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Introduction: Alterations in autonomic functioning in individuals diagnosed with

schizophrenia are well-documented. Yet, it is currently unclear whether these

dysfunctions extend into the clinical high-risk state. Thus, we investigated resting heart

rate (RHR) and heart rate variability (HRV) indices in individuals at clinical high-risk for

psychosis (CHR-P).

Methods: We recruited 117 CHR-P participants, 38 participants with affective disorders

and substance abuse (CHR-N) as well as a group of 49 healthy controls. CHR-P

status was assessed with the Comprehensive Assessment of At-Risk Mental States

(CAARMS) and the Schizophrenia Proneness Instrument, Adult Version (SPI-A). We

obtained 5min, eyes-open resting-state MEG data, which was used for the extraction

of cardiac field-related inter-beat-interval data and from which heart-rate and heart-rate

variability measures were computed.

Results: Compared to both CHR-N and healthy controls, CHR-P participants

were characterized by an increased RHR, which was not explained by differences

in psychopathological comorbidity and medication status. Increased RHR correlated

with the presence of subthreshold psychotic symptoms and associated distress.

No differences between groups were found for heart-rate variability measures,

however. Furthermore, there was an association between motor-performance and

psychophysiological measures.

Conclusion: The current study provides evidence of alterations in autonomic functioning

as disclosed by increased RHR in CHR-P participants. Future studies are needed to

further evaluate this characteristic feature of CHR-P individuals and its potential predictive

value for psychosis development.

Keywords: autonomic functioning, clinical high risk for psychosis (CHR-P), heart-rate variability, resting heart rate,
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https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2020.580503
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2020.580503&domain=pdf&date_stamp=2020-11-06
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:peter.uhlhaas@charite.de
https://doi.org/10.3389/fpsyt.2020.580503
https://www.frontiersin.org/articles/10.3389/fpsyt.2020.580503/full


Kocsis et al. Autonomic Function in Emerging Psychosis

INTRODUCTION

Schizophrenia (SZ), the most severe manifestation of psychosis
with a lifetime prevalence of ∼1% (1), is accompanied
by a significantly decreased life expectancy (2, 3). Recent
evidence suggests cardiovascular diseases (CVD) may contribute
significantly toward increased mortality in SZ (4). Furthermore,
the prodromal phase of SZ has been associated with a
substantially higher risk of physical conditions, such as
hypertension, heart disease, and cerebrovascular disease (5).
In addition to SZ, altered autonomic functioning has been
associated with a range of psychiatric syndromes, including
anxiety, depression and personality disorders (6–9).

Resting heart-rate (RHR) is a non-invasive measure of vagal
tonic inhibitory control over autonomic function (10, 11) and is
determined by intrinsic cardiacmechanisms as well as the activity
of both branches of the autonomic nervous system (ANS)—the
sympathetic and the parasympathetic (vagus) nerves. At rest, the
vagal tone reduces RHR to 60–80 beats per minute (12). A heart
rate (HR) higher than the RHR is a result of both the withdrawal
of vagal tone and the activation of the sympathetic branch of the
ANS (11, 13).

Animal and human data have suggested that cortical activity,
especially in prefrontal areas, plays a modulatory role in
cardiovascular function (10). A potential pathway for the
modulatory role of frontal areas is through the tonic inhibition
of the amygdala (14, 15). Specifically, inhibition increases
the dominance of vagal influence on cardiovascular activity
during rest.

There is emerging evidence that increased RHR may be
associated with SZ. For example, a study by Latvala et al.
(16) reported that elevated RHR is associated with increased
risk for developing SZ. In addition, a number of studies have
reported increased RHR in unmedicated first episode SZ patients
(17–22). Medication status is important in light of substantial
evidence found for effects of atypical antipsychotics on RHR
and HR variability (HRV), although this relationship may not
hold for other psychiatric disorders (23). Furthermore, psychotic
symptom severity has been found to correlate with cardiac ANS
disturbances (17). Reinertsen et al. (24) reported that cardio-

vascular activity (HR) was associated with illness severity in SZ.
To date, few studies have investigated HR changes in

participants that meet criteria for clinical high-risk of psychosis
(CHR-P). CHR-P criteria include ultra-high-risk (UHR) criteria
(i.e., based on attenuated or transient psychotic symptoms, in
addition to genetic risk plus functional deterioration) (25), as
well as basic symptoms (BS)—self-experienced perceptual and
cognitive disturbances (26, 27). Clamor et al. (28) found a
significant increase in RHR in participants with established
psychotic disorders, but not in participants meeting UHR
criteria. In contrast, Counotte et al. (29) reported associations
between psychosis liability (based on UHR criteria and genetic
risk for psychosis) and increased HR as well as decreased HRV
during a virtual reality experiment with social stressors.

In the present study, we aimed to further investigate
altered autonomic functioning in a population of CHR-P
individuals (n = 117) to assess whether aberrant HR may be

present in the psychosis-risk state. To examine the diagnostic
specificity of alterations in ANS, we also assessed identically
recruited participants who did not met CHR-P criteria but were
characterized by substance abuse and affective disorders (CHR-
N= 38) as well as a group of healthy controls (CON= 49).

The psychophysiological measures of cardio-vascular
activity were extracted from a 5-min resting-state
magnetoencephalography (MEG) recording. The contraction of
the heart-muscle generates a strong electrical dipole resulting in
a magnetic field [the cardiac field artifact, CFA (30)], which is
visible in the PQRST cycle of the electrocardiogram. The CFA
signal propagates throughout the body and can be recorded by
electrodes positioned at any location. Independent component
analysis on MEG data was used to visually identify and extract
the heart-rate signal, that is, the inter-beat-interval (IBI) data.
In line with recent reports of autonomic changes in the CHR-
P individuals (31) and hypothalamic-pituitary-adrenal axis
disturbances in first episode psychosis (FEP) patients (32), we
expected a significant increase in RHR, as well as a decrease in
HRV indices in the CHR-P sample but not in the CHR-N group.

MATERIALS AND METHODS

Participants
A total of 204 participants were recruited as part of the
“Youth Mental Health Risk and Resilience Study” [YouR-Study;
(32)], a Medical Research Council funded study aiming at
identifying biological and psychological markers of psychosis-
risk. Participants were recruited through an online-screening
approach [for more detail on the recruitment procedure,
see (33)]. The Comprehensive Assessment of At-Risk Mental
States (CAARMS) Interview (25) as well as the Schizophrenia
Proneness Instrument (SPI-A) (26) were used for establishing
CHR-P criteria. For the SPI-A, Cognitive-Perceptive Basic
Symptoms (COPER) and Cognitive Disturbances (COGDIS)
items were administered. CAARMS-criteria were established
as follows: (a) criteria for the attenuated psychosis group
(attenuated psychotic symptoms present in the last year without
a decline in functioning); (b) criteria for genetic risk with

functional decline (30% drop in global functioning score); and
(c) criteria for the brief limited intermittent psychotic symptoms
(BLIPS) group. Participants who did not meet a CHR-P criterion,
were assigned to the CHR-N group (n= 38). CHR-N participants
were recruited through the same pathway as CHR-P participants
but did not meet BS/UHR-criteria. The rationale was to have a
comparison group that is more closely matched for co-morbidity
frequently associated with CHR-P participants, such as affective
disorders, substance abuse and lower functioning. Finally, a
group of 49 healthy participants (CON) were recruited without
an Axis I diagnosis or family history of psychotic disorders.
All participants were between 16 and 35 years of age and were
excluded for current or past diagnosis with Axis I psychotic
disorders [see (32) for more details].

The M.I.N.I. International Neuropsychiatric Interview
[M.I.N.I. 6.0; (16)], the scales for premorbid adjustment
(34), and social and role functioning (35) were administered.
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TABLE 1 | Sample characteristics.

CON CHR-N CHR-P GROUP effect Pairwise comparisons

(n = 49) (n = 38) (n = 117) F, p χ
2, p η

2 psihat, p (p crit)

Age,

years (SE)

23

(0.51)

23

(0.75)

22

(0.41)

0.90,

0.410

0.01

Sex,

female/male (%female)

33/16

(67.35)

27/11

(69.23)

87/30

(74.36)

0.47,

0.627

0.00

Education,

years (SE)

16.61

(0.42)

16.49

(0.56)

15.21

(0.31)

4.42,

0.015*

0.04 CHR-N vs. CON: ns

CHR-N vs. CHR-P: 1.01, 0.077 (0.025)

CON vs. CHR-P: 1.43, 0.003 (0.017) **

Smoking,

mean (SE)

1.00

(0.32)

1.22

(0.36)

1.85

(0.26)

3.22,

0.200

0.01

BMI,

mean (SE)

3.92

(0.07)

4.16

(0.11)

4.12

(0.10)

3.75,

0.154

0.01

Comorbidity Factor

mean (SE)

−0.81

(0.01)

−0.33

(0.10)

0.45

(0.10)

101.18,

<0.001***

0.49 CHR-N vs. CON: 0.35, <0.001***

CHR-N vs. CHR-P: −0.76, <0.001***

CON vs. CHR-P: −1.11, <0.001***

Medication

n (medicated)

1 14 55 30.285,

<0.001***

0.14 CHR-N vs. CON: 0.56, 0.012 (0.025)**

CHR-N vs. CHR-P: ns

CON vs. CHR-P: −0.95, <0.001***

CAARMS severity,

mean (SE)

- 6.21

(0.98)

28.63

(1.55)

162.26,

<0.001***

0.50 CHR-N vs. CON: 5.12, <0.001***

CHR-N vs. CHR-P: −22.65, <0.001***

CON vs. CHR-P: −27.77, <0.001***

CAARMS distress,

mean (SE)

- 34.33

(7.31)

120.86

(8.19)

92.59,

<0.001***

0.36 CHR-N vs. CON: 21.88, <0.001***

CHR-N vs. CHR-P: −89.69, <0.001***

CON vs. CHR-P: −111.57, <0.001***

Welch’s ANOVA for unequal variance (F, alpha= 0.05, 2-sided) or Kruskal–Wallis H-tests (χ2, alpha= 0.05), with eta-square as indicator of effect size are reported. Pairwise comparisons

are Hochberg-corrected, 20%means-trimmed, 3,000 samples bootstrapped [psihat/p (p crit)]. CON, healthy controls; CHR-N, clinical high risk-negative; CHR-P, clinical high risk-positive;

SE, standard error of mean.

Neuropsychological assessment consisted of the Brief Assessment
of Cognition in Schizophrenia [BACS (36)], as well as three tasks
from the Penn Computerized Neurocognitive Battery [CNB
(37); the Continuous Performance Test, the N-Back Task, and
the Emotion Recognition Task].

Psychophysiological Data Acquisition and
Analysis
Five-minute, eyes-open resting-state MEG data was acquired
using a 248-channel 4D-BTI magnetometer system (MAGNES
3600 WH, 4D-Neuroimaging, San Diego), at a sampling
frequency of 1,017.25Hz, filtered online between DC and 400Hz.
Four minutes of MEG resting-state data were extracted, down
sampled to 400Hz and bandpass-filtered between 5 and 70 Hz.

A continuous single epoch data was created for each channel
using the open-source MATLAB Fieldtrip Toolbox (38). The
data were then submitted to Independent Component Analyses
(ICA) to isolate the component best describing the R-peaks of
the heartbeat signal. The resulting single vector of time-varying
heartbeat signal was further analyzed using the validated HRV-
analyses Matlab Toolbox ARTiiFACT (39).

Firstly, time-series data were low-pass filtered at a manually
adjustable cut-off frequency, and R-peaks were detected using a
global threshold detection method that was manually adjusted
between 0 and 20 µV for each participant. Secondly, visual
inspection of IBIs was performed in order to detect extra or

missing IBIs and manually correct them. Thirdly, automatically
detected artifacts were corrected using cubic spline interpolation.

Four parameters were extracted: (1) RHR, (2) the square root
of the mean squared differences of successive normal-to-normal
intervals (RMSSD), and (3) the standard deviation of normal-
to-normal intervals (SDNN). Fast Fourier transformation was
computed with frequency bands set as high frequency (HF, 0.15–
0.4Hz), low frequency (LF, 0.04–0.15Hz), and very low frequency
(VLF, <0.04Hz). Finally, 4) the ratio of LF and HF (LF/HF),
reflecting sympatho-vagal balance (40), was computed.

Statistical Analysis
All statistical analyses were performed using the R statistical
software (41). Demographic and clinical parameters were
assessed using Welch based F-tests or Kruskal–Wallis
H-tests. Independent-sample Kruskal–Wallis H-tests were
used to investigate main effects (i.e., relationship between
psychophysiological measures and clinical category (CON
– CHR-N – CHR-P; with the psychophysiological measure
as the outcome and the clinical category as the predictor:
outcome ∼ predictor). Eta-squared (η2) with bias-corrected
and accelerated (BCa) 1,000 samples bootstrapped confidence
interval (95% CI) is reported as an indicator of effect size. For
significant group effects, Hochberg-corrected, 20% means-
trimmed, and 3,000 samples bootstrapped post-hoc comparisons
were calculated.

Frontiers in Psychiatry | www.frontiersin.org 3 November 2020 | Volume 11 | Article 580503

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kocsis et al. Autonomic Function in Emerging Psychosis

FIGURE 1 | Analyses of variance (mean levels and standard error) and post-hoc group comparisons. CON, healthy controls; CHR-N, clinical high risk-negative;

CHR-P, clinical high risk-positive; RHR, resting heart rate; RMSSD, square root of the mean squared differences of successive normal-to-normal intervals; SDNN,

standard deviation of normal-to-normal heart beat intervals; LF/HF, ratio of low and high frequency power.

TABLE 2 | Estimated means (standard error) and analysis of group differences for psychophysiological measurements.

CON CHR-N CHR-P GROUP effect Pairwise comparisons

(n = 49) (n = 38) (n = 117) χ
2, p η

2 (95% CI) psihat/p (p crit)

Resting heart rate

(RHR),

mean (SE)

67.16 (1.37) 68.31 (1.59) 71.63 (1.03) 5.98, 0.050* 0.19

[−0.01, 0.08]

CHR-N vs. CON: ns

CHR-N vs. CHR-P: ns

CON vs. CHR-P: −3.97/ 0.015 (0.016)*

Time-domain HRV

RMSSD,

mean (SE)

56.08 (4.02) 55.53 (5.16) 53.03 (2.79) 0.61, 0.738 −0.01

[−0.01, 0.00]

SDNN,

mean (SE)

57.01 (3.13) 56.40 (3.28) 54.91 (2.17) 0.78, 0.677 −0.01

[−0.01, 0.01]

Frequency-domain HRV

LF/HF,

mean (SE)

0.75 (0.11) 1.03 (0.22) 0.93 (0.11) 2.54, 0.281 0.00

[−0.01, 0.04]

Kruskal–Wallis H-tests (χ2, alpha= 0.05) are reported. Eta-squared (η2 ) with bias-corrected and accelerated (BCa) 1,000 samples bootstrapped confidence interval [95% CI] is reported

as an indicator of effect size. Pairwise comparisons are Hochberg-corrected, 20%means-trimmed, 3,000 samples bootstrapped [psihat/p (p crit)]. CON, healthy controls; CHR-N, clinical

high risk-negative; CHR-P, clinical high risk-positive; RHR, resting heart rate; RMSSD, square root of the mean squared differences of successive normal-to-normal intervals; SDNN,

standard deviation of normal-to-normal heart beat intervals; LF/HF, ratio of low and high frequency power; SE, standard error of mean.

Covariates were included to investigate possible effects
including smoking (i.e., number of cigarettes smoked per day,
current or past), BMI (42), age, and sex (43), medication (7, 23)

(antipsychotics, antidepressants, beta-blockers, anxiolytics,
stimulants, mood stabilizers, and combinations of these were
considered; for details (see Supplementary Table 1)]. We
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TABLE 3 | Within-group effects of medication and comorbidity factor on psychophysiological measurements.

Medication Comorbidity Factor

CHR-N CHR-P CHR-N CHR-P

F, p η
2 F, p η

2 F, p η
2 F, p η

2

MEANHR 1.65, 0.207 0.01 0.84, 0.361 0.06 2.06, 0.160 0.11 0.03, 0.865 0.00

RMSSD 0.18, 0.67 0.03 0.51, 0.474 0.08 1.84, 0.184 0.21 0.91, 0.343 0.01

LF/HF 0.30, 0.590 0.06 9.96, 0.002* −0.02 0.54, 0.466 −0.14 3.10, 0.081 0.03

SDNN 0.84, 0.366 0.05 0.89, 0.349 0.08 0.62, 0.437 0.32 0.76, 0.386 0.01

A parametric ANOVA (F, alpha= 0.05). CHR-N, clinical high risk-negative; CHR-P, clinical high risk-positive; RHR, resting heart rate; RMSSD, square root of the mean squared differences

of successive normal-to-normal intervals; SDNN, standard deviation of normal-to-normal heart beat intervals; LF/HF, ratio of low and high frequency power.

TABLE 4 | Correlations of psychophysiological measurements with CAARMS severity and distress, and the comorbidity factor.

CAARMS severity CAARMS distress Comorbidity factor

CON CHR-N CHR-P CON CHR-N CHR-P CON CHR-N CHR-P

RHR - −0.11

[−0.47, 0.23]

0.503

0.01

[−0.19, 0.20]

0.921

- −0.08

[−0.41, 0.23]

0.619

0.07

[−0.12, 0.25]

0.477

- −0.21

[−0.50, 0.18]

0.214

0.00

[−0.19, 0.18]

0.974

RMSSD - 0.05

[−0.28, 0.34]

0.783

−0.07

[−0.26, 0.11]

0.434

- −0.03

[−0.34, 0.29]

0.847

−0.21

[−0.37, −0.02]

0.027*

- 0.13

[−0.23, 0.47]

0.421

−0.074

[−0.26, 0.11]

0.427

SDNN - 0.07

[−0.27, 0.38]

0.675

−0.11

[−0.28, 0.06]

0.229

- −0.02

[−0.34, 0.31]

0.887

−0.27

[−0.42, −0.10]

0.004**

- 0.11

[−0.27, 0.45]

0.513

−0.05

[−0.23, 0.13]

0.561

LF/HF - −0.02

[−0.31, 0.26]

0.919

−0.07

[−0.26, 0.12]

0.458

- 0.11

[−0.19, 0.40]

0.495

0.01

[−0.16, 0.18]

0.878

−0.15

[−0.44, 0.19]

0.376

−0.03

[−0.24, 0.16]

0.752

Spearmans’s two-sided correlation with bias-corrected and accelerated (BCa) 2,000 samples bootstrap 0.95 confidence interval, corrected for ties (ρ [95% CI], p). CON, healthy controls;

CHR-N, clinical high risk-negative; CHR-P, clinical high risk-positive; HRV, heart rate variability; SDNN, standard deviation of normal-to-normal heart beat intervals; RMSSD, square root

of the mean squared differences of successive normal-to-normal intervals; HF, high frequency power.

conducted a parametric ANCOVA with clinical status (CON –
CHR-N – CHR-P) as the first and the covariates as remaining
predictors. Orthogonal Helmert contrasts were used. The
assumption of the homogeneity of regression slopes was
examined by including the interaction terms in the model.
Tukey post-hoc tests on adjusted means were carried out. Partial
omega squared (ω2

p) was reported as a measure of effect size.
To further investigate the influence of covariates, we conducted
within-group analysis for the CHR-N and CHR-P groups
separately. When assumptions for within-group analysis of
variance were met, we conducted parametric ANOVAs with η2

as effect size.
To investigate the relationship between psychophysiological

measures and clinical symptomatology and presentation,
CAARMS severity, CAARMS distress, and the comorbidity
index were computed for each participant and entered into linear
regression and correlational analyses. Spearman’s two-sided
correlation with BCa 2,000 samples bootstrap 0.95 CI, corrected
for ties (ρ [95% CI], p), are reported.

A factor analysis was conducted to assess the effect
of psychopathological comorbidity expressed through the
comorbidity index variable that was obtained from the M.I.N.I.

ratings. In the first step, all M.I.N.I. variables were used except
“Antisocial personality disorder,” “Anorexia,” and “Anorexia
Binge,” due to missing data. Additional variables were excluded
from the factor analysis due to low r-drop values (“Panic No
Agoraphobia,” r-drop = 0.14; “Agoraphobia,” r-drop = 0.13),
resulting in the final test reliability expressed in standardized
alpha of 0.83 (0.78, 0.85). The appropriateness of conducting
a factor analysis on these data was confirmed via the Bartlett
test (chi-square = 1,727.90, p < 0.001 ∗∗∗, df = 276, det
< 0.001∗∗∗). Several factor analysis models were tested by
performing Pearson’s correlation and replacing missing values
with medians [see (31)]. The best performing model was
the maximum likelihood estimation (BIC = −252.07). Factor
loadings were extracted for each participant (the “Comorbidity
index” variable).

BACS and CBN Emotion Recognition raw scores were
z-transformed to the CON and corrected for sex (44). Non-
parametric Spearman’s rho correlations were calculated for
psychophysiological measures and both BACS and CBN Emotion
Recognition data, separately for each group. As these analyses
were explorative, no corrections for multiple comparisons
were implemented.
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FIGURE 2 | CAARMS Distress correlation analysis in the CHR-P group.

Non-parametric Spearman’s correlation is represented. RMSSD, square root

of the mean squared differences of successive normal-to-normal intervals;

SDNN, standard deviation of normal-to-normal heart beat intervals.

RESULTS

Sample characteristics are presented in Table 1. The groups
differed significantly with respect to years of education
and psychopathological comorbidity, with CHR-N participants
having significantly lower years of education and higher
comorbidity scores. Furthermore, both the CHR-P and CHR-N
groups had significantly higher medication scores than CON.
Additionally, the groups were significantly different in terms of
CAARMS severity and distress. For a detailed presentation of
clinical characteristics (see Supplementary Table 2).

Psychophysiological measures indicated higher RHR for
the CHR-P group (mean/SE: 71.63/1.03) compared to CON
(67.16/1.37), but not to the CHR-N group (68.31/1.59). This
was confirmed by Kruskal–Wallis H tests, revealing marginally

significant group differences for RHR (χ2 = 5.98, p = 0.050,
η2 = 0.19 [−0.01, 0.08]). Pairwise comparisons showed the
expected significant increase in RHR only in the CHR-P group
relative to CON (psihat = −3.97, p = 0.015, pcrit = 0.016; see
Figure 1). In contrast, no significant group effects were found
in HRV indices (RMSSD/SDNN) or changes in sympathovagal
balance (LH/HF) (Table 2).

A parametric ANCOVA that included age, sex, smoking, and
BMI as covariates revealed a significant between-group effect
for RHR [F(2, 168) = 3.93, p = 0.021, ω2

p = 0.03] as well as a
significant effect of sex [F(1, 168) = 7.48, p = 0.007, ω2

p = 0.02]
and age [F(1, 168) = 3.91, p = 0.05, ω2

p = 0.02]. Tukey post-hoc
tests on adjusted means revealed a significant CON vs. CHR-P
difference (1 = 5.12, t = 2.64, p= 0.024).

Within-group analysis of the relationship between
psychophysiological measures and medication or comorbidity
status revealed that both medication and comorbidity factor had
a significant effect only on the LF/HF measurement and only
in the CHR-P group (see Table 3). No effects were observed
for RHR.

In addition, correlation analyses revealed no significant
relationships between the comorbidity factor and any of
our psychophysiological measures (Table 4). Yet, there were
significant correlations between CAARMS distress and both
SDNN (ρ = −0.27, p = 0.004) and RMSSD (ρ = −0.21,
p = 0.027) in the CHR-P group only (Figure 2). However,
these did not survive correction for multiple comparisons.
Linear regression analyses showed a trend-level relationship
between RHR and CAARMS severity [adjusted R2 = 0.013,
F(1, 199) = 3.764, p = 0.053] as well as distress [adjusted
R2 = 0.014, F(1, 201) = 3.887, p = 0.050]. In addition, CAARMS
distress but not severity was associated with RMSSD [adjusted
R2 = 0.014, F(1, 201) = 4.014, p = 0.046] and SDNN [adjusted
R2 = 0.023, F(1, 201) = 5.692, p= 0.018]. There were no significant
correlations between BS severity or distress with any of the
psychophysiological measures (see Supplementary Table 3).

Correlation analysis revealed that the token-motor
component of the BACS showed significant correlation with
all psychophysiological measures, in particular with RMSSD
(ρ = 0.45, p = <0.001; see Figure 3). There were no significant
results for the remaining neurocognitive measures (Table 5).

DISCUSSION

The current study investigated RHR abnormalities in a sample
of CHR-P participants. Cardiovascular activity indices were
computed by analyzing the time-varying heartbeat signal
obtained directly from resting-state MEG data, which contains
the ballisto-cardiogram artifact that is likely caused by blood-
flow in the vessels around the head/neck area (45). These indices
are thus comparable to the values reported in previous studies
using finger photoplethysmography (28, 29), a technique which
measures HR indices from blood volume pulses. We found a
significant increase in RHR in the CHR-P group compared to
healthy controls but not to the CHR-N group. Importantly,
the observed difference in RHR was not influenced by several

Frontiers in Psychiatry | www.frontiersin.org 6 November 2020 | Volume 11 | Article 580503

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kocsis et al. Autonomic Function in Emerging Psychosis

FIGURE 3 | BACS Token Motor and psychophysiological measures correlation plots for the CHR-P group. Non-parametric Spearman’s correlation is represented.

RHR, resting heart rate; RMSSD, square root of the mean squared differences of successive normal-to-normal intervals; SDNN, standard deviation of

normal-to-normal heart-beat intervals; LF/HF, ratio of low and high frequency power.

covariates, including age, sex, smoking habits, medication,
and BMI.

Previous studies that have investigated cardiovascular changes
in smaller psychosis-risk samples have reported conflicting
results. Clamor et al. (28) did not find an increase in RHR or
a reduction in HRV in CHR-P participants. Interestingly, RHRs
for the CHR-P group were similar to those found in our study.
However, the HC group in the current study was characterized
by lower RHR compared to Clamor et al. (28). Counotte et al.
(29) reported both increased HR and reduced HRV in both 22
UHR and 44 first-degree relatives of patients with psychosis. It
is important to note, however, that HR was measured during a
virtual-reality experiment involving social stressors.

Interestingly, the Counotte study found no changes in
recorded levels of skin conductance, a pure measure of
sympathetic nervous-system (SNS) activation. This is in line
with evidence suggesting that dysfunctional parasympathetic
nervous-system (PNS) activity in SZ may be considered as
the main contributor to sympathovagal imbalance (9, 46, 47).
In the current study, we only found evidence for an increase
in RHR, but not in HRV measures such as RMSSD, SDNN,
or LF/HF in CHR-P participants. RHR is regarded as a tonic
and much more stable measure of ANS functioning than HRV

measures, which are highly influenced by breathing rhythm [for
example see (48)]. RHR has been associated with severity of
psychotic symptoms in chronic SZ patients (49) specifically in
terms of changes in PNS functioning, evident in the cardiac
vagal index. Specifically, baseline RHR predicted the changes in
clinical state on subsequent assessment whereby SZ-patients with
elevated RHR showed an increase in the severity of psychosis.
The relationship between ANS dysregulation and severity of
psychosis was also supported by our observation of a positive
relationship between RHR and CAARMS severity and distress.

It has been suggested that ANS dysfunction in SZ is coupled
with decreased resting PNS activity, mediated through impaired
vagal control in the absence of changes in SNS activity [e.g.,
review by (46)]. However, the underlying mechanisms for this
autonomic imbalance are still unclear. An increase in arousal
would be the simplest explanation for increased RHR, but this
is unlikely to occur without changes in SNS activity.

Recent findings suggest the vagal nerve has an important
influence on immune functioning in SZ patients (50). According
to recent meta-analyses, the low-grade inflammatory profile
found in SZ patients is correlated with clinical symptom
severity (51–53). Furthermore, this inflammatory profile has
been reported in drug naïve FEP patients (53). Finally, increased
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TABLE 5 | Correlations of psychophysiological measurements with cognitive and emotion recognition tests.

RHR RMSSD SDNN LF/HF

CON CHR-N CHR-P CON CHR-N CHR-P CON CHR-N CHR-P CON CHR-N CHR-P

BACS

Token motor ns ns −0.27

[−0.46, −0.10]

0.003**

ns ns 0.34

[0.15, 0.51]

<0.001***

ns ns 0.28

[0.08, 0.44]

0.003**

ns ns −0.20

[−0.36, −0.02]

0.035*

Symbol coding −0.3

[−0.53, 0.00]

0.039*

ns −0.16

[−0.34, 0.03]

0.089

ns ns ns ns ns ns ns −0.27

[−0.56, 0.08]

0.098

−0.16

[−0.34, 0.03]

0.092

CNB—Emotion recognition task

Correct anger ns ns ns ns ns ns ns ns −0.18

[−0.34, −0.01]

0.052

ns ns ns

Correct fear ns ns ns −0.24

[−0.51, 0.07]

0.093

ns ns −0.27

[−0.53, 0.03]

0.061

ns ns ns ns ns

Correct happy −0.33

[−0.57, 0.02]

0.022*

ns ns ns ns ns ns ns ns 0.29 [−0.01,

0.51]

0.048

ns 0.16

[−0.04, 0.32]

0.090

Correct no emotion ns ns ns ns ns ns ns ns ns ns ns −0.19

[−0.35, −0.01]

0.047*

Correct sad ns ns ns ns ns ns ns −0.35

[−0.62, 0.02]

0.033*

ns ns ns ns

Spearmans’s two-sided correlation with bias-corrected and accelerated (BCa) 2,000 samples bootstrap 0.95 confidence interval, corrected for ties (ρ [95% CI], p). BACS and CBN scores were standardized to control group data,

controlled for sex category. A Composite score was calculated following (44). CON, healthy controls; CHR-N, clinical high risk-negative; CHR-P, clinical high risk-positive; RHr, resting heart rate; RMSSD, square root of the mean squared

differences of successive normal-to-normal intervals; SDNN, standard deviation of normal-to-normal heart beat intervals; LF/HF, ratio of low and high frequency power.
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CVD risk in SZ—typically linked to traditional risk factors such
as lifestyle, or metabolic syndrome—has recently been shown to
bear a relation to systemic inflammation, indicated by increases
in leucocyte counts and cytokines concentration (54). Vagal nerve
stimulation has been shown to have anti-inflammatory properties
[see review (55)] and is potentially involved in inflammation in
SZ (50).

A limitation of the present study is that we did not meet
the recommended minimum of 5min for the purposes of cross-
study comparison (56), nor did we measure breathing rates.
Some studies have shown increased RHRs in conjunction with
increased breathing rates in SZ patients [e.g., (18)]. Finally, we
also did not assess comorbidities in terms of potential physical
illnesses that could alter RHR.

In conclusion, the current data suggest that increased RHR
is associated with individuals meeting CHR-P criteria and
correlates with severity and distress of increased APS. Given
the importance of CVD in SZ (4), it is important to determine
the underlying factors that give rise to alterations in RHR in
CHR-P individuals. Given recent suggestions of a potential link
with neuroinflammation (57), future studies should also further
investigate the link between the CHR-P state, aberrant RHR
activity, and neuroinflammatory markers. In addition, follow-up
data are needed to evaluate its potential as a biomarker for the
development of a psychotic disorder.
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