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Background: We aimed to develop a Human Activity Recognition (HAR) model using a
wrist-worn device to assess patient activity in relation to negative symptoms of schizophrenia.

Methods: Data were analyzed in a randomized, three-way cross-over, proof-of-mechanism
study (ClinicalTrials.gov: NCT02824055) comparing two doses of RG7203 with placebo,
given as adjunct to stable antipsychotic treatment in patients with chronic schizophrenia and
moderate levels of negative symptoms. Baseline negative symptoms were assessed using
the Positive and Negative Syndrome Scale (PANSS) and Brief Negative Symptom Scale
(BNSS). Patients were given a GeneActiv™ wrist-worn actigraphy device to wear over a 15-
week period. For this analysis, actigraphy data and behavioral and clinical assessments
obtained during placebo treatment were used. Motivated behavior was evaluated with a
computerized effort-choice task. A trained HAR model was used to classify activity and an
activity–time ratio was derived. Gesture events and features were inferred from the HAR-
detected activities and the acceleration signal.

Results: Thirty-three patients were enrolled: mean (±SD) age 36.6 ± 7 years; mean (±SD)
baseline PANSS negative symptom factor score 23.0 ± 3.5; and mean (±SD) baseline BNSS
total score 36.0 ± 11.5. Activity data were collected for 31 patients with a median monitoring
time of 1,859 h per patient, equating to ~11 weeks or 74%monitoring ratio. The trained HAR
model demonstrated >95% accuracy in separating ambulatory and stationary activities. A
positive correlation was seen between the activity–time ratio and the percent of high-effort
choices (Spearman r = 0.58; P = 0.002) in the effort-choice task. Median daily gesture counts
correlated negatively with the BNSS total score (Spearman r = −0.44; P = 0.03), specifically
with the diminished expression sub-score (Spearman r = −0.42; P = 0.03). Gesture features
also correlated negatively with the BNSS total score and diminished expression sub-scores.
Activity measures showed similar correlations with PANSS negative symptom factor but did
not reach significance.
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Conclusion: Our findings support the use of wrist-worn devices to derive activity and
gesture-based digital outcome measures for patients with schizophrenia with negative
symptoms in a clinical trial setting.
Keywords: body-worn sensor, digital endpoints, digital health technology, digital outcome measures, gesture
detection, human activity recognition, negative symptoms, schizophrenia
INTRODUCTION

Negative symptoms are a key psychopathologic dimension and
an important driver of functional disability in schizophrenia with
up to 60–70% of patients exhibiting at least one such symptom
(1, 2). Despite the high unmet medical need, there is currently no
approved treatment for negative symptoms of schizophrenia in
the United States.

Factor analyses of negative symptoms have demonstrated at
least two dimensions: one consisting of apathy, amotivation,
avolition, asociality, and anhedonia (referred to as ‘avolition’);
and expressive deficits (including affective flattening and poverty
of speech and diminished use of gestures). The first dimension
has been shown to be a key driver of functional impairment (3).

Currently, negative symptoms of schizophrenia are primarily
assessed with clinician administered rating scales (4). Known
problems with rating scales include challenges in establishing
interrater reliability in large multinational studies, reliance on
patients’ reports for symptoms that are not directly observable in
the interview, and expectation bias. These factors reduce the
likelihood of signal detection in clinical trials of novel therapies
for schizophrenia, increase the risk and cost of drug development,
and diminish the chance offinding a treatment for this debilitating
disease (5).

The development of alternative methods to objectively assess
negative symptoms in patients with schizophrenia, in particular
avolition as a key dimension, is critical to further drug development
in this disease. Continuous assessment of a patient’s activity by
actigraphy may offer such an assessment that provides not only
objective, but also longitudinal, data usually not available directly to
the clinician. Previously, correlations between actigraphic measures
and clinical symptomatology have been reported in patients with
schizophrenia. They have shown stability both within and between
psychotic episodes (6) and have also been linked to neuroimaging
markers (7, 8). In general, reduced activity has been found to
correlate with higher negative symptoms, in particular apathy, but
not expressive deficits. Although a few studies that obtained
symptom assessment and actigraphy measures did not report
any correlation, indicating that such correlations were not always
found (9–12). However, to our knowledge, all studies used activity
counts as the primary variable assessing activity levels. No attempts
have been made to differentiate the activity signal into different
kinds of activities, in particular into ambulatory and stationary
activity (like gesturing while standing or sitting).

Recent developments in digital health technology, including
wearable sensors, provide new opportunities to continuously and
passively monitor patients over a longer duration of time,
collecting rich data sets. Previous studies have found that the
g 2
use of wearable devices in schizophrenia is feasible and
acceptable for patients and may be used to assess heart rate,
electrodermal activity, and movement in everyday life (13).
Human Activity Recognition (HAR) can identify actions
carried out by an individual using acceleration and gyroscope
data obtained from various sources including body-worn sensors
(14–17).

Here, we present data exploring the use of a wrist-worn device
to assess patient activity over a 15-week period to determine how
activity measures extracted from the device correlate with
negative symptoms of schizophrenia. The key goal was to test
new analytical approaches that allow a more fine grained
classification of activities in the context of a multi-site clinical
trial. In addition, we explored if and how results of this analysis
relate to clinical symptoms and, importantly, to performance in
the effort-choice task, a behavioral assay probing the reward
system and motivated behavior. A relatively large number of
studies using effort-choice paradigms have shown that negative
symptoms, particularly avolition, are associated with reduced
motivation or willingness to expend high efforts for highly
rewarded outcomes in such tasks (18–20).
MATERIALS AND METHODS

Study Design
The data were collected in a randomized, three-way cross-over,
proof-of-mechanism study conducted between June 28, 2016
and April 28, 2017 (ClinicalTrials.gov: NCT02824055;
protocol BP29904). The study compared two doses of the
phosphodiesterase-10 inhibitor RG7203 (5 mg and 15 mg) with
placebo, given as adjunctive to stable antipsychotic treatment in
patients with chronic schizophrenia and moderate levels of negative
symptoms. Outpatients were recruited through referral, direct
contacts, and advertisements.

Patients were randomized to one of six treatment sequences
using a central randomization system. Patients received once-daily
placebo, 5 mg RG7203, or 15 mg RG7203 (matching oral
capsules). To reach the 15 mg dose, treatment was up-titrated
during Week 1. Each treatment period lasted for 3 weeks, followed
by a 2-week washout period. For activity monitoring, study
participants were provided with a GeneActiv™ (Activinsights
Ltd, Cambridge, UK) wrist-worn actigraphy device to record
data. Patients were asked to wear the device for 24 h each day
throughout the entire 15-week trial period. The study was
conducted in accordance with the principles of the Declaration
of Helsinki and Good Clinical Practice guidelines. All patients
provided written informed consent for study participation.
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Primary results from the study will be published separately
(Umbricht et al. Manuscript submitted for publication). The
current analysis did not determine drug efficacy, but leveraged
the placebo periods of the study.

Participants
Eligible patients were aged 18–50 years with a Diagnostic and
Statistical Manual of Mental Disorders-5 diagnosis of
schizophrenia and a Positive and Negative Syndrome Scale
(PANSS) negative symptom factor score (NSFS) ≥18 (21) at
screening. Patients were to be symptomatically stable and
receiving antipsychotic treatment not exceeding a dose
equivalent to 6 mg risperidone. Additional requirements for
symptom severity at screening included: a Clinical Global
Impression-Severity (CGI-S) score ≥3 (at least mildly ill); a
score ≤4 (moderate or less) for PANSS items of hostility (P7)
and uncooperativeness (G8); a PANSS depression score (G6) ≤4
(moderate or less); and a score ≤8 on the Calgary Depression
Scale for Schizophrenia.

Exclusion criteria included: patients with a score >2 (mild) for
any of the four CGI-S items of the Extrapyramidal Symptom (EPS)
Rating Scale; electroconvulsive treatment within 6 months of
screening, and olanzapine or clozapine within 3 months of
screening; use of more than one antidepressant, or a change in
dose of antidepressant within 4 weeks of screening; strong/moderate
inhibitor or inducer of cytochrome P350 (CYP) 3A or CYPC8
within 14 days of screening; presence of a substance use disorder;
positive urine screen for amphetamines, methamphetamines,
opiates, buprenorphine, methadone, cannabinoids, cocaine, or
barbiturates; a movement disorder that might affect ratings on the
EPS scale; or prior or current medical conditions that could impair
cognition or psychiatric function.

Clinical Assessments
Patients were assessed during inperson study visits. Baseline
negative symptoms were assessed using the PANSS and Brief
Negative Symptom Scale (BNSS) (22, 23). For correlational
analysis, the PANSS NSFS, PANSS positive symptom factor
score (PSFS) (21), the BNSS total score, and BNSS apathy
index and expressive deficits factors (24) were used.

Motivated behavior was assessed with a computerized effort-
choice task where patients were given a choice of an easy task
with a lower reward or a more difficult task with a higher reward
(25). Patients had the option to press a blue balloon 20 times
until it popped for which they would receive one point, or to
press a green balloon 100, 120, or 150 times until it popped to
receive three, five, or seven points. The patients were informed
about the maximum possible reward and the probability of
receiving the reward (50 or 100%). Each set of cumulated 20
points convert to a $1 bonus. The percentage of high-effort
choices across all effort levels and reward levels of five and seven
points at 100% probability of receiving the reward was measured
to determine the participant’s motivated behavior.

The GeneActiv™ actigraphy device recorded the acceleration
of wrist movement at 20 Hz to assess patient activity throughout
the trial period. For this analysis, actigraphy data and behavioral
and clinical assessments obtained during the placebo treatment
Frontiers in Psychiatry | www.frontiersin.org 3
period were used. The monitoring ratio was calculated by
dividing the total number of hours with sensor data collected
by the total number of hours in the study.

Sensor-Based Features
A 9-layer convolutional recurrent neural network (26) was
trained using two public annotated data sets [Reiss et al. (27)
and Stisen et al. (28)] containing wrist-worn acceleration data for
nine subjects each to infer patients’ activities. Performance
evaluation of the trained HAR model was conducted using
held-out testing data and internally collected sensor data from
patients with multiple sclerosis who performed balance tests
(stationary) and 2-min walking tests (ambulatory) (29). Two
subjects from each of the Reiss and Stisen data sets were left out
during training, while sensor data from 14 subjects were used as
input to train an activity recognition model. One held-out
subject from each data set formed the validation set, which was
used to tune the hyper-parameters and determine convergence
of the model during training, and one held-out subject from each
data set formed the testing set, which was used only for final
performance evaluation.

The trained neural network was used to infer a classification
of patient activity collected on the actigraphy devices. Patient
activity was categorized as either ambulatory (i.e. walking,
climbing stairs, cycling, jogging) or stationary (i.e. sitting,
standing, lying down, doing hand work). An activity ratio was
derived for each patient based on the activities determined using
the HAR and was defined as the total active time involving gait
(i.e. walking, climbing stairs, running, cycling) divided by the
total monitoring time.

Gesture events were inferred from the HAR model-predicted
activities, combined with the standard deviation (SD) of the
magnitude of acceleration signal from the wrist, using a 0.01 g
threshold within a 1-s moving window, inspired by a previously
published method by Rai et al. (30). In Rai et al. the authors
observed that when the SD of the magnitude of the accelerometer
signal was below 0.01 g, the user was idle with 99% probability.
Therefore, a gesture event was defined as the time when the
patient was not moving (i.e. sitting, standing, lying down, doing
hand work) according to the HAR model, while the SD of the
acceleration signal was >0.01 g. As gesture events were identified
by a 1-s moving window across the accelerometer signal, the start
and end time of a gesture event was defined by the continuous
moving windows that fit the SD criteria, with a maximal gap
between eligible windows smaller than 1 s. From the defined
gesture events, we calculated gesture count and gesture power.
Gesture count was calculated as the total number of gesture
events per day. Gesture power was calculated during the detected
gesture events by integrating the squared magnitude of the
acceleration signal: St (mt − �m)2, where mt is the magnitude
of accelerometer signal at time t, and �m is the mean of magnitude
across time in a gesture event.

Statistical Analysis
Correlations between clinical scores and sensor-based features
were evaluated using Spearman’s correlation coefficient.
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RESULTS

Study Participants
In total, 33 patients with negative symptoms of schizophrenia
were enrolled at three study centers in the United States. Study
participants had a mean (±SD) age of 36.6 ± 7 years, and the
majority were male (30/33) and Black (21/33) (Table 1). The
mean (±SD) baseline PANSS NSFS was 23.0 ± 3.5, the mean (±
SD) baseline BNSS total score 36.0 ± 11.5, and the mean CGI-S
score 3.7 ± 0.5.

Activity Data
Overall, 31 patients agreed to wear a GeneActiv™ wrist-worn
actigraphy device to record actigraphy data. Median collected
monitoring data per patient was 1,859 h equating to around 11
weeks or 74% monitoring ratio. There was no significant
correlation between baseline PANSS NSFS, PANSS PSFS, or
BNSS total score and monitoring ratio.
Frontiers in Psychiatry | www.frontiersin.org 4
Validation of Human Activity
Recognition Model
Based on the held-out validation data, the trained HAR model
demonstrated >95% accuracy in separating ambulatory (i.e.
walking, climbing stairs, cycling, jogging) and stationary
activities (i.e. sitting, standing, lying down, doing hand work).
The model showed 94.9 and 95.5% accuracy in identifying
stationary and ambulatory activities, respectively.

Correlation of Actigraphy-Derived
Features With Clinical Scores
The activity–time ratio correlated positively with the percent of
high-effort choices at the end of the placebo period (Spearman’s
r = 0.58; P = 0.002; Figure 1).

Median daily gesture counts were negatively correlated with
the BNSS total score (Spearman’s r = −0.44; P = 0.03; Figure 2A)
at the end of the placebo period, specifically with the diminished
expression sub-score (Spearman’s r = −0.42; P = 0.03; Figure 2B).
No correlation was observed with the BNSS apathy sub-score or
the PANSS NSFS. Gesture power and activity–time ratio
correlated negatively with the diminished expression sub-score,
but not with other measures of negative symptoms (Table 2).
Notably, all significant correlations were in the a priori expected
direction supporting the convergent validity of the proposed novel
digital measures with the established clinical scales.

Performance in the effort-choice task did not correlate with
any clinical measure of negative symptoms.
DISCUSSION

The results of this analysis demonstrate that the use of a wrist-
worn actigraphy device is feasible to support continuous
monitoring of clinically relevant behavior in a multi-site
TABLE 1 | Demographics and clinical characteristics at screening.

Cohort (N = 33)

Mean age ± SD (years) 36.6 ± 7.0
Male gender, n (%) 30 (91)
Race, n (%)
Black
White
Asian

21 (64)
9 (27)
3 (9)

Mean BNSS total score ± SD 36.0 ± 11.5
Mean PANSS NSFS ± SD 23.0 ± 3.5
Mean PANSS PSFS ± SD 19.2 ± 4.8
BNSS, Brief Negative Symptom Scale; NSFS, Negative Symptom Factor Score; PANSS,
Positive and Negative Syndrome Scale; PSFS, Positive Symptom Factor Score; SD,
standard deviation.
FIGURE 1 | Spearman’s correlation between activity–time ratio and high-effort choice (Spearman’s r = 0.58; P = 0.002).
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clinical trial setting over an extended period of time. The patient
monitoring ratio was acceptable throughout the trial, allowing
for a high volume of data to be collected by the end of the placebo
period. This suggests that patients were comfortable wearing the
device and that the device is suitable for continuous assessment
over a number of weeks.
Frontiers in Psychiatry | www.frontiersin.org 5
Previous studies have investigated the feasibility and use of
wearable devices in schizophrenia (10, 31). Cella et al. examined the
use of a novel mobile health method using wearable technology to
determine illness severity in patients with schizophrenia. The device
was acceptable to patients and provided accurate and reliable
measures of everyday activity and behavior, including assessment
A

B

FIGURE 2 | Median daily gesture count versus (A) BNSS total score and (B) BNSS diminished expression. BNSS, Brief Negative Symptom Scale.
TABLE 2 | Spearman’s correlation between high-effort choice, activity, and gesture features with clinical scores.

High-effort choice in effort-choice task (N = 27) Activity ratio (N = 26) Gesture power (N = 26) Gesture count (N = 26)

BNSS Apathy Index 0.12 −0.025 −0.178 −0.277
BNSS Diminished Expression 0.06 −0.210 −0.423* −0.424*
BNSS Total Score 0.12 −0.080 −0.312 −0.438*
PANSS NSFS 0.02 −0.256 0.080 −0.251
PANSS PSFS − −0.149 0.164 −0.026
September 2020 | Vo
*P < 0.05. Higher BNSS scores indicate greater disease severity; cells showing significant correlations are shaded in gray.
BNSS, Brief Negative Symptom Scale; NSFS, Negative Symptom Factor Score; PANSS, Positive and Negative Syndrome Scale; PSFS, Positive Symptom Factor Score.
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of physiological measures, functioning symptoms, and levels of
medication (13). Meyer et al. utilized a combination of wrist-worn
devices and smartphones to continuously monitor sleep and rest-
activity profiles in people with schizophrenia over a 2-month
period. All study participants exceeded the 70% threshold for
feasibility of the wearable device with a mean wear time of 21.8 h
per day or 91% of the total study duration (31).

Passive monitoring has also been used to quantify behavioral
changes in several neurological conditions, including Parkinson’s
disease (32, 33), multiple sclerosis (29), and Huntington’s disease
(34, 35). Lipsmeier et al. assessed the feasibility, reliability, and
validity of smartphone-based digital biomarkers of Parkinson’s
disease over a 6-month period in a phase I clinical trial (32).
Adherence was acceptable and sensor-based features showed
moderate to excellent test–retest reliability (32). The use of
smartphone- and smartwatch-based remote patient monitoring
was also employed by Midaglia et al. in a 24-week pilot study in
patients with multiple sclerosis (29). Adherence to passive
monitoring was 70.8% with patient satisfaction rated as good to
excellent, which remained stable throughout the study (29). An
ongoing Digital-HD study is investigating the tolerability and
feasibility of smartphone-based technology to passively monitor
motor and non-motor manifestations of Huntington’s disease (35).
These studies indicate the potential for the measurement of disease-
relevant features from daily life in a clinical trial setting.

While most, if not all, previous actigraphy studies in
schizophrenia have used simple activity counts as a measure of
patient activity, our approach used machine learning to extend
beyond a simple count, to identification specifically of gesture
events during non-locomotive activities and hence, eliminates the
situation where handmovements are caused by walking or running.
Our HAR model was validated using previously published data,
with a high level of accuracy, demonstrating that this model is
reliable and robust for the detection of ambulatory versus stationary
activity. There was a significant positive correlation (P = 0.002)
between the activity–time ratio and the percent of high-effort
choices, indicating an association of avolition and lower activity
in daily life. As expected, gesture features derived from the HAR
model were associated with expressive deficits, supporting the
validity of activity and gesture-based digital outcome measures
for negative symptoms in patients with schizophrenia.

Our study also highlights well-known problems with clinician
administered rating scales. We did not find correlations between
percentage of high effort-choice in the effort-choice task and the
various clinical assessments of negative symptoms, in particular
apathy, as previously reported by others (12). This may be due to
differences in the patient sample. However, the correlations between
the effort-choice performance and the activity index would indicate
that both measures indeed capture an aspect of reduced motivation.
The lack of an association between the clinical assessments of
apathy and the effort-choice performance thus suggests that the
clinical assessments capture apathy unreliably, which may be the
key reason for the lack of association between activity measures and
apathy. This is not surprising, as the key features of apathy cannot
be observed in the interview but have to be elicited by the clinician
and rely primarily on the patient’s memory and report, which has
Frontiers in Psychiatry | www.frontiersin.org 6
been shown to negatively affect the accuracy of symptom reporting
(36). Not surprisingly, we found the highest correlation between the
expressive deficit scores and gesture count and power. Expressive
deficits are directly observable in the interview and hence can be
assessed more reliably.

Our study has several limitations. Firstly, we could not validate
our findings in a larger cohort of patients. This will be a critical step
in establishing our analytical approach as a tool to assess negative
symptoms. Secondly, our study did not allow the establishment of
test–retest reliability, i.e., to establish the stability of these measures
in stable patients. Both issues are key for implementation of these
measures in future clinical trials. Also, our approach focused on
stationary periods and did not include gesture events during non-
stationary activity which of course occur as well. Identification and
inclusion of these additional gesture events should be attempted in
future studies and may increase the correlation with negative
symptoms. Also, it is possible that among events counted as
gestures some may have been included that comprised
movements that did not represent gestures such as playing
instruments, doing crafts, cooking, other household chores.
Excluding such activities in future studies may increase the
sensitivity of our approach. In addition, although our approach is
a step forward in differentiating gestures from non-gesture activity,
it does not allow the differentiation of communicative and socially
relevant gestures and gestures that do not have such characteristics.
It would require the establishment of an ‘alphabet’ of such gestures
in healthy volunteers in terms of actigraphy features that could then
be used to detect the presence or absence of communicative gestures
in patients—a relevant aspect for the assessment of negative
symptoms. Also, previous studies have investigated the use,
perception and imitation of gestures by patients in much more
detail by direct observation or video-based studies (37, 38) and
found abnormalities in all three aspects. Obviously a passive
monitoring system like actigraphy is not able to provide these
kinds of data. Finally, differences in publicly available data sets of
healthy volunteers that were used for validation, including the
method of detection, of activities measured, was also a limitation.
We did not have a comparison sample of healthy volunteers in
whom data were obtained with the same device. It is also
conceivable that the very nature of gestures differs between
healthy volunteers and patients; however, we are not aware of
evidence supporting this assumption. Furthermore, the HAR
model has not yet been tested in a drug-based clinical trial or in
patient subgroups with baseline characteristics other than
negative symptoms.
CONCLUSIONS

Overall, our findings support the use of wrist-worn devices to
derive activity and gesture-based digital outcome measures for
patients with schizophrenia with negative symptoms in a clinical
trial setting. We present initial evidence of convergent validity of
sensor-based features with established clinical outcome
measures. This could, in the future, enable the objective
measurement of behavioral changes in schizophrenia and pave
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the way towards novel ways to evaluate treatments for the
negative symptoms of schizophrenia, thereby supporting
essential drug development for these patients.
PRIOR PRESENTATION OF THE DATA

Umbricht D, Cheng W-Y, Lipsmeier F, Bamdadian A, Tamburri
P, Lindemann M. Deep learning-based human activity
recognition for continuous activity and gesture monitoring for
schizophrenia patients with negative symptoms. ACNP 57th
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