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In this paper, from the perspective of complex network dynamics we investigated the

formation of the synchronization state of the brain networks. Based on the Lyapunov

stability theory of complex networks, a synchronous steady-state model suitable for

application to complex dynamic brain networks was proposed. The synchronization

stability problem of brain network state equation was transformed into a convex

optimization problem with Block Coordinate Descent (BCD) method. By using Random

Apollo Network (RAN) method as a node selection rule, the brain network constructs

its subnet work dynamically. We also analyzes the change of the synchronous stable

state of the subnet work constructed by this method with the increase of the size of the

network. Simulation EEG data from alcohol addicts patients and Real experiment EEG

data from schizophrenia patients were used to verify the robustness and validity of the

proposed model. Differences in the synchronization characteristics of the brain networks

between normal and alcoholic patients were analyzed, so as differences between normal

and schizophrenia patients. The experimental results indicated that the establishment of a

synchronous steady state model in this paper could be used to verify the synchronization

of complex dynamic brain networks and potentially be of great value in the further study

of the pathogenic mechanisms of mental illness.

Keywords: complex brain networks, a synchronous stability model, EEG, random apollonian networks, block

coordinate descent

INTRODUCTION

Synchronization of complex networks is a very important research direction in the study of complex
network dynamics because the complexity of the structural characteristics of complex networks
has a multifaceted impact on the dynamics of synchronization. This direction has been a focus
of research in recent years (1–5). At present, most of the synchronization research on complex
networks has been done to investigate the impact of topology on the synchronization capability,
but the synchronization process per se has rarely been studied. In fact, the synchronization process
is very important, because synchronization is a gradual process. Research on the synchronization
process is helpful for revealing the evolutionary mechanism of complex systems and for exploring
interesting phenomena that occur when a network reaches global synchronization. In 1990, Pecora
and Carroll pioneered the study of chaotic synchronization (6). Since chaos synchronization
potentially has important applications in many fields, many scholars have carried out research into
chaos control and synchronization, and researchers have proposed a series of effective methods
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for realizing chaotic synchronization. Interestingly, the study
of complex networks has boomed since the publication of two
ground breaking articles, “Small World Networks” in Nature
in 1998 (7) and “Scale-free Networks” in Science in 1999 (8).
The synchronization of complex networks has been also widely
studied. Chen et al. studied synchronization and stability models
of complex networks with coupled oscillator-based continuous
systems (8, 9). Their models primarily explored the influence of
network structures on the synchronization stability of dynamic
networks, and their work focused on synchronization theories
that corresponded to different types of complex networks.

However, investigating how to determine each parameter
for a specific application area could provide more practical
applications. Yu et al. (10) constructed a discrete modular
neuronal network made of small-world sub-networks based
on a map-based neuron model [proposed by Rulkov (11)]
to investigate its synchronization mechanisms. Although their
model reflected that the variations in coupling strengths and the
probability of random links between different sub-networks can
induce synchronization transitions, it was a discrete neuronal
network. In reality, neuronal networks are more likely to be
sequential complex networks. Arenas et al. (2) revealed the
structural characteristics of this type of network by analyzing
the synchronization process of the network. However, the
method is only applicable to a community network with a
hierarchical structure. In fact, many community networks do
not have a hierarchical structure. So this method needs to
be further improved to increase its applicability. To better
understand the dynamic behavior of complex brain networks, the
nonlinear method can be used to analyze the synchronization
of a chaos system. The main application of this method is the
phase synchronization method, which divides the amplitude
from the phase information and considers only the phase
information so that the stability of the signal is not as much
of an issue. To this end, Zhou et al. (12–14) put forward a
segmentation prony method, which improved the frequency and
phase resolutions, thereby enhancing the anti-noise ability of
simultaneous judgments. However, the synchronicity of the brain
in different frequency bands is ubiquitous in brain integration
and needs further research. Therefore, the characteristics of the
synchronous oscillation of the brain network were studied from
the perspective of complex networks in this paper. Based on the
theory of synchronization stability in modern cybernetics as well
as on the global features and local features of the brain network
(15–18), a synchronization steady state model suitable for the
brain network was established and a theoretical basis for judging
whether the brain network reaches a synchronization state was
also developed. According to the theory of complex networks,
the synchronization mechanism was further explored in brain
networks from different frequency bands of signals, which is of
great significance to the development of brain science. The rest
of this paper is organized as follows.

PRELIMINARIES

Definition of complex network synchronization
Synchronization criteria of complex network -master
stability function (MSF)
C. Sub network nodes selection rules

Complex Dynamic Brain Network Synchronization (CDBNS)
Model

CDBNS model and proof

CDBNS model
Proof and Optimization of CDBNSs

Synchronization stability discriminant construction of
CDBNS model

Numerical Experiment

Experimental simulation and result analysis on alcoholism
addiction data set

Simulation results analysis of alcoholism addiction data
set
Difference analysis of synchronization ability

Experimental simulation and results analysis on working
memory data of schizophrenia

Simulation results analysis of working memory data of
schizophrenia
Difference analysis of synchronization ability

Discussion

The basic concepts of complex network synchronization used
in this paper are introduced in section 1. Section 2 establishes
a complex dynamic brain network synchronization model
(CDBNS), along with the proof and optimization of this model.
Section 3 provides experimental results and a discussion of the
results and Section 4 includes the conclusions and suggestions
for future work.

PRELIMINARIES

A general complex dynamical network synchronization model
and several mathematical preliminaries are introduced in
this section.

Definition of Complex Network
Synchronization
Network synchronization is a very common and very important
non-linear phenomenon. There are many different research
methods of study network synchronization (17), such as common
constant synchronization, phase synchronization, generalized
synchronization, etc. Identical synchronization is defined as
(18, 19):

Definition1: Let xi (t, X0) be a solution of the complex
dynamic network

ẋ = f (xi) + gi (x1, x2, x3, . . . xN) , i = 1, 2, . . . ,N (1)

where, X0 =
(

(

x01
)T

,
(

x02
)T

, . . . ,
(

x0N
)T

,
)T

∈ RN∗N , f :D → Rn

and gi :D × D → Rn( i = 1, 2, . . . ,N) are all continuously
differentiable, D ⊆ RN and meet g (x1, x2, . . . , xn) = 0. There
is any non-empty open set C ⊆ F in the domain, which can
make any xi (t,X0) ∈ F and lim‖xi (t,X0) − si (t,X0)‖ = 0 i =
1, 2, . . . ,N for any x0i ∈ C, i = 1, 2, . . . ,N and t ≥ 0, i =
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1, 2, . . . ,N, where s (t, X0) is an effective solution space of
equation x0i ∈ C, i = 1, 2, . . . ,N and then complex dynamics
network (1) can reach an identity synchronous steady state, and
C × C × · · · × C is called the synchronous area of the complex
dynamic network (1).

Identical synchronization, which means that all nodes in the
network are in the same state at some time point, is a common
phenomenon in network synchronization. In Definition 1,
s (t,X0) is the synchronous steady state of the network, and x1 =
x2 = . . . = xN is the synchronization manifold of network state
space; that is, each physical oscillator tends to be in a described
state when the network is in synchronization.

Synchronization Criteria of Complex
Network -Master Stability Function (MSF)
Three kinds of criteria control complex network synchronization.
One is the Lyapunov function, which is used to analyze global
stability; the second is master stability function (MSF) proposed
by Pecora and Carroll in the 1990s (20), which is primarily
used to analyze the local stability; and the third is connection
graphic stability method established in 2004 by Belykh et al.
(21, 22), which is used to analyze the global synchronization
of the time-varying network, and the third method combines
Lyapunov function method and graph theory. In this way, this
method can avoid computing the Lyapunov exponent and the
eigenvalue of the Laplacian matrix. The second method (MSF)
is used in the model proposed in this paper. The definition of the
master stability function (MSF) (20) is as follows:

Definition 2:Consider a continuous time dissipative coupling
dynamic network

ẋi = f (xi) − c

N
∑

j=1

lijH
(

xj
)

, i = 1, 2, . . . ,N (2)

where ẋi = f (xi) is the dynamic function of node i, xi =

(xi1, xi2, . . . , xin)
T ∈ RN is the state variable of node i, constant

c > 0 is coupling strength of network, H ∈ RN×N is the internal
coupling function between the state variables of each node, L =

(lij)N×N
is Laplacian matrix which is defined as: if there is a

connection from node i to node j, then lij = 1, otherwise, lij = 0
and L satisfies the dissipative coupling condition lij = 0. Suppose
that s(t) is a periodic solution of system ẋi = f (xi), we linearize
network (2) at X(t)= S(t), and now let

ηi (t) = xi (t) − s (t) , i = 1, 2, . . . ,N (3)

and substitute (3) into network (2) to get

η̇i = Df (s) ηi − c

N
∑

j=1

lijDH (s) ηj i = 1, 2, . . . ,N (4)

where Df (s) is the value of Jacobian f (x) at x = s(t). Let
LT = Pdiag (λ1, λ2, . . . λn)P

−1 andη̂ =
[

η̂1, η̂2, . . . , η̂N
]

=

[η1, η2, . . . ηN] P, λi is the eigenvalue of external coupling matrix
L, then system (4) can be rewritten as

˙̂ηi =
[

Df (s) − cλiDH(s)
]

η̂i, i = 2, 3, . . . ,N (5)

A common criterion to judge the synchronous stability of a
system is to require that the Lyapunov exponents for (2) are all
negative (1, 18). But this does not mean that this condition alone
can determine whether a system realizes a steady state or not. In
(5), only η̂ and λi are related to i. Considering that the eigenvalues
of external coupling matrix L can possibly be complex numbers,
the main stability equation of network (4) is defined as:

˙̂η =
[

Df (s) − c (α + iβ)A
]

η̂i (6)

Maximum Lyapunov exponent of (6) is the function of two real
variables α and β , and is the master stability function of complex
dynamic network. For a fixed network coupling strength and
with a value of i obtained by iterative calculation, this equation
can determine the unique point c in the complex plane that is
determined by the two real variables α and β . The positive and
negative values of LEmax corresponding to this point reflect the
stability of the characteristics of the model. If starting from a
value >i, all of the characteristics of this model are stable, then
the entire network of the strength c is called an asymptotically
stable network. That is, when the transversal Lyapunov exponent
is negative and the LEmax is positive, then we can judge whether
a network is asymptotically stable. When the network is a simple
graph with no exponential terms and no direction, the MSF is
ẏ =

[

Df (s) − cαA
]

y. Because brain networks based on EEG
signals are complex networks, we cannot directly eliminate the
plural items; the specific form will be proved in the next section.

Sub Network Nodes Selection Rules
To observe the synchronization changes dynamically during the
experiment, the method in this paper used Random Apollonian
networks (RANs) (23, 24) to add nodes to generate dynamic
networks because the networks generated using this rule have
high clustering coefficients and smaller average distances. The
maximum of the minimum nonzero eigenvalue of the Laplacian
matrix is relatively large; that is, the generated networks have
the small-world and the scale-free attributes of the random
Apollo network, and are closer to the actual complex network
than a small-world network or a scale-free network. Random
Apollonian network (25, 26) is a popular random graph model
for generating planar graphs with power law properties. We
briefly describe the model as follows. A random Apollonian
Network starts with a triangle containing three nodes marked as
1, 2, and 3. Then, at each time step, a triangle is randomly selected,
and a new node is added inside the triangle and linked to the three
vertices of this triangle. The sketchmaps for the network growing
process are shown in Figure 1. It is clear that, at time step t, our
network is of the order N = t + 3. Using this simple rule, the
person making the model can get a random Apollonian network
of any arbitrary order that he likes. At time step 1, the fourth node
is added to the network and linked to nodes 1, 2, and 3. Then, at
time step 2, the triangle 1123 is selected, and the fifth node is
added inside this triangle and linked to nodes 1, 2, and 3. After
that, the triangles1234 and1124 are selected at time steps 3 and
4, respectively. Nodes 6 and 7 are added inside these two triangles
respectively. Figure 1D shows a random Apollonian network of
order 7. Continuing with similar iterations, the modeler can get
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FIGURE 1 | Snapshots of a random Apollonian network (RAN) at: (A) t = 1, (B) t = 2, (C) t = 3, (D) t = 4.

RANs of any order that he chooses. Note that the selected three
nodes must connect each other during the generation of RANs,
and the modeler must ensure that each triangle can only be
selected once in the process of generating the whole network.
In the process of updating the local sub-network, the block
coordinate descent method is used to optimize the generated
subnet. The optimization process is as follows: firstly, the non-
negative matrix of the brain network nodes is decomposed, and
then the dynamic network is processed by extermination. In
this way, the influence of the change of the maximum between
ness and average distance on the synchronization stability of the
network can be avoid, which can better help us to judge the brain
network synchronization stabilization.

COMPLEX DYNAMIC BRAIN NETWORK
SYNCHRONIZATION (CDBNS) MODEL

It is a non-convex and non-smooth problem to judge the
synchronization stability of brain network. UV - decomposition
theory (27) is an important method to study non-smooth
convex optimization. In this section, we propose a complex
dynamic brain network synchronization model, and transform
the stability problem of judging the equation of state of
brain network into convex optimization problem by using UV
decomposition theory.

CDBNS Model and Proof
In this section, a complex dynamical brain network model
is established based on the general complex dynamical
network model introduced in section Definition of Complex
Network Synchronization.

CDBNS Model
CDBNSModel to study the dynamic synchronization of complex
brain network, a dynamic system in each node of the network
is usually defined. The dynamic system can be either a limit
cycle or a chaos cycle. Also, a mutual coupling effect occurs
between the dynamic system of the two connected nodes so
it is termed a dynamic network. Strictly speaking, the brain
network has a total of N edges; the N edges are abstracted
into N nodes in the network, and the nodes in the same brain
area constitute the connected edges, that is, a unified network
system. Based on the relationship between the brain network
and the complex network, the node state variables are generated
by randomly selecting the nodes in the network (generation
method see section Sub Network Nodes Selection Rules). Based
on Lyapunov stability in the complex network, a CDBNS model
is proposed. This model describes the synchronization feature of
the brain network and examines whether the local brain nodes
have similar synchronizations. Let W be the set of total brain
nodes and M, G be the factorization initial reference matrix
of the random selected nodes. We use a significance test to
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verify whether the assumption is true. If it is true, then we
can perform matrix factorization STi = Ui3U−1

i where 3 =

diag (λ1, λ2, . . . , λn)andVi = U−1
i . Then the norm ‖Si − UiVi‖

2
F

F holds the oscillation information of the valuable nodes in the
brain network. Substituting it into (2), a general complex network
dynamic model composed of n identical and diffusive coupled
nodes is established. The state equation of the brain network is
described as

ẋi = f (xi) −

n
∑

j=1

clij min
{Wi ,Mi ,Gi}

m
∑

i=1

1

2t
‖Si − UiVi‖

2
F (7)

where c is the coupling strength of the brain network that we
constructed, all the xi = (xi1; xi2; · · ·; xin)

T ∈ RN are the state
variables of the nodes, t is length of the EEG signal sampling time,
L is the Jacobianmatrix of this network, all the lij are the elements
of matrix L, each Vi is the column vector for each U, and f (xi) is
the EEG dynamic equations proposed by Liley (28), which uses
a method of mathematical analysis based on the physiological
structure and anatomical basis of the cerebral cortex neuron
network. There are 60 nodes in S (In the experiment, a 64-
conductor EEG acquisition device was used, horizontal and
vertical eye electrodes are excluded). In accordance with the rules
introduced in section Sub Network Nodes Selection Rules, some
nodes in W are selected as the set of (7). The Cartesian product
of the set describes the couplings between the nodes in the set,
and the information about the edge is added to the point set. The
operation of finding norm of difference set is the construction
process of new sub-network. On the basis of the synchronization
stability theory of complex networks, the EEG dynamics equation
(7) will be the final state of the nodes in the brain network if
the proposed model realize synchronization (whether constant
or phase synchronization) at a certain time point.

Proof and Optimization of CDBNSs
Proof andOptimization of CDBNSsModel For the brain network
equation of the state equation (7), a vibrational equation is
obtained by linearizing its synchronization solution at x(t)= S(t),
let

ηi = xi (t) − s (t) , i = 1, 2, . . . ,N (8)

and substitute (8) into (7) to get the variation equations

η̇i = Df (x) ηi −

m
∑

i=1

n
∑

j=1

clij min
{Wi ,Mi ,Gi}

C
1

2t
‖Si − UiVi‖

2
F (9)

where η̇i is the variation in the state of the i-th node, f (x) is the
dynamic equation of a single node system in a brain network;
Df (x) is Jacobian matrix after the f (x) is linearized (which is the
same for all nodes in the synchronous state). L is the Laplacian
matrix of the brain network, ‖Si − UiVi‖

2
F also denotes Ŵ (xi) =

‖Si − UiVi‖
2
F , then (9) can be rewritten as

η̇i = Df (x) ηi −

m
∑

i=1

n
∑

j=1

clij min
{Si ,Ui ,Vi}

CŴ (xi) (10)

where xi is state vector of the i-th node, which denotes the
oscillation strength of the nodes in the brain network, and the
first derivative denotes the change rate of the oscillation strength.
The matrix c = (cij)n×n

∈ Rn×nis the coupling strength of the
network (7), namely, the Laplacian matrix. (lij)M×N

∈ Rdenotes
thematrix element of the couplingmatrix. If there is a connection
between nodes i and j, then lij = 1, otherwise lij = 0. The
diagonal of the matrix l element is defined as li =

∑m
i=1

∑n
j=1 lij.

Considering the randomness during the node selection, the
RAN process finally adds all the nodes to the set, the maximum
between ness centrality and the average distance change greatly
due to the influence of the node selection order between the
intermediate networks. Therefore, we do extreme processing for
the node sets S,U,V of each network using the block coordinate
descent (BCD) algorithm (28), which avoids changes in network
synchronization stability resulting from the change in the
maximum betweenness centrality and the average distance. The
specific process is as follows: Establish the relationship between
the whole brain node Si and the decomposition matrixUi; Vi,
where λ1; λ2; λ3 are the decomposition coefficients:

{

S+
(i)

}

= argmin
Si

m
∑

i=1

1

2ti

∥

∥Si − U+V+
i

∥

∥

2

F
(11)

{

V+
(i)

}

= argmin
Vi

m
∑

i=1

1

2ti

∥

∥S−i − U+V+
i

∥

∥

2

iF

+λ1

n
∑

i=1

1

2ti
‖Vi‖

2
F + λ2

n
∑

i=1

1

2ti
‖ViRi‖

2
F (12)

{

U+
(i)

}

= argmin
U≥0

n
∑

i=1

1

2ti

∥

∥S−i − U−V−
i

∥

∥

2

F
+ λ3 ‖U‖ (13)

During the generation of the nth networks,
∥

∥S−i − U+V+
i

∥

∥ is a
local minimum at the linear solution i= t, (11), (12), and (13) are
combined by using the BCD algorithm, and let P�ibe each node
matrix set, then we can get

S+
(i)

= P�i

(

U+V+
i

)

+ P�i (Xi) (14)

where Xi is the brain network that substitutes into (7), Ui, Vi is
the decomposition matrix. Substituting (14) into (10), we get:

η̇i = Df (x) ηi +

n
∑

j=1

caij
[

P�i

(

U+V+
i

)

+ P�i (Xi)
]

= Df (x) ηi +

n
∑

j=1

caijP�i

(

U+V+
i

)

+

n
∑

j=1

caijP�i (Xi)

= D2(x, xi) +

n
∑

j=1

caijP�i

(

U+V+
i

)

(15)

D2(x, xi) = Df (x) +
n
∑

j=1
caijP�i (Xi),P�i

(

U+V+
i

)

∈

{η1, η2, . . . , ηn}, which is the generated brain network according
to the above model, when all the brain nodes are taken into
account, Xi denotes the whole brain network, andP�i (Xi) =
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P� (S). Comparing (5) with (15), we can see that the CDBNS
model eliminates the existence of complex variables, so that the
general MSF in dynamics can be applied in the brain network in
the form of matrix decomposition and also the state parameters.
When the system stabilizes, the state parameter changes from one
to two in the generation process.

Synchronization Stability Discriminant
Construction of CDBNS Model
Equation (15) is the final pattern of the steady-state equation
for the brain network. To determine the stability of the model,
we needed to construct its Lyapunov function to judge the
positive and negative properties of the exponential and, thus,
judge the stability of the network. A Lyapunov function of the
brain network dynamics system was constructed by using the
MSF and the stability of this system can be judged by the sign
of the exponents for this function. Considering that the complex
network system (15) is a continuous-time dissipative coupling
network, if the synchronous steady-state model synchronizes at
s(t), J(t) is the Jacobian matrix at f (x(t))= s(t) and applies J(t) to
the brain network, using the following Lyapunov function:

Vi (t) = xTi (t) Sixi (t) +

∫ τ

t−τ

xti (s)Uixi (s) ds

+

∫ 0

−τ

∫ 0

β

ẋTi (t + α)Viẋi (t + α)dαdβ (16)

where Si> 0, U i > 0, Vi > 0 is the nodes matrix of the brain
network, Vi (t) is the Lyapulov function, xi (t) is the state of node
i at time t, xTi (t)is the transpose matrix of xi (t), τ is a short
time interval, alpha and beta are the duration of the experiment.
Diagnose Vi (t), we can get:

V̇i (t) = ẋTi (t) Sixi (t) + xTi (t) Siẋi (t) + ẋTi (t)Uixi (t)

−ẋTi (t − τ)Uixi (t − τ) + τ ẋTi (t)Vixi (t) (17)

−

∫ τ

t−τ

xti (α)Vixi (α) dα =
1

τ

∫ t

t−τ

∑

(t,α)dα

∑

(t,α) = ẋTi (t) Sixi (t) + xTi (t) Siẋi (t) + ẋTi (t)Uixi (t)

−ẋTi (t − τ)Uixi (t − τ) + τ ẋTi (t)Viẋi (t)

−τ ẋTi (α)Viẋi (α) (18)

According to the Newton-Leibniz formula, we can get:

xk (α) − xk (t − τ) =

∫ t

t−τ

ẋk (α) dα (19)

Since the function (19) satisfied any constructive matrices
Si,U i,Vi, we get the final Lyapunov function

dbij (i) =
1

bij(bij − 1)

∑

ij

c2 +

∫ t

0

1

2(1− t)
dt (20)

P�i is a dynamic subnet constructed according to the RAN
method, t represents the duration of the signal in the brain

network, bijrepresents the number of nodes connected by the
same node, and the number on the diagonal represents the
opposite number of rows or columns in the matrix. dbij (i)
corresponds to the point that reflects the stability of the
characteristic mode (negative denotes stability, positive denotes
instability). If all characteristic modes corresponding to the
decomposition coefficient are stable, the homogeneous manifold
of the network is considered to be asymptotically stable at this
coupling strength.

NUMERICAL EXPERIMENT

Experimental Simulation and Result
Analysis on Alcoholism Addiction Data Set
Alcoholism addiction data (https://archive.ics.uci.edu/ml/
datasets/EEG$+$Database) come from the data set of the
University of California, Irvine, used for machine learning.
This original data set recorded the multi-channel EEG time
sequences of two groups, which included 77 alcoholics and
45 participants of the control group. In this experiment, the
data of 61-channe scalp EEG in two sets of volunteers was
collected, and the electrode position was based on the extended
international 10–20 system, the sampling set at 256Hz, using
the modified working-memory task experimental paradigm.
Every participant did 120 experiment tasks, and every task was
randomly chosen from three different experimental conditions,
including single stimulation, double matching stimulation and
double nonmatching stimulation. Single stimulation (S1) means
presenting only one picture, double matching stimulation (S2
Match) refers to presenting two identical pictures within a short
time, and double no-matching stimulation (S2 NoMatch) means
presenting two different pictures within a short time. Moreover,
no answer was needed for single stimulation, but the participants
under double stimulations were required to judge whether the
two figures were the same and press buttons to reply. Data from
20 alcohol abuse patients and 20 normal subjects were selected
for the simulation.

Based on previous work by our research group (29, 30),
the signals were decomposed by wavelet packet decomposition.
The signals were divided into five frequency bands of
δ(1–4)Hz, θ(4–8)Hz, α(8–13)Hz, β(13–30)Hz, and γ (30–
45)Hz, and the two significant bands of α and θ were
selected for analysis. Each subject’s brain function network
was generated within a connection density of 12–40% (2%
step) (31, 33). EEG dynamic equations f (xi) proposed by Liley
(28) is:

(x) =




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(21)
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FIGURE 2 | Bain network synchronization experimental results for different subjects in the alcoholic data set under the same connection density (40%). (A) Alcoholic

subject number is co2a0000405, normal subject number is co2c0000357, (B) Alcoholic subject number is co2a0000417, normal subject number is co2c0000367,

(C) Alcoholic subject number is co2a0000418, normal subject number is co2c0000370, (D) Alcoholic subject number is co2a0000451, normal subject number is

co2c0000393.

Then we solved (21) and transformed the equation into a
first order nonlinear system of equations with ten coupling
equations with the ten variables a = 0.49 ms−1, b = 0.52
ms−1, A = 0.81 mV, B = 4.85 mV, emax = imax = 0.5 ms−1,
heep = 45 mV, Hiep = –90 mV, hei= hir = –70 mV, Nee

= Nei = 3,034, Nie = Nii= 536, pie = pii = 0, se = si= 5
mV, θe = θi= –50 mV, τe = 9 ms, τi = 39 ms, Df (x)was
calculated by taking the above initial values into the dynamic
equation, and the brain network node set S was orthogonally
decomposed to obtain the local brain network node set U, V.
The Lyapunov functions of (7) were, respectively simulated in

two groups; the first group was the change in the Lyapunov
exponent of the alcoholic patients and the normal subjects in
the alpha frequency band, and the second group was the change
in Lyapunov exponent of the alcoholic patients and the normal
subjects in the theta band. The synchronization tests of the brain
network were performed on different subjects in the alcoholics
and normal subjects’ groups, and the simulation results are
shown in Figure 2. The synchronization tests of brain network
were performed on different connection densities in alcoholics
and normal subjects, and the simulation results are shown
in Figure 3.
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FIGURE 3 | Bain network synchronization experimental results for the same subject in the alcoholic data set under different connection densities. (A) Connection

density 30%, (B) connection density 32%, (C) connection density 34%, (D) connection density 36%.

Simulation Results Analysis
Each time the simulation experiment takes a node from the
network node set S and adds it to P�, according to the EEG
alcohol public data set description, each experiment time was
3.906 × 80ms. We selected the EEG data of the alcohol abuse
patient number co2a0000364 and normal subject number 339;
next we constructed a brain function network for analysis, and
took the connection density at 40%. The experimental simulation
results are shown in Figures 4A,B. As can be seen in the figure,
the Lyapunov exponent of the entire network became negative
as the nodes were gradually added to the model, that is, the
model reached a synchronized state. A conclusion can be drawn
from the above analysis that the CDBNS model can be applied
to different connection densities and different frequency bands

in the alcoholism data set. If we take Figure 4A as an example
to make a detailed analysis of the results, the abscissa indicates
the number of added nodes in the brain functional sub-network
generated using the random Apollo method. For each added
node in the network, a Lyapunov exponent value could be
obtained by using (20).

Each node and its number in the alcoholism data set S =

{FP1 chan0# FP2 chan1# F7 chan2# F8 chan3# AF1 chan4#
AF2 chane5# FZ chan6# F4 chan7# F3 chan8# FC6 chan9# FC5
chan10# FC2 chan11# FC1 chan12# T8 chan13# T7 chan14# CZ
chan15# C3 chan16# C4 chan17# CP5 chan18# CP6 chan19# CP1
chan20# CP2 chan21# P3 chan22# P4 chan23# PZ chan24# P8
chan25# P7 chan26# PO2 chan27#PO1 chan28# O2 chan29# O1
chan30# X chan31# AF7 chan32# AF8 chan33# F5 chan34# F6
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FIGURE 4 | Changes in the Lyapunov exponents in different frequency bands. (A) Change of Lyapunov exponent in alpha band. (B) Change of Lyapunov exponent in

theta band.

chan35# FT7 chan36# FT8 chan37# FPZ chan38# FC4 chan39#
FC3 chan40# C6 chan41# C5 chan42# F2 chan43# F1 chan44#
TP8 chan45# TP7 chan46# AFZ chan47# CP3 chan48# CP4
chan49# P5 chan50# P6 chan51# C1 chan52# C2 chan53# PO7
chan54#PO8 chan55# FCZ chan56# POZ chan57# OZ chan58#
P2 chan59# P1 chan60# CPZ chan61# and chan62# Y chan63#}.
In Figure 4A the node sequence set U1 added in the normal
(i.e., c-line) sub-network generation process = {PZ chan24#
CP2 chan21#P4 chan23# POZ chan57# chan42# F8 chan3# PO2
chan27# CP3 chan48# chan50# O2 chan29# T7 chan14# OZ
chan58# CP4 chan49# P7 chan26# P3 chan22# C2 chan53#
FT7 chan36# P8 chan25#P6 chan51# TP7 chan46# P2 chan59#
CP1 chan20# PO1 chan28# TP8 chan45# FC5 chan10# FP2
chan1# T8 chan13# F6 chan35#FCZ chan56# C1 chan52# F7
chan2# F5 chan34# F1 chan44# FC2 chan11# FC6 chan9# C4
chan17# CZ chan15# F4 chan7# FT8 chan37# X chan31# FC1
chan12#AFZ chan47#FP1 chan0#AF8 chan33# F3 chan8# C6
chan41# AF2 chan5# FC3 chan40# CP6 chan19# FC4 chan39#
AF7 chan32# PO7 chan54#AF1 chan4# F2 chan43# FPZ chan38#
FZ chan6# C3 chan16# PO8 chan55#}. In Figure 4A the node
sequence set U2 added in the normal (i.e., a-line) sub-network
generation process = {AFZ chan47# F3 chan8# F1 chan44# FCZ
chan56#FP2 chan1#FP1 chan0# CZ chan15# FZ chan6# AF1
chan4# FPZ chan 38# X chan31# FC5 chan 10# AF7 chan 32#
F5 chan34#FC3 chan40# F7 chan2# AF8 chan33# F6 chan35#
FT7 chan36# F8 chan3# AF2 chan5# F2 chan 43# FT8 chan
37# T8 chan13# FC4 chan39# F4 chan 7# FC2 chan11# FC6
chan9# FC1 chan12# T7 chan14# C6 chan41# C5 chan42# C4
chan17# TP8 chan45# TP7 chan46# P6 chan51# P8 chan25#
P7 chan26# CP2 chan21#OZ chan58# P4 chan 23# O1 chan
30# PO1 chan28# P3 chan22# CP3 chan48# CP6 chan19# P5
chan50# CP4 chan49# CP5 chan18# P2 chan59# PZ chan24#
CP1 chan20# POZ chan57# O2 chan29# PO2 chan27# PO8
chan55# C3 chan16# C2 chan53# C1 chan52#}. It can be seen
from Figure 4A that the alcohol abuse patients reached the
synchronization earlier than the normal subjects; that is, alcohol

appears to have damaged the synchronization of the brain
network. When the normal brain network joined the 6th, 7th,
and 8th nodes (that is, adding the node F8 chan3# PO2 chan27#
CP3 chan48#), the Lyapunov exponent was negative, which
indicates that the network had reached a short synchronization
at this moment. When the normal brain network joined the
10th, 11th, and 12th nodes (that is, the node O2 chan29#
T7 chan14# OZ chan58#), the Lyapunov exponent became a
positive number from the previous negative number, indicating
that the network was unstable; in particular, the Lyapunov
exponent reached a positive maximum of 3.3049 when added
to the 26th node (FPZ chan 38#), where the network was the
least stable. However, the Lyapunov exponent of the alcoholic
patient brain network was negative when the nodes 4, 5, and
6 were added to the brain network of the alcoholism patient
(that is, the node FCZ chan 56 # FP2 chan1# FP1 chan0# were
added), indicating that the network had reached a short time
synchronization. When the brain network of alcoholism patients
joined the 7th, 8th, and 9th nodes (that is, added the node
CZ chan15 # FZ chan6# AF1 chan4#), the Lyapunov exponent
became positive from the previous negative number, indicating
that the network was unstable in the following add-on nodes.
The Lyapunov exponent of the alcoholism patients’ network was
roughly distributed around 0. Conclusions can be drawn from
the above analysis that the CDBNS model could be applied to
different connection densities and different frequency bands in
the alcoholism data set.

DIFFERENCE ANALYSIS OF
SYNCHRONIZATION ABILITY

First, the Lyapunov index changes over time (synchronous
state of brain networks) were analyzed for alcoholics
and healthy subjects, the results are shown in the
Figure 5.

Frontiers in Psychiatry | www.frontiersin.org 9 December 2020 | Volume 11 | Article 571068

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yin et al. Complex Brain Networks and EEG

FIGURE 5 | Brain network synchronization status. (A) is brain network synchronization status of alcoholic subject co2a0000407; (B) is brain network synchronization

status of General Subject co2c0000357.

As the brain network nodes of the subjects in two groups
were gradually added to the model, the max Lyapunov index
of the whole network became positive, that is, it reached the
synchronous state. For the alcoholism patients in Figure 5A,
the max Lyapunov index turned positive from about 15ms
and lasted for about 45ms until 60ms. After a short period of
instability, the network reached synchronous stable state again,
but the duration was shorter. For healthy subjects in Figure 5B,
the max Lyapunov index of the entire network becomes
positive from about 25 to 150 milliseconds for a duration of
about 110 ms.

The alcoholic brain network was synchronized when the sixth
node joined the brain network, while the normal subject was
synchronized for the first time when the eleventh node joined
the brain network. Therefore, the synchronization time is slightly
later than that of alcoholics. The normal subject’s brain network
was also synchronized again and continued for a longer period
of time. This is the main difference between the two groups.
The longer the time, the less negative maximum Lyapunov index
was in the normal subjects compared with the alcoholic patients,
which indicates that the synchronization duration of normal
human brain network is longer than that of the alcoholic patients
on a macro level.

Second, the first synchrony time and the first synchrony
duration of the brain network Lyapunov index of 20 normal
subjects and alcoholics were counted, and the results were shown
in the Figure 6.

The mean first synchrony time was 14.67 ± 2.62ms in the
alcoholic group and 25.28± 3.46ms in the healthy control group.
The average duration of the first synchrony was 11.66 ± 2.78ms
in the alcoholic group, compared with about 19.92 ± 5.69ms
in the normal group. Although alcoholics achieve synchronous
speed more quickly, the duration is shorter. The first synchrony
time of normal subjects was later than that of alcoholics, but
the duration was longer. Therefore, it can be concluded that the
stability of brain network of normal subjects in resting state is
better than that of alcoholics.

Experimental Simulation and Results
Analysis on Working Memory Data of
Schizophrenia
Experimental Simulation EEG data of working memory of
schizophrenia patients collected from Huilongguan Hospital
in Beijing. The experimental paradigm used the modified
Sternberg’s SMST (31) (short-term memory scanning task)
paradigm (32), Data from 34 patients with schizophrenia and 34
normal subjects were selected for experiments. Based on previous
work by our research group (29–31, 34), none of whom had any
record of drug abuse or diagnosis of neuropsychiatric disease in
the past 6 months. The age range of the patient group was 20–
51 years old, and the average age was (40.1 ± 11.1) years old;
the healthy control group age range was 21–58 years old, and the
average age was (37.1 ± 13.8) years old. Age, sex, and education
level did not differ significantly between the two groups. All the
members of both groups had normal vision or corrected visual
acuity, had no color disturbance, and were right-handed.

The working memory data were divided into three stages:
encoding, maintenance, and retrieval. The duration of each stage
was 5, 3, and 2.5 s. The EEG data from each stage were divided
into alpha and theta frequency bands. The sparseness of 12–
40% and the sparseness of 2% were used to generate the brain
function network S for each subject. The initialization was the
same as for the alcoholism data set and was calculated. The
brain nodes set S is orthogonal decomposed into U, V. Using the
complex dynamic brain network model synchronization stability
discriminant construction in section 2.2 and using the Lyapunov
discriminant of (20), six sets of simulations were performed
separately using MATLAB. In the alpha frequency band, three
groups of experiments were conducted separately, and three
groups of experiments were carried out on the theta band
separately. The synchronization test of the brain network was
performed on different subjects in the schizophrenia and normal
subjects, and the simulation results are shown in Figure 7:
The synchronization test of the brain network was performed
at different connection densities in the schizophrenia patients
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FIGURE 6 | First synchrony times.

and normal subjects, and the simulation results are shown in
Figure 8: Simulation Results Analysis Taking the simulation
on the alpha band as an example, each time the simulation
experiment took a node from the network node set S, it was
added to P�. We selected the EEG data of schizophrenia patient
number 1098 and normal subject number 1448, constructed the
brain function network for analysis, and took the connection
density of 40%. The experimental simulation results are shown
in Figures 9A–C. The above analysis supports the idea that the
CDBNS model can be applied to different connection densities
and different frequency bands in a schizophrenia working
memory data set. We took the results shown in Figure 9C as
an example to do a detailed analysis of the results. The abscissa
indicates the number of added nodes in the brain functional
sub-network generated using the random Apollo method. For
each added node in the network, a Lyapunov exponent value
was obtained by using (20). Each node and its number in the
schizophrenia working memory data set S= {Ch5 Fp1# Ch6 F7#
Ch7 Fp2# Ch8 F3# Ch9 FC3# Ch10 FT7# Ch11 T7# Ch12 F8#
Ch13 F4# Ch14 Fz# Ch15 FCz# Ch16 C3# Ch17 TP7# Ch18
FT8# Ch19 FC4# Ch20 Cz# Ch21 CPz# Ch22 CP3# Ch23 P3#
Ch24 P7# Ch25 T8# Ch26 TP8# Ch27 C4# Ch28 P8# Ch29 CP4#
Ch30 P4# Ch31 O2# Ch32 O1# Ch33 Pz# Ch34 Oz# Ch35 Fpz#
Ch36 AF3# Ch37 AF7# Ch38 F5# Ch39 AF8# Ch40 AF4# Ch41
F1# Ch42 FC5# Ch43 F6,Ch44 F2# Ch45 FC1# Ch46 C5# Ch47
FC6# Ch48 FC2# Ch49 C23# Ch50 C1# Ch51 CP1# Ch52 CP5#
Ch53 P5# Ch54 C6# Ch55 PO3# Ch56 PO7# Ch57 CP6# Ch58
PO8# Ch59 P6# Ch60 CP2# Ch61 PO4# Ch62 P2# Ch63 POz#
Ch64 P1#}. In Figure 9C, the node sequence set U1 added in

the normal (ie normal-line) subnetwork generation process =

{AF3 Ch36# F1 Ch41# P4 Ch30# F4 Ch13# F3 Ch8# CP6 Ch57#
FC5 Ch42# O1 Ch32# AF7 Ch3# Fz Ch14# F5 Ch38# F2 Ch44#
FC3 Ch9# FT7 Ch10# Ch29# Fp1 CP4# C1 Ch50# Fp2 Ch7#
C23 Ch49# FCz Ch15# Fpz Ch35# PO4 Ch61# C3 Ch16# T7
Ch11# F7 Ch6# Cz Ch20# AF4 Ch40# FC1 Ch45# O2 Ch31#
FC2 Ch48# P3 Ch23# P7 Ch24# POz Ch63# PO3 Ch55# FC4
Ch19# T8 Ch25# Oz Ch34# PO8 Ch58# TP8 Ch26# Pz Ch33#
C5 Ch46# CP5 Ch52# P1 Ch64# PO7 Ch56# C4 Ch27# F8 Ch12#
P2 Ch62# P8 Ch28# CP1 Ch51# CPz Ch21# AF8 Ch39# P6
Ch59# FC6 Ch47# F6 Ch43# P5 Ch53# CP3 Ch22# FT8 Ch18#
CP2 Ch60# C6 Ch54# }. It can be seen from Figure 9C that the
schizophrenia patients reached synchronization sooner than the
normal subjects. When the normal brain network joins the 5th,
6th, 7th, and 8th nodes (that is, adding the node Ch6# F7, Ch4#
F1), the Lyapunov exponent was negative, indicating that the
network had reached a short synchronization at this moment.
When the normal brain network joined the 9th node (that is,
adding the node Ch50# C1), the Lyapunov exponent became a
positive number from the previous negative number, indicating
that the network became unstable in a short time. When joining
the 11th and 12th nodes (that is, adding the node Ch44# F2
Ch47# FC6), the Lyapunov exponent became negative again,
and the network was again in the synchronized state. However,
when the fourth node (i.e., adding node Ch13# F4) was added in
the network of schizophrenia patients, the Lyapunov exponents
became negative, indicating CP6 Ch42# FC5), the Lyapunov
exponent immediately changed from positive to negative, and
the network was unstable. When joining the 8th, 9th, and 10th
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FIGURE 7 | (A–D) Brain network synchronization experimental results for different subjects in the schizophrenia data set under the same connection density (40%).

nodes (that is, adding the node Ch32# O1 Ch37# AF7 Ch14#
Fz), the Lyapunov exponent value turned positive from negative
again, and the network reached a short-term synchronization.
In the following add-on nodes, the Lyapunov exponent of the
schizophrenia patients and the normal networks were roughly
distributed around 0 that the network reached short-term
synchronization at this moment. Then, adding the fifth, sixth,
and seventh nodes (that is, adding the nodes Ch8# F3 Ch57#
CP6 Ch42# FC5), the Lyapunov exponent immediately changed
from positive to negative, and the network was unstable. When
joining the 8th, 9th, and 10th nodes (that is, adding the node
Ch32# O1 Ch37# AF7 Ch14# Fz), the Lyapunov exponent value
turned positive from negative again, and the network reached a
short-term synchronization. In the following add-on nodes, the
Lyapunov exponent of the schizophrenia patients and the normal
networks were roughly distributed around 0.

Difference Analysis of Synchronization Ability
The synchronization stability of the brain networks of the two
groups was further determined by the statistics of the first
synchronization time. The first synchrony times of 10 subjects in
two groups were shown in Figure 10, the average first synchrony
times and standard deviation of three stages are showed in
Table 1, according to Table 1 and figures, the synchrony time
of schizophrenic patients was later than that of healthy subjects,
and the standard deviation results showed significant difference
in coding stage.

DISCUSSION

Lu et al. (9) put forward a series of models related to complex
network synchronization, although they have made significant
contributions to complex network theory, these type of models
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FIGURE 8 | Bain network synchronization experimental results of the same subject in Schizophrenia data set under different connection densities. (A) Connection

density 30%, (B) connection density 32%, (C) connection density 34%, (D) connection density 36%.

often consist of many equations and many parameters and
their applicability on large ensembles of elements is highly
questionable, which also holds for a bifurcation analysis. Hövel
et al. (3) presents a summary of a data-driven computational
model of synchronization between distant cortical areas that
share a large number of overlapping neighboring (anatomical)
connections, in which the coupled oscillatory systems were
represented by the Kuramoto phase oscillators. The focus of this
modeling approach is to characterize topological properties of
functional brain correlation related to synchronization of the
regional neural activity. The best agreement between model and
experimental data is reached for dynamical states that exhibit
a balance of synchrony and variations in synchrony providing
the integration of activity between distant brain regions. The

limitation of this model is given by its purpose, which does
not consider the role of coupling topologies that correspond
directly to structural connectivity data. From the perspective
of complex network synchronization control, Ferrari et al. (35)
presented a model in which cortical areas are represented by
networks composed of coupled Rulkov neurons. They improved
the stable partial synchronization of the network by adjusting the
coupling strength while the intensity of phase synchronization
between the cortical areas varies depending on coupling strength.
That is how to construct the structural connection matrix has
great effect to dynamical patterns in the network. This paper
proposes a suitable predictive brain network synchronization
model based on EEG signals. It not only proves the validity of
the model through formula derivation and theory, but also uses
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FIGURE 9 | Changes in the Lyapunov exponents during different stages. (A) Encoding stage, (B) maintenance stage, (C) retrieval stage.

FIGURE 10 | First synchrony time of three stages. (A) Encoding stage, (B) maintenance stage, (C) retrieval stage.
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TABLE 1 | Mean synchrony time and standard deviation in three stages of two

groups.

Group Stage Mean synchrony

time (ms)

Standard

deviation

Patient Encoding 24.83 10.96

Maintenance 22.53 4.88

Retrieval 21.54 8.94

Normal Encoding 20.16 8.33

Maintenance 15.84 3.09

Retrieval 16.03 6.98

the public alcoholic data set and the real data set collected by the
hospital to perform simulation experiments to prove the model’s
effectiveness, it can finally realize the dynamic observation of
synchronization changes in the evolution of brain networks. The
current study involved a limitation that should be considered.
That is the appropriate threshold range needs to be selected for
brain network construction and we will investigate the reason for
this behavior in the future.

CONCLUSION

Through research on the synchronization stability equations of
complex networks, a synchronization steady-state model which
is suitable for use in brain networks is put forward, and the
theoretical basis and proof are given in this paper. That is to
say, because the stability of the state equation of the brain
network was transformed into a convex optimization problem,
this is a new method using the smooth information from
non-smooth functions to study the second-order approximation
of convex functions. Thus, we obtained a newmethod for solving
the convex optimization problem. To dynamically observe the
synchronization changes during the experiment, we generated a
dynamic network using random Apollonian networks (RANs) to
add nodes and used the block coordinate descent (BCD) method
to do extreme treatments to the dynamic sub-network and to do
nonnegative matrix factorization on the brain network nodes set.
Finally, the problem of the influence of network synchronization
stability brought by the change of the maximum between ness
and average distance has been solved. As a result, we can better
judge the synchronization stability of the brain network.

Through the analysis of synchronization status in different
bands and different connection densities, we were able to clearly

see the process of change in the brain network synchronization
status with the change in the brain network scale. This is
an expected result. We also found that the patients with
schizophrenia achieved synchronization sooner than the normal
patients. The experimental analysis shows that the establishment
of the steady state model can well verify the synchronization of
the network and potentially can have a wide range of applications
in the study of the pathogenic mechanisms of mental diseases.
However, additional studies are needed to discover which nodes
in the network contribute the most to the overall stability of
synchronization and to explore whether there is a reason why
the network achieves a synchronous, stable state due to some
special nodes.
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