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The introduction of pre-trained language models in natural language processing (NLP)

based on deep learning and the availability of electronic health records (EHRs) presents

a great opportunity to transfer the “knowledge” learned from data in the general domain

to enable the analysis of unstructured textual data in clinical domains. This study explored

the feasibility of applying NLP to a small EHR dataset to investigate the power of transfer

learning to facilitate the process of patient screening in psychiatry. A total of 500 patients

were randomly selected from a medical center database. Three annotators with clinical

experience reviewed the notes to make diagnoses for major/minor depression, bipolar

disorder, schizophrenia, and dementia to form a small and highly imbalanced corpus.

Several state-of-the-art NLP methods based on deep learning along with pre-trained

models based on shallow or deep transfer learning were adapted to develop models

to classify the aforementioned diseases. We hypothesized that the models that rely

on transferred knowledge would be expected to outperform the models learned from

scratch. The experimental results demonstrated that the models with the pre-trained

techniques outperformed the models without transferred knowledge by micro-avg. and

macro-avg. F-scores of 0.11 and 0.28, respectively. Our results also suggested that

the use of the feature dependency strategy to build multi-labeling models instead of

problem transformation is superior considering its higher performance and simplicity in

the training process.

Keywords: deep learning, natural language processing, text classification, patient screening, psychiatric

diagnoses

INTRODUCTION

Currently, the diagnosis and classification of mental disorders are commonly based on the
International Statistical Classification of Diseases and Related Health Problems (ICD) and the
Diagnostic and Statistical Manual of Mental Disorders (DSM) system. These diagnostic criteria
are derived from the clinical observation of the symptoms, signs, and course of mental diseases.
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The differential diagnosis of mental disorders is quite important
because the decision for treatment selection and prediction
of prognosis are dependent on the accuracy of diagnosis.
However, making a diagnosis is not easy because symptoms
are commonly shared among these diagnoses. For example,
depressive symptoms are often observed in patients with
bipolar disorders. If a psychiatrist were to ignore previous
hypomanic or manic episodes, bipolar disorders would be
misdiagnosed as depressive disorders. The use of antidepressants
for bipolar depression might also induce mood swings or a
manic episode. Another example is that depressive symptoms are
frequently observed in patients with dementia. The differential
diagnosis between pseudo-dementia (as a result of cognitive
impairment due to depression) and dementia might be quite
difficult. Antidepressant treatment might increase the risk of
cerebrovascular accidents among these patients (1).

On the other hand, the natural language processing (NLP)
community is now witnessing a dramatic paradigm shift toward
pre-trained deep learning-based language representation models
such as bidirectional encoder representations from transformers
(BERT) (2), which achieve state-of-the-art performance for
tasks such as question answering, sentiment classification, and
similarity modeling. For example, Peng et al. (3) demonstrated
that the BERT model pre-trained on PubMed abstracts and
MIMIC-III clinical notes outperformed state-of-the-art models
on ten biomedical benchmarking datasets. Recent advances in
NLP based on deep learning motivated us to ponder whether
it could be applied to develop a classification model that could
facilitate psychiatrists’ diagnoses and improve the accuracy rate of
diagnoses even with a small dataset. We approached the research
question by using a dataset containing 500 discharge summaries
to learn the psychiatrists’ diagnoses of five common mental
disorders, including major and minor depression, schizophrenia,
bipolar disorder, and dementia based on unstructured electronic
health records (EHRs). We hypothesized that the models with
transferred knowledge are likely to outperform the models
learned from scratch. In clinical applications, these NLP models
could assist with diagnosis and improve the accuracy, especially
in the case of primary physicians who are not familiar with
psychiatric diagnosis. Furthermore, it might be possible to use
NLP models to detect psychiatric illness early in social media.

In this study, we considered the aforementioned task as a text
classification task with the goal of assigning five labels to a given
discharge summary in an EHR. Four advanced NLP network
architectures based on deep learning along with a variety of pre-
trained models were adapted to study the feasibility of applying
them to classify the above-mentioned five diagnoses.

METHODS

Corpus and Annotations
With the approval of the Research Ethics Committee of the
National Taiwan University Hospital (NTUH-201610072RINA),
the corpus compiled in our previous work (4) was used in
this study. This corpus contains 500 unstructured discharge
summaries sampled from the psychiatric unit of the Integrated
Medical Database of National Taiwan University Hospital

(NTUHIMD) and given a principal psychiatric diagnosis (ICD-
9-CM codes 290-319 or ICD-10-CM codes F00-F99). All
personal information of the patients included in the corpus
was de-identified.

Each discharge summary is presented in the form of
unstructured texts, which may include the demographic
descriptions, present illness, physical and mental examinations,
progress notes, laboratory and image examinations, prescription
records, and medical procedures for one patient. The summaries
were manually chart reviewed by board-certified clinical
psychiatrists (CJK and CSW) to determine whether the
patients had schizophrenia (SCZ), bipolar disorder (BPD),
major depressive disorders (MDD), minor or other depressive
disorder (mDD), and/or dementia (DD). After chart review, each
summary in the compiled corpus was categorized as being one of
the aforementioned diagnoses.

Although the accuracy of such a diagnosis was not as valid
as that made on the basis of a structured diagnostic interview,
the agreement between psychiatrists was acceptable. The values
of Cohen’s kappa ranged from 0.73 to 0.91. Generally, the
agreements between the diagnosis of major depressive disorder
(0.82), schizophrenia (0.90), and dementia (0.91) was almost
perfect, and that of bipolar disorder and minor depression was
acceptable (0.73 and 0.74, respectively). The detailed annotation
process and kappa values can be found in our previous work
(4). We followed the same procedure we previously employed
(4) to randomly divide the corpus into training and test sets,
each of which contained 400 and 100 notes, respectively. Figure 1
presents these distributions graphically.

Pre-processing
The EHRs include several sections that are irrelevant to this work,
such as laboratory and image examinations, prescription records,
and medical procedures. However, the symptoms and clues for
diagnosing the five disorders usually appeared in the “Brief
History” (BH) and the “Physical andMental Status Examination”
(PME) sections. Because the unstructured texts in each summary
were organized into several pre-defined sections in NTUHIMD,
we were able to develop a pre-processing procedure to extract
only the texts from the BH and PME sections to train and
test our models. This procedure was designed to prevent the
learned models from occasionally considering noisy information
from irrelevant sections to make their predictions. Note that not
all summaries in our corpus contained both the BH and PME
sections; in particular, 99.5 and 98.5% of the notes contained the
BH and PME sections, respectively.

The summaries were then processed by our clinical NLP
toolkit (5, 6) to segment them into sentences and their
corresponding tokens in lowercase. Although most of the
sentences were represented in English, sentences containing a
mixture of English and Chinese descriptions were also included.
The Chinese characters were removed during pre-processing
to simplify subsequent text analysis. Subsection titles such
as “Family History” and “History of Substance Use” were
recognized by using regular expressions and were also removed
to reduce the length of the text. Finally, text normalization was
applied by mapping selected subsets of words and phrases into
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FIGURE 1 | Distributions of the five disorders in the training and test sets.

their representatives. For example, the words “w/o,” “w/” were
normalized to “without” and “with,” respectively.

Deep Learning Models for Screening
Psychiatric Patients Based on Textual Data
In this section, we first provide an overview of the developed
deep learning models.1 We then elaborated on the architectures
of the developed models in the following subsections. Figure 2
summarizes the flowchart for the screening process based on
the developed models. The inputs of our models are the pre-
processed texts extracted from the discharge summaries. The
outputs are the probability distributions of the five disorders. A
positive diagnosis is determined if the outcome of the output
layer of the network is larger than a specified threshold θ, which
was set to 0.5 in our implementation.

As described in the previous section, a patient may be
diagnosed with more than one disorder. We approached
this multi-labeling classification problem using the following
two methods:

• Problem transformation: A binary relevance transformation
method (7) was applied to transform the original problem into
five binary classification tasks and learn five corresponding
classifiers, one for each disorder. The original dataset was
therefore transformed into five datasets, each of which
contained all notes of the original dataset and each note was
labeled with a binary value corresponding to the diagnosis.
We then trained the five models on the datasets by using the
binary cross-entropy function to calculate the training loss
and optimize the loss by the back propagation algorithm. The
union of the outputs from the five classifiers was collected to
determine whether the patient had any of the five disorders.

• Feature dependency: Although the above well-known
transformation-based approaches were successfully employed
in a variety of multi-labeling applications in the literature,
they cannot model dependencies between labels. By changing
the number of units in the output layer such that they equal

1Our implementation is available at https://github.com/ken19980727/

PsychiatricPatientScreening

the number of desired diagnoses, the same neural network
architecture developed for the first method can learn the
hidden dependencies among different diagnoses via its shared
hidden layers to enable it to directly carry out multi-label
tasks. This approach allows us to simply train one classifier
that can output five diagnoses at the same time. During the
training phase, the cross-entropy loss was used to calculate
the loss over the five outcomes of the classifier instead of
the binary cross entropy, and the loss was minimized by the
backpropagation algorithm.

Based on the above two strategies, the five neural network
architectures illustrated in Figure 3 were developed. The
BERT model was implemented as a baseline because of its
outstanding performance in several biomedical NLP tasks (3).
In addition, we implemented three novel text classification
architectures, including bag of words (BoW) linear models,
textual convolutional neural network (CNN), and hierarchical
attention network (HAN), with different pre-trained models
for comparison because they are either the most common
approaches used for clinical text classification or are becoming
increasingly popular (8). As shown in Figure 3, two BoW linear
models were implemented: one considers the texts from BH and
PME individually to infer the diagnoses and the other considers
the texts from both sections as a whole. The three architectures
use the same layer structure to represent the sequence of input
words by using either a simple look-up table over words or pre-
trained language models, including word2vec, GloVe, and BERT,
which are elaborated in the next section. For all of the developed
models, the following sigmoid function was applied to compute
the probability p for each disorder.

p (x|h)=sigmoid(Wh+b)

where W is the learned parameter matrix, which was fine-
tuned with all the learnable parameters in the network jointly to
maximize the log-probability of the correct disorders.

Baseline Model: BERT-Based Model Fine-Tuning
BERT (2) is a pre-trained deep learning model that learns
bidirectional representations from large unlabeled text by jointly
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FIGURE 2 | Flowchart of the screening process of the neural networks based on the two methods: problem transformation and feature dependency.

conditioning on both the left and right context with its
transformer-based encoder architectures (9). As a result, the
pre-trained BERT model can be fine-tuned with merely one
additional output layer to create state-of-the-art models for
a wide range of language understanding tasks. Therefore, we
selected BERT as our baseline model and fine-tuned it for
our dataset.

BERT was fine-tuned by using a sequence of 512 tokens as
input, where the first and last tokens are always special tokens
[(CLS) and (SEP)]. To use each summary for training and
prediction, the tokens were collected from BH first followed
by PME. For inputs consisting of fewer than 512 tokens, the
special token (PAD) was used to pad each sequence to the
same length; otherwise, the tokens that exceeded the length were
truncated tomeet the requirement of BERT. Inspired by Adhikari
et al. (10), during the fine-tuning training process, the final
hidden state h from the encoder corresponding to the special
token (CLS) is considered as being representative of the entire

sequence. The representation then passes through a linear layer
with the sigmoid function to form a classifier that can generate
the probability for each disorder.

Bag of n-Grams Linear Network
Representing text as BoW and using it as features for training
linear classifiers, such as support vector machines (SVMs) (11)
is a simple and efficient method to solve text classification
problems. Inspired by Grave et al. (12), we implemented two
linear models based on deep learning and exploited the n-
gram features to capture information about the word order. The
architectures of the two models were similar. The first layer is a
sequence representation layer with dimension d to represent the
given sequence of tokens. The representations are then averaged
to form a fixed length vector with a length equal to d, which is
considered to be able to capture the information of the given
sequence. The vector is regularized by a dropout layer and, in
turn, feeds to a linear layer we developed for the last layer
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FIGURE 3 | Deep learning text classification models developed in this study.

of the BERT baseline model. The difference between the two
developed models is that one model considers the texts in the
BH and PME sections separately and uses two different sequence
representation layers to encode the information, whereas the
other uses one sequence representation layer to encode texts from
both sections. We developed the variations because we consider
it necessary to assign different weights to the information from
the two sections. Our experimental results revealed that the PME
section may include noisy information such that the model with
separated input performed more accurately.

Textual Convolutional Neural Network
CNNs have been successfully and widely used in image
classification tasks. One of the first attempts to apply CNNs
to classify textual data was proposed by Kim (13) and
recently by Yang et al. (14) for the automatic diagnosis of six
diseases. Dai and Jonnagaddala (15) used a CNN to determine
positive valence symptom severity in psychiatric evaluation
records. We implemented the text-CNN model by applying
convolutions to the represented sequences from both sections.
Each convolution can be considered as a feature extractor that
uses a kernel to capture implicit linguistic properties buried in
the represented text within a context window of length l. In our
implementation, context windows with lengths of 2, 3, 4, and 5
were included to capture the bigram, trigram, four-gram, and
five-gram, respectively. The max-pooling layer that follows the
convolutional layer subsamples the extracted features to obtain
the maximum activation values. Through backpropagation, the
combination of the above two layers enables us to capture the
most prominent features for determining the diagnoses. Similar

to the BoW linear models, all outputs from the max-pooling layer
are concatenated to form a fixed-length feature vector, which is
then fully connected to a linear layer with dropout to generate
the outcome.

Hierarchical Attention Network
The HAN was designed by Yang et al. (16) specifically
for document classification. HAN employs two hierarchical
attentions, one for the word level and another for the sentence
level, to capture the hierarchical structures of a document. We
followed their design to implement the network. We used two
encoders based on a bidirectional gated recurrent unit (GRU)
to summarize (1) the information of the entire sequence of
the represented words and (2) the entire sequence of sentences
represented by the attended scores generated by the former
encoder. Our model differs from that of Yang et al. in that the
aforementioned sigmoid function was used in the last layer of our
model because our task is a multi-labeling problem.

Pre-trained Techniques
The input layers of all of the above models represent the given
sequence of words in terms of vectors. Word embedding is a
well-known NLP method, which maps each word into a dense
vector of floating point values instead of one-hot encodings, to
reduce the dimensionality of the input features and capture the
relationships among each word at the same time. Pre-trained
word embeddings are currently an essential component in state-
of-the-art NLP systems. In this study, we considered two popular
word embedding methods, word2vec, proposed by Mikolov
et al. (17) and GloVe (18). In practice, both embeddings have
demonstrated their ability to capture linguistic regularities in
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several NLP tasks; the former is more effective on certain datasets
(19) and the latter on others (20). Word2vec has two model
architectures to produce word embeddings in an unsupervised
learning manner: continuous bag-of-words and continuous skip-
gram. Herein, we used skip-gram to generate a pre-trained
word2vec model from our training set because its architecture
considers the words surrounding a target word as an entire
context for prediction, which makes it more suitable for learning
embeddings from a small dataset.

A potential drawback of the embeddings generated by the
above approaches is that the contextual meaning of a word
cannot be encoded because each word is represented by a
vector with a fixed numerical value vector. This deficiency
prompted researchers to propose a variety of pre-trained
models that can be trained in an unsupervised manner and
are simultaneously able to capture the contextual meaning of
the words presented in texts. Early attempts include ULMFiT
(Universal Language Model Fine-Tuning) (21) and ELMo
(Embeddings from Language Models) (22), although the most
successful model would have to be BERT (2). At least two
ways exist in which to adapt the pre-trained BERT model to a
specific task. The first is the way we presented in section Baseline
Model: BERT-based Model Fine-Tuning to create the baseline
model by directly fine-tuning BERT on our dataset. Another
is to use BERT as a feature extractor to generate contextual
word embeddings of which the values vary depending on their
context. The parameters of the BERT model were frozen during
training. The rationale is that the BERT model uses several
layers of transformer encoders, and each output per token from
each layer can be considered as a representation for that token.
Devlin et al. (2) identified several ways to combine the outputs
of each layer to form contextualized embeddings. As shown in
Figure 3, we chose to sum the outputs of all the BERT layers to
generate a fixed length embedding for each word in a sentence.
The BERT embeddings were generated sentence-by-sentence and
concatenated such that they are analogous to the results of
traditional word embedding methods.

Imbalance Issues
As shown in Figure 1, the annotations for four of the five
disorders in our corpus are imbalanced, which could pose
a significant obstacle in the way of the development of
reliable classifiers. To address this issue, we applied a cost-
sensitive learning approach (23, 24) by adding more costs
when misclassifying minority cases. The most popular heuristic
approach to estimate the cost directly from the training set
is the use of the imbalance ratio, which is defined as the
number of majority class examples divided by the number
of minority class examples (25). For example, the imbalance
ratio for “Schizophrenia” estimated on the training set is 7,
thus the cost for incorrectly classifying a patient as not having
“Schizophrenia” was set to 7.

Evaluation Metrics
Themicro- andmacro- precision (P), recall (R), and F1-measures
(F) were defined as follows and were used to evaluate the
performance of the developed models. Precision and recall are

also known as positive predictive value (PPV) and sensitivity
(SEN), respectively.

Micro−Precision/PPV=

∑5
l=1 TPl

∑5
l=1 (TPl+FPl)

,

Micro−Recall/SEN=

∑5
l=1 TPl

∑5
l=l (TPl+FNl)

,

Micro−F−measure=2
Micro−PPV×Micro−SEN

Micro−PPV+Micro−SEN
,

Macr−Precision/PPV=average(Per−class PPV),

Macro−Recall/SEN=average(Per−class SEN),

Macro− F−measure=average(Per−class F−measure)

In the above formulae, TPl, FPl, and FNl represent the number
of true positives (TPs), false positives (FPs), and false negatives
(FNs) for diagnosis l, respectively. The per-class PR-scores can be
calculated by using the samemicro-PR formulae, but considering
only one diagnosis at a time.

In general, we prefer models with higher precision and recall
scores. However, a trade-off usually exists between precision and
recall when machine-learning models are developed. The F-score
provides a single metric to summarize the performance of a
model in terms of PR scores by the harmonic mean. The F-
score and PR metrics are widely used in NLP to evaluate the
performance of text classification systems.We reported two types
of F-measure obtained by using micro- and macro-averaging,
respectively. We used the arithmetic mean of class-wise F-scores
to calculate macro-averaging because it is significantly more
robust on an imbalanced dataset (26). We preferred models with
higher macro-averaging to those with higher micro-averaging
because the latter are biased by class frequency.

RESULTS

Experiment Design and Configurations
We designed two experiments with a variety of configurations
to study the effectiveness of fine-tuning BERT on our dataset
and to compare their performance with that of the three text
classification networks along with different pre-trained models.
All of the networks were implemented using PyTorch running
on RTX 2080Ti GPUs. We used 20% of the original training set
as the validation set and 80% as the training set. The validation
set, which was not used for training, was used to determine the
optimal parameters without overfitting the training set. Mini-
batch gradient descent along with the Adam optimizer (with
β1 = 0.9 and β2 = 0.999) was used to learn the parameters.
The number of epochs was set to 500, and an early termination
strategy was used if the F-scores were no longer observed to
improve or the loss became zero on the validation set. We set
a patience value of 30 to wait before applying early termination.
For consistency, if not mentioned, we used the same set of hyper-
parameters and a fixed random seed across all experiments.

Results of Fine-Tuning BERT
Here, we examined the performance of fine-tuning pre-trained
language models based on BERT on our dataset. The following

Frontiers in Psychiatry | www.frontiersin.org 6 January 2021 | Volume 11 | Article 533949

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Dai et al. Psychiatric Patient Screening by Deep-NLP

TABLE 1 | Performance of the BERT-based models with problem transformation on the test set.

Diagnosis Metric
Configuration

BERT Distill ALBERT ROBERTa BERT* Distill* ALBERT* ROBERTa*

Major depressive

disorder

P 0.622 0.684 0.600 0.803 0.690 0.780 0.574 0.803

R 0.578 0.684 0.894 0.859 0.660 0.684 0.473 0.859

F 0.600 0.684 0.718 0.830 0.680 0.728 0.519 0.830

Schizophrenia P 0 0.571 0 0 0.600 0.250 0.333 0

R 0 0.333 0 0 0.250 0.166 0.250 0

F 0 0.421 0 0 0.352 0.200 0.285 0

Bipolar P 0 1.000 0 0 0.333 0.666 0.666 0.428

R 0 0.100 0 0 0.100 0.200 0.400 0.300

F 0 0.182 0 0 0.150 0.370 0.500 0.352

Minor depressive

disorder

P 0.461 0.300 0 0 0 0.217 0.200 0

R 0.352 0.176 0 0 0 0.294 0.058 0

F 0.400 0.222 0 0 0 0.250 0.090 0

Dementia P 0.777 1.000 0 0 0.666 0.727 0.250 0

R 0.583 0.333 0 0 0.166 0.666 0.083 0

F 0.666 0.500 0 0 0.266 0.695 0.125 0

Micro-Avg. F 0.494 0.545 0.530 0.488 0.5 0.551 0.400 0.584

Macro-Avg. F 0.334 0.446 0.146 0.167 0.31 0.456 0.311 0.238

The asterisk indicates model configurations that include the use of weighted cost. Values in boldface indicate the highest PRF-scores.

TABLE 2 | The performance of the BERT-based models with feature dependency on the test set.

Diagnosis Metric
Configuration

BERT Distill ALBERT ROBERTa BERT* Distill* ALBERT* ROBERTa*

Major depressive

disorder

P 0.632 0.600 0.636 0.682 0.571 0.611 0.691 0.772

R 0.632 0.632 0.860 0.789 0.982 0.965 0.825 0.772

F 0.632 0.615 0.731 0.748 0.723 0.748 0.752 0.772

Schizophrenia P/R/F 0 0 0 0.000 0 0 0 0

Bipolar P/R/F 0 0 0 0.000 0 0 0 0

Minor depressive

disorder

P 0 0 0 1.000 0 0 0 0.667

R 0 0 0 0.118 0 0 0 0.118

F 0 0 0 0.211 0 0 0 0.200

Dementia P 0 0 0 0 0 0 0 1.000

R 0 0 0 0 0 0 0 0.250

F 0 0 0 0 0 0 0 0.400

Micro-Avg. F 0.436 0.429 0.530 0.556 0.544 0.556 0.534 0.573

Macro-Avg. F 0.126 0.123 0.146 0.150 0.145 0.150 0.150 0.274

The asterisk indicates model configurations that include the use of weighted cost. Values in boldface indicate the highest PRF-scores.

four BERT-based models were considered: (1) the BERTBASE

uncased model,2 which contains 12 transformer encoder stacks,
12 self-attention heads with a hidden size of 768. (2) The
ROBERTaBASE (27) model,3 which was based on BERTBASE, but
trained with enhanced training strategies over more data. (3) The

2Available at https://github.com/google-research/bert
3Available at https://github.com/pytorch/fairseq/

DistilBERTBASE uncased model,4 a light version of the original
BERT, which was trained by using knowledge distillation (28).
(4) The ALBERTBASE model,5 which is another lite version of
BERT trained by using parameter-reduction techniques (29).

4Available at https://github.com/huggingface/transformers/tree/master/examples/

distillation
5Available at https://github.com/google-research/ALBERT
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We empirically set the maximum number of epochs to 10
and saved the best model on the validation set for testing.
During training, the batch size was set accordingly to ensure
that the GPU memories were fully utilized. Tables 1, 2 provide
the test set results of the models trained with different multi-
labeling strategies.

Overall, we can observe that the use of cost-sensitive learning
improves the generalization of the models on different diagnoses,
which yields improved macro-avg. F-scores. ROBERTa obtained
the best micro-avg. F-scores in both multi-labeling strategies
because it performedmore accurately in cases ofmajor depressive
disorder, which constitute most of the TP cases. The results
also revealed that the problem transformation method is a more
successful strategy when fine-tuning BERT-based models on our
imbalanced multi-labeling dataset because most models trained
with problem transformation produced higher macro-avg. F-
scores than their counterparts using feature dependency. Most
models trained with feature dependency cannot identify cases
with dementia. Among all the studied models, DistilBERT with
problem transformation had the best macro-avg. F-scores when
cost-sensitive learning was applied.

Results of Deep Learning Models With
Different Pre-trained Methods
In this experiment, we investigated the effectiveness of
combinations of the different pre-trained models and network
architectures. The hyper-parameters set for the networks are
listed in Table 3. For the pre-trained models, we used GloVe
6B-300d, which was trained on Wikipedia and Gigaword and
empirically outperformed other word embedding methods
on several medical NLP tasks (20, 30). The same BERTBASE

uncased model used for fine-tuning was chosen to generate
the contextual embeddings. In addition, we included randomly
initialized word embeddings as a baseline. The small dataset used
in this study suggested using a smaller vector size to be learned
for our embeddings. Thus, a vector size of 100 was chosen for
the randomly initialized word embeddings and the pre-trained
model generated by skip-gram. In addition, for the linear models
with BERT embedding, we excluded the n-gram features because
we considered the BERT embedding itself capable of providing
sufficient information for learning. Finally, we noticed that
the HAN-BERT model could not be fitted acceptably to the
validation set; therefore, the dropout rate was specifically set
to 0.

Figure 4 compares the micro- and macro-average F-
scores of all developed models on the test set based on
the feature dependency strategy. Overall, the models with
the pre-trained techniques yield higher F-scores than those
with random initialization. Compared with the fine-tuned
BERT baseline, all models have higher macro-avg. F-scores.
However, the micro-avg. F-scores of the models with random
initializations are lower than that of the fine-tuned BERT.
The results indicated that the pre-trained techniques enable
the developed networks to learn more effectively than
fine-tuned BERT from our small and highly imbalanced
multi-labeling dataset.

TABLE 3 | Hyper-parameters used for the three models.

Network

architecture

Hyper-parameters Shared

hyper-parameters

Linear

(mixed/separated)

Max number of

sequences: 2,048

Dropout rate: 0.5

Max number of

vocabulary: 25,000

Minimum word

frequency: 5

CNN Max number of

sequences: 2048

Number of kernels: 100

Kernel size: (2, 3, 4, 5)

HAN Max number of

sentences: 100

Max number of words

per sentence: 1,000

(BERT: 512)

Encoder GRU hidden

size: 250

Encoder GRU hidden

layers: 2

Attention hidden

size: 250

In the case of the linear networks, the models with the
proposed separation of the two sections demonstrated superior
performance. In particular, the models with GloVe had higher
micro-avg. F-scores because their performance in terms of
classifying major depression cases was more accurate. On the
other hand, models based on BERT had higher recalls in
classifying other disease cases, resulting in higher macro-avg.
F-scores. Among the text-CNN models, the model with BERT
exhibited the highest micro-/macro-avg. F-score. Compared with
the performance of all other models, it also demonstrated the
highest F-scores of 0.667 and 0.431 for classifying schizophrenia
and minor depression cases, respectively. Finally, for the HAN
models, the best-performing network was based on GloVe, which
had the highest micro-avg. F-score of 0.618 among all the
developed models.

We noticed that the results of the models trained with
the problem transformation strategy exhibited a very similar
phenomenon to that observed in the models trained with
feature dependency. In general, the models with GloVe or BERT
outperformed those with other embeddings under the same
network architecture. The best micro-avg. F-score was achieved
by the linear (Sep) model with micro- and macro-avg. F-scores
of 0.584 and 0.481, respectively. The HAN-glove model with a
micro-avg. F-score of 0.542 had the highest macro-avg. F-score
of 0.510.

Figure 5 compares the performance of the top performing
models trained with problem transformation or feature
dependency. Overall, we observed that, based on the same
network architecture, the models trained by feature dependency
tended to deliver more optimal performance than those
trained by problem formulation. Both the highest macro-
and micro-avg. F-scores were achieved by the HAN-glove
model trained using feature dependency (HAN-glove_FD).
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FIGURE 4 | Micro- and macro-average F-scores on the test set of all developed models. “Linear (Mix)” signifies the linear model that considers the BH and PME

sections in combination, whereas the “Linear (Sep)” model considers them separately. The figure also includes the performance of BERT* listed in Table 2 as a

baseline (BERT-fine tuning) for comparison.

FIGURE 5 | Performance comparison of the top performing models selected from the developed network architectures. PT and FD denote problem transformation

and feature dependency, respectively. The fine tuning approaches (ROBERTa*_PT/FD and Distill*_PT) with the best micro- and macro-avg. F-scores are also included

for comparison.

Unlike fine-tuned BERT, which has limited capability to
identify patients with disorders other than major depression,
all models, except CNN-w2v and CNN-rand, were able to
identify at least one case of each disease. The developed models
can identify major depression, dementia and schizophrenia
with acceptable F-scores (0.667∼0.772). The F-scores for
bipolar and minor depression were less satisfactory (0.5 and

0.545). The results are consistent with the corresponding
Kappa values reported in our previous work for assessing
the inter-annotator agreement in which we found that the
agreement for bipolar disorder and minor depression was
significantly lower than the others (4). The detailed PRF-scores
for all developed models for the five diseases are available in
Supplementary Tables 1, 2.
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DISCUSSION

Effectiveness of the Developed Models and
Pre-trained Techniques
Transfer learning has been extensively used in computer vision
with great success; however, it has not been widely used in
NLP until recent years (21). In the field of NLP, transfer
learning refers more specifically to the applications of pre-
trained language representations that were created by general
models trained on large corpora. In this study, we examined two
main types of pre-trained techniques: fine-tuning and feature-
based models, such as our linear models with BERT embedding.
As in Figure 5, the fine-tuning approach ROBERTa∗_PT
achieved the highest PRF-scores of 0.803/0.859/0.830 when
classifying major depression cases, thereby surpassing the best-
performing feature-based model [Linear (Sep)-glove_PT] by 0.09
in terms of the F-score. However, it cannot identify minority
cases such as schizophrenia, minor depression, and dementia.
The best macro-avg. F-score was achieved by Distill∗_PT,
although it is lower than that of most of the top-performing
feature-based models.

Peters et al. (31) demonstrated that the adoption of fine-tuning
rather than feature-based approaches is more beneficial, yet our
results suggest that building complex network architecture on
top of the pre-trained model improved the performance on our
dataset. However, we would like to caution the readers in two
respects when interpreting the above observation. First, we do
not argue that feature-based approaches are always superior to
fine-tuning methods. This would depend on the characteristics
of the dataset and the hyper-parameters used for the models.
Compared with the relatively large datasets used in previous
studies, our dataset is a multi-labeling corpus and is small and
highly imbalanced with respect to four out of the five disease
labels. Second, we employed a cost-sensitive learning approach
with the same weights across all models to address the imbalance
issue because this approach has been demonstrated to be effective
for addressing the imbalance problem in themedical domain (32)
and several multi-class datasets with varying levels of imbalance
(33). However, the best weights may vary depending on the
network architectures and the employed pre-trained techniques.
Hence, improved results may be obtained experimentally by
using a hyper-parameter search (34). Furthermore, in addition
to cost-sensitive learning, a variety of methods, such as
oversampling and data augmentation, are available to address
imbalance problems (23, 35). Different imbalance strategies may
lead to diverse conclusions. We aim to address this issue in
future work.

Our results also responded positively to the main research
question posed in the introduction section, namely that recent
advanced pre-trained techniques could use small and imbalanced
data to learn the diagnoses made by psychiatrists. As expected,
the use of pre-trained techniques delivers more accurate results
than random initialization. In particular, the micro-avg. and
macro-avg. F-scores of the feature-basedmodels can be improved
by as much as 0.114 and 0.28, respectively, compared with
those of the models with random initialization. Figure 6

graphically demonstrates an example of a major depression case

correctly classified by our HAN model. Clearly, the model pays
attention to important words associated with major depressive
disorders, including “distress,” “anxious,” “obsessive,” “sertraline,”
“dysphoric anhedonia,” “depressed,” and “pleasure.” In addition
to terms related to depressive symptoms, terms that are not
directly related but are related to medications, treatments,
underlying personality traits, or comorbidities are identified, thus
helping the model to correctly diagnose patients with major
depressive disorder. The results indicate that when diagnosing
major depression, the model not only depended on symptoms
of the five traditional types of depression, but also on clues that
could probably be related to depression that we never thought
of before.

We also noticed that the model ignored most of the sentences
from the PME section. We found that linear (Sep) models
also have a similar tendency to assign larger weights to the
words from the BH section. The PME section may include
different semi-structural formats, such as lists or the results of
biochemical examinations, which could be considered noise by
those models. This can also explain why the linear (mixed)
models performed worse.

The macro-avg. F-scores of the randomly initialized models
are apparently lower than those of the models with pre-trained
techniques, particularly in the setting of feature dependency.
This effectiveness seems to be the result of the knowledge
provided by the pre-trained models, which cannot be inferred
from the small training set at hand. This can be seen in
Figure 7, which compares the schizophrenia results from two
HAN models (rand and glove) trained with feature dependency.
Figure 7A shows an example of an FN case of HAN-rand that
could be correctly classified by HAN-glove. We can observe
that the attentive words are vague for HAN-rand. The model
focused on sentences containing key terms but could not
concretize its attention on the terms. The glove model, in
contrast, clearly focused on the key medication related to
schizophrenia. The case shown in Figure 7B illustrates a similar
phenomenon, but this time both models correctly classify it as a
schizophrenia case.

We further applied the t-distributed stochastic neighbor
embedding (t-SNE) algorithm (36) to visualize the similarity
among the words based on the word embedding layers of
the above two models after training on Figure 8. For the
selected words, we extracted their top-30 similar words based
on their embedding vectors and compressed them to a
two-dimensional space but still retained similar words close
together on the plane. The results clearly show that, after
training, the randomly initialized word vectors did not show
significant associations between similar words; however, the
pre-trained embedding revealed meaningful associations. For
example, “depressive” was linked to “suicide,” “anxiety,” “hurt,”
etc.; on the other hand, “hallucination” was correlated with
“auditory,” “telepathy,” “perceptual.” These words present the
clinical symptom profiles, and a depressive mood might co-
occur with the risk of suicide and anxious reactions. The
experience of hallucination is generally associated with auditory
sensation and this might also be interpreted by the patient
as “telepathy.”
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FIGURE 6 | Important terms used by the HAN model for classifying a patient with major depressive disorder. The font size of a word indicates the attention score.

Words with higher scores appear in larger font sizes. The rectangle shown in front of each sentence indicates the importance (attention score) of the sentence. Larger

rectangles signify more important sentences.

Because our dataset is small and the positive examples for
disorders such as schizophrenia are limited, this may lead to bias

in the optimization of the randomly initialized embedding. In

contrast, the pre-trained models could provide implicit semantic

knowledge to help the models make decisions. Figure 7C shows
the FP results obtained by both models. Although both generated
false alarms, the HAN-rand model ignored the negation marker
(no more psychotic symptoms) and paid much more attention to
the associated terms. On the other hand, the HAN-glove model
ignores the negative statement, but considers several related
indications, thereby resulting in an FP.

In summary, our results suggest that, for a multi-labeling
dataset characterized by its small size and high imbalance, the
feature-based model is superior to fine-tuning and pre-trained

models are preferred. We also suggest using the feature
dependency strategy to build multi-labeling models instead of
using problem transformation because of its higher performance
and simplicity in terms of the training process.

Error Analysis
We discussed a few error cases regarding schizophrenia in
the previous section. This section presents the results of our
analysis of the remaining four disorders. First, we analyzed
the errors for major and minor depressions. As stated in
the previous section, deep learning models can be trained to
make their decisions not only on the basis of symptoms of
depression but also on other words that may provide clues. This
suggests that it would be worthwhile comparing our method
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FIGURE 7 | Comparison of the results of the pre-trained model and random initialization. Each sub-figure compares the results of HAN-glove_FD (upper) and

HAN-rand_FD (lower). (A) TP vs. FN; (B) TP vs. TP; (C) FP vs. FP.

with the approach that identifies the major depressive cases
by using the number of observed depressive symptoms only.
Therefore, we used the depressive symptom recognizer developed

in our previous studies (4, 37) to recognize the nine depressive
symptoms including depressed mood, loss of interest, fatigue,
appetite, sleep, psychomotor, poor concentration, worthless, and
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FIGURE 8 | Comparison of the top-30 similar words for “depressed,” “manic,” “hallucination,” and “zyprexa” regarding the randomly initialized embedding of

HAN-rand (left) and the pre-trained word embedding of the HAN-glove model (right).

TABLE 4 | Test set results of the rule-based approach based on our previous

studies to classify major depression cases.

Configuration Precision Recall F-score

Recognizer 0.75 0.7368 0.7434

Gold annotations 0.7627 0.7895 0.7759

suicidality from the BH and PME section of an EHR. We
then applied the rule to determine whether a patient has major
depression if at least five unique symptoms are recognized in
their EHR. Table 4 presents the results. The configuration “gold
annotations” applied the same rule as the human annotators’
depressive symptom annotations, which were annotated on
the same dataset used in this study. Details of the symptom
annotations can be found in our previous studies (4, 37).

As indicated in Table 4, even with manual annotations, the

PRF-scores only improve slightly. One of the reasons is that

the annotation in our previous studies only focused on the BH

section in patients’ EHRs. Second, the clinical psychiatrists made

their diagnoses by comprehensively and empirically reviewing

the patient’s treatment, chief complaint, and other detailed

information included in the EHR, which cannot be captured

by the employed rule. As shown in Figures 6, 7, the deep

learning models attempt to comprehend the content based on
their learned knowledge and exploit several factors to make their

judgments which ultimately improve the recall or precision. For

example, the best precision (0.892) and recall (0.947) among all
developed models were achieved by CNN-BERT_PT and Linear

(Mixed)-BERT_PT, respectively. We conducted an analysis based
on the weights learned by the developed model assigned for
each word, and found that the important terms in TP cases
were mainly related to symptoms (e.g., bed-ridden, depressed,
sad, or obsessively ruminated, worthlessness), medications (e.g.,
Cymbalta, Efexor, or antidepressant), and psychosocial stressors
(e.g., separation or withdrawal). These findings support our claim
that the classification made by the developed model is not only
dependent on symptomatology, but also on the function and
related treatment history.

However, the above feature could also increase the number
of FPs. For example, “Lexapro” and “Zoloft” are commonly
used to treat major depressive disorder, but they may also be
used to treat generalized anxiety disorder. Certain terms used in
EHRs may be related to several diagnoses. For example, “Efexor”
could be linked to major depressive disorder, minor depression,
and dementia. The associations among the five diseases and the
learned important terms (e.g., constipation, mother-in-low, and
remission) may be biased (or even unclear to us). Although
these words might be related to underlying physical conditions,
life situation, or treatment response, the small dataset at hand
may not be able to allow the developed models to learn the
implicit meaning among those terms and could lead to FPs
or FNs.
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