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THE CURRENT PSYCHIATRIC DIAGNOSIS: A PRACTICE
SUBJECT TO DEBATE

Good health and well-being feature among the development goals set by the United Nations
members in their action plans to ensure peace and prosperity by 2030 (1). In this context, promoting
mental health constitutes an important target. Additional efforts for an accurate, early and objective
diagnosis of mental disorders can only contribute to move forward in this direction.

Classification systems—such as the Diagnostic and Statistical Manual of Mental Disorders
(DSM), edited by the American Psychiatric Association (APA)—have been developed as a common
language to conduct diagnosis in the most possible form of universality. However, these a-
theoretical classifications lay down clinical descriptive criteria that can be open to subjective
interpretation by clinicians. The APA tried to address this issue by fine-tuning the diagnostic criteria
through the successive revisions of the DSM. However, each of these versions has always sparked
lively debate in the community (2, 3). The explosion in diagnostic categories was notably heavily
criticized. On the one hand, this multiplication was considered as a way of integrating the scientific
progress of psychopathology research and offering more exhaustive descriptions (4). On the other
hand, it has been argued that this explosion of diagnostic categories not only answers a commercial
objective, but is also a way to satisfy the society’s tendency to organize and annotate the mental
phenomena (5).

A diagnosis based on neuromarkers may respond to the criticisms addressed to the psychiatric
classification systems (3, 6). Here, the greatest challenge remains to identify the relevant and
discriminative markers that would reach sufficient scientific consensus.
A SENSE OF PROGRESS THROUGH MACHINE LEARNING

Over the last decade, the application of Machine Learning (ML) to the psychiatric research has given
the latter a new pulse (7). Indeed, in comparison to classical statistical approaches, ML provides
outstanding capabilities for processing multivariate and multimodal data sets (8).
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The ADHD-200 competition was probably the catalyst for
inspiring such interdisciplinary research (9). This international
contest was intended to accelerate the understanding of Attention
Deficit Hyperactivity Disorder (ADHD), by inviting competitors to
develop an imaging-based diagnostic classifier with the highest
possible performance. The ADHD-200 collection is the first in a
series of data sets released in the context of a large-scale project for
open data sharing. This valuable culture was promoted by the 1000
Functional Connectomes Project (FCP), followed by the International
Neuro-imaging Data sharing Initiative (INDI) (10). The will of
opening research to the largest extent possible led to the sharing of
software (11) and preprocessed data. The Autism Brain Imaging Data
Exchange (ABIDE) is a notable example of the achievements of the
INDI project. Related to Autism Spectrum Disorder (ASD), the
ABIDE data set was released in two parts, including brain imaging
data for over two thousand subjects aggregated across twenty-four
worldwide imaging sites (12, 13). The analysis of such large data sets
is expected to reduce inconsistency in research results, while the use of
small sample sizes has demonstrated its limitations with variable
levels of accuracy (14).

There is no doubt that the availability of large, free and well-
structured databases has been a positive incentive for their analysis
through ML, for the purpose of both knowledge extraction and
diagnosis prediction. These capabilities were described in terms of
their application to psychiatry (15–19). We will here discuss the
main technical challenges of this ML-guided research.
TOWARD A SUCCESSFUL CONJUNCTION
OF PSYCHIATRY AND MACHINE
LEARNING

Designing Explainable Solutions
Over the years, the ML algorithms have been improved to be
more and more performant. In particular, deep learning methods
advantageously capture complex patterns in data, therefore
allowing to reach higher levels of accuracy (20). But concretely,
clinicians expect more than just high accuracy from predictive
systems, which opacity constitutes a constant criticism (16, 19).
The emerging domain of explainable Artificial Intelligence (xAI)
is of particular interest in this respect (21). Indeed, explainability
allows clinicians to choose to trust, or not, the recommendations
(22). Moreover, it is well established that ML models tend to
reproduce the biases present in the training data sets, often
caused by the unbalanced representation of the classification
categories. Explainable decision chains thus allow to control that
the outputs are conform to ethical standards, and notably
unsupported by any form of discrimination (23, 24).

Most of the attempts in developing an xAI were focused on the
design of post-hoc systems, i.e. black boxes completed by a
component explaining predictions a posteriori (25). Post-hoc
systems are thus thought as an interesting way of combining high
accuracy and explainability. However, they remain questionable on
(i) the veracity of their explanations, which are generated around the
considered data point, and (ii) the consequent inability to give a
comprehensive picture of the model behavior (21).
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Concurrently, it has been shown that models, ranging from
white to black boxes, all perform comparatively when trained on
quality and meaningful data (21, 26). This observation suggests a
double perspective on the development of explainable ML systems.

• Data preprocessing conditions the performance of any decision
system. This initial phase in the ML process can consist of
applying a transformation to the original training features, in
order to make them more discriminative. The transformation
is sometimes unavoidably achieved through the (complex)
combination of the initial training features, which introduces
some interaction effects. Such a combination should thus be
understood for the interpretation (even simplified) of the
resulting features (27, 28).

• There also remain theoretical challenges to the improvement of
the current predictive ML algorithms. A modern research
avenue involves the design of optimal logical models (21) such
as decision trees, that may be algorithmically strengthened to
perform similarly as black boxes.

Efforts should thus be made both on data preprocessing and
model design, in order to better address the need for explainability
and transparency required by medical applications.

Reconciling Theory and Data-Driven
Approaches
Two main methodologies exist for scientific modeling (29).

• Theory-based models; that are grounded on known scientific
laws based on some parameters, and a low amount of data is
generally sufficient to fit these parameters.

• Data-based models; that require large data sets for an
automatic training procedure which is expected to yield
general models, able to describe the related phenomenon.

While theory-based methods are usually considered for the
understanding of disorders, data-driven methods are rather
considered for the design of clinical tools (16). A hybrid
approach guided by data and theory would broaden the field
of investigation, reconciling the existing scientific knowledge
with elements extracted from data. The concept, which is not
new, was highlighted in (16), and then properly formalized in
(29) as the Theory-Guided Data Science (TGDS) paradigm. This
principle should be encouraged in psychiatric research. Indeed,
TGDS may be put in practice through the interaction with
domain experts (i.e. psychiatrists, neuroscientists, neurologists)
bringing their medical knowledge for feature selection (16), or
more globally to refine ML models in the frame of an expert-in-
the-loop mechanism (30). The aforementioned explainability
naturally fosters the implementation of a TGDS.

Considering One-Class Classification
Though they are mostly considered in the development of
decision aid systems, Multi-Class Classification (MCC)
algorithms are criticized for several reasons. Indeed, MCC does
not address comorbidity appropriately since it considers the
different diagnostic categories as mutually exclusive (16). In
addition, MCC becomes more challenging in presence of
September 2020 | Volume 11 | Article 552262
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unbalanced and noisy data sets (31). The domain of One-Class
Classification (OCC) (32) covers a range of algorithms capable of
describing a given class [e.g., a neuropathology (33, 34)], in such
a way to reject cases that do not comply with this description. It is
thus possible to use ensembles of one-class models in order to
test a patient for several conditions simultaneously. One-class
classification also gets rid of the need for a balanced data set
including training instances from each class, as required by the
MCC scheme. Finally, through its very nature, OCC can
efficiently rule out noise, and specifically class noise which is
usually located on the class boundaries (31, 35).

Several OCC tools are already available for clinical use, despite
being mainly targeted towards neurological disorders (36). Hence,
OCC deserves greater attention to be further developed in psychiatric
research. Additional efforts for algorithmic improvements would be
particularly worth considering in the context of explainable AI.

Addressing the Question of Heterogeneity
in Data
Though outstanding, the efforts for large-scale data gathering across
several sites yield disparities in terms of demographics and
experimental protocols (22). The homogenization of experimental
protocols, and the design of appropriate validation procedures are
respectively thought as ways for achieving and assessing
generalizability (18, 19). The question of the extent to which this
generalizability needs to be achieved deserves to be discussed, and
probably requires a scientific consensus to provide a clear research
direction. Indeed, the available financial and technical means for
medical assessment and data may differ from a region to another.

Furthermore, psychiatric conditions can be characterized by
clinical and/or neurobiological heterogeneity, the latter being also
established in healthy controls (37). In this case, a thorough analysis
may help to consider the best modeling strategy. For example, a ML
framework can be implemented to perform diagnosis prediction in
different levels, i.e., to detect a disorder first, and the disorder
subtype then (38, 39). In (33), the authors focused on the
description of ASD through OCC, since controls showed high
neurobiological disparity. Moreover, ahead of the ML process, the
experimental protocol should not necessarily be aligned with the
DSM diagnostic categories. Indeed, these diagnostic labels are
heterogeneous and derived from traditional assessments
conducted by clinicians (40, 41). The Research Domain Criteria
(RDoC) framework was introduced by the National Institute of
Mental Health to alleviate this issue (42, 43). The RDoC orients the
study of mental illnesses towards domains of human functioning
described at different levels, rather than towards symptoms. The
lowest level relates to units of analysis, suggesting relevant biological,
genetic and physiological investigation markers (43).

Encouraging Scientific Reproducibility
The psychiatric domain has witnessed a significant increase in
ML-based studies, along with a diversification of the modalities
considered for data processing and modeling (44). It is therefore
imperative to apply guidelines that ensure reproducibility;
recommendations are provided in (44). The appropriate choice
of procedures for model training and evaluation, as well as the
Frontiers in Psychiatry | www.frontiersin.org 3
availability of source code/data should notably be encouraged.
Yet, a recent study highlighted that these aspects are often
lacking: it appeared that 50% of studies do not share software,
while 36% do not give access to data (45).

More specifically in the context of open data sharing, a standard
segmentation of the data collections into training and test sets would
reinforce reproducibility (40). On the occasion of the ADHD-200
competition, training and test sets were kept separately in order to
allow respectively the development and the assessment of the
predictive models developed by the competing teams. Since then,
these data subsets have mostly been used in their initial form, which
makes it easy to report the evolution of the progress achieved on the
prediction of ADHD. The same cannot be said for other INDI data
sets such as the ABIDE collection, where the segmentation of data is
a choice made for each research study. This great disparity in the
definition of the data subsets therefore makes it difficult to track the
research progress on a given mental disorder.
CONCLUSION

Through the present perspective, we wished to draw attention on key
principles for the design of Machine Learning (ML) solutions able to
help clinicians to diagnose mental disorders. Our consideration
addressed some main criticisms found in the literature about ML-
based systems for clinical applications. It appears that a form of
explainable and knowledge-guided data science will certainly help in
the design of transparentmechanismsmaking sense to clinicians. The
use of one-class classification algorithms allows to describe each
neuropathological condition separately, and may better take into
consideration comorbidity aspects. These practices are worth being
encouraged, even though they are currently timidly implemented.
Amid these capabilities, research will undoubtedly accelerate in
addressing the question of heterogeneity in data and in
encouraging scientific reproducibility. All these endeavors are
definitely promising for the future of psychiatric research.
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