless, in pairs of foxes
matched for age, sex and body condition, there was a tendency
for higher cortisol concentrations in T. gondii–infected animals
in 3/4 pairs, relative to their uninfected counterparts, warranting
further research in this area.
Behavioral Abnormalities Associated With
Other Neurotropic Infections
Consistent with a hypothesis of DFS being associated with another
neurotropic infection, we also observed a higher prevalence of fox-
specific circovirus (FoxCV) infection in captive compared to in
pseudo-control foxes, with respective estimates of 66.7% (6/9) and
11.1% (1/9). However, with the exception of A. vasorum, we found
no evidence of infection for any other tested neurotropic agents
(canine distemper virus (CDV), canine adenovirus type-1
(CAV-1) and CAV-2). While these analyses are based on
limited sample sizes, we argue that such consistent observations
are likely to be based on biologically meaningful phenomena. Our
study has thereby also both confirmed the presence of FoxCV in
wild red foxes in the UK (59) and indicated a pattern of infection
for further characterization. A circovirus was recently shown to be
associated with disease in domestic dogs (76), with animals
presenting primarily for signs of fibrinonecrotic vasculitis and
hemorrhagic diarrhea. Similarly, DogCV has been isolated in
relation to hemorrhagic gastroenteritis in domestic canids of
varying geographic origin (94–96). Gross lesions including
necrotizing lymphadenitis and vasculitis have also been
described, similar to porcine dermatitis and nephropathy
syndrome (97). Bexton and colleagues (59) demonstrated that
approximately 50% of behaviorally affected foxes were positive for
FoxCV alone using PCR and immunohistochemistry; although
FoxCV was also detected in serum from a proportion of
neurologically normal foxes. This could also help to explain our
finding of a single pseudo-control fox positive for FoxCV, with a
high cerebral copy number and neurological inflammation.
FIGURE 7 | Concentrations of cortisol in fur samples of four matched pairs
of foxes in relation to Toxoplasma gondii serostatus, measured by enzyme-
linked immunosorbent assay. Foxes were matched for age, sex, and body
condition score.
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Behavioral Abnormalities Associated
With T. gondii and Co-Infecting
Neurotropic Agent(s)
Perhaps indicative of a synergistic role of T. gondii in neurological
disease, in our study T. gondii infections always occurred in
concert with another neurotropic agent. Most notably, we
observed a higher prevalence of T. gondii/FoxCV co-infections
in captive foxes (33.3%, 3/9) compared to pseudo-control foxes
(11.1%, 1/9); although sample sizes provided little statistical power
to definitively discriminate between groups. The prevalence of co-
infection with any pathogen was also higher in the captive
population (44.4%, 4/9) compared to pseudo-controls (11.1%, 1/
9). These findings tentatively support our hypothesis that the
aberrant behaviors of foxes with DFS may result from co-infection
of T. gondii with another neurotropic agent—in particular that of
FoxCV. Circoviruses are known to be immunosuppressive
pathogens (69, 98, 99), so one could expect infection with
FoxCV to not only increase host susceptibility to other
infections, including T. gondii, but also to increase the
probability of reactivation of latent T. gondii infection. Indeed,
perhaps indicative of an immunosuppressive role of FoxCV, our
serological data showed repeated anti-T. gondii IgG seroreversions
and seroconversions among several captive foxes. In keeping with
an immunosuppressive/co-infecting role of circoviruses, surveys
across a number of domestic canines and wild carnivores in Italy
showed that all DogCV-infected animals were co-infected with at
least one other agent (68). Potentially in keeping with this
hypothesis, in our study, histological inflammation was noted
80% (4/5) of FoxCV co-infections.

Our findings thus suggest that FoxCV infection may act
synergistically with T. gondii to cause neuroinflammatory
conditions in hosts with or without additional co-infecting
neurotropic agent(s). In terms of behavioral and neurological
disorders, these findings suggest that T. gondii infection may play
a secondary role in their development (infection upon host
immunosuppression), but that T. gondii infection may increase
the severity of inflammation and thus perhaps the severity of
clinical disease. Though statistical power was limited due to small
samples, these preliminary findings tentatively support our
hypothesis for a two (or more)-hit model of neurological
impairment. Subject to further corroboration, these results
suggest that T. gondii and FoxCV co-infection may play an
important role in the development of DFS in V. vulpes.

Within this multiple-hit model framework, it may also be
important to consider timing of infection. For example, in
humans, it is known that the likelihood of T. gondii congenital
transmission increases with increasing maternal gestational age at
infection. Moreover, increasing evidence suggests that maternal T.
gondii infection during the perinatal period and the subsequent
inflammatory response may be, in part, responsible for the onset
of severe neuropsychiatric disorders, including schizophrenia, in
the offspring’s adolescence or early adulthood (100, 101). Further
work should therefore look to identify whether timing of infection
is indeed important in influencing the presence or outcome of
neurological disease. In addition, it may be valuable to examine
whether the infectious dose influences the onset or maintenance of
Frontiers in Psychiatry | www.frontiersin.org 13
disease and whether there are specific time-lags between fox (co-)
infection and neurological disease onset. These additional insights
could be gained by collecting population-level longitudinal data on
the seroprevalence of various infectious diseases as well as clinical
symptoms of foxes. Identifying a consistency and temporality of
exposure–outcome association will strengthen the hypothesis
presented here.
CONCLUDING REMARKS

Here, we highlight the potential of using the red fox,Vulpes vulpes,
as a model system to shed light on infectious agent factors
underlying the occurrence of behavioral and neurological
abnormalities in vertebrate hosts. As evidenced by our infection
prevalence and histological findings, comparing presumed
neurologically normal foxes to foxes with symptoms consistent
with Dopey Fox Syndrome, the current study puts evidence
toward a two-hit model of neurological disease development in
which host infection with neurotropic agents, including T. gondii
and circovirus and possibly other neurotropic infections, may
cause host predisposition to neurological disease. Overall, while
pilot in nature, the current study brings forth new questions
regarding the extent to which specific neurotropic agents
influence neurologic disease onset and maintenance, and how
infection may alter host physiology and behavior in general.
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