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As we age, our brain structure changes and our cognitive capabilities decline. Although

brain aging is universal, rates of brain aging differ markedly, which can be associated

with pathological mechanism of psychiatric and neurological diseases. Predictive models

have been applied to neuroimaging data to learn patterns associated with this variability

and develop a neuroimaging biomarker of the brain condition. Aiming to stimulate the

development of more accurate brain-age predictors, the Predictive Analytics Competition

(PAC) 2019 provided a challenge that included a dataset of 2,640 participants. Here, we

present our approach which placed between the top 10 of the challenge. We developed

an ensemble of shallow machine learning methods (e.g., Support Vector Regression

and Decision Tree-based regressors) that combined voxel-based and surface-based

morphometric data. We used normalized brain volume maps (i.e., gray matter, white

matter, or both) and features of cortical regions and anatomical structures, like cortical

thickness, volume, and mean curvature. In order to fine-tune the hyperparameters of the

machine learning methods, we combined the use of genetic algorithms and grid search.

Our ensemble had a mean absolute error of 3.7597 years on the competition, showing

the potential that shallow methods still have in predicting brain-age.

Keywords: brain-age, shallow machine learning, linear models, genetic algorithm, support vector machine

1. INTRODUCTION

As we age, our brain manifests cognitive decline (1, 2) and several structural changes, such as
cortical thinning, reductions in brain volume, and decline in white matter microstructure (3–
5). Although brain aging is universal, differences between individuals rates of brain aging can
be substantial. In some cases, these differences can characterize clinically relevant deviations of
psychiatric and neurological diseases (6, 7).

Recently, studies have been using machine learning methods to predict the brain age of
individuals. This task is performed by modeling trajectories and patterns of brain aging of a
healthy population. Most of these studies are based on structural Magnetic Resonance Imaging
(MRI), where researchers have been trying to map structural features [e.g., regional volume,
thickness, and mean curvature; (8–11)], and volume maps [i.e., gray and white matter or a
combination of both; (12–14)], to the chronological age of the subjects. In order to analyse the
effect of diseases in the brain aging rate, researchers have been training machine learning models
on healthy subjects and using the trained model to perform predictions on patient’s data. The
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difference between the predicted age and chronological age is
thought to be a marker for the individual’s risk of developing
any age-associated disease or cognitive decline. Based on this
line of thought, several neurological and psychiatric diseases
have been showing findings of pathological mechanisms that
manifest as accelerated aging; for example, major depressive
disorder (15), multiple sclerosis (16, 17), Alzheimer’s disease (18),
schizophrenia (19).

Although Relevance vector Regression (RVR), Support Vector
Regression (SVR), Gaussian Process Regression are the most
commonly used methods to predict brain age (8, 9, 13, 20),
recently other methods such as Convolutional Neural Networks
have gained popularity (13, 21). Unfortunately, because on the
current literature, it is hard to disentangle if the differences
in performance of the algorithms are due to the differences in
sample size and characteristics from the dataset or due to the
algorithm’s performance.

Aiming to stimulate the development of more accurate brain-
age predictors, the Predictive Analytics Competition (PAC)
2019 provided a challenge that included a big dataset of 2,640
healthy participants. In this study, we combined several types of
shallow machine learning methods [i.e., conventional machine
learning models that in contrast to deep learning models are
not characterized by multiple processing layers; (22)] to predict
the brain age of the subjects from the PAC 2019. In our
approach, we used genetic-based methods and grid search to
tune the hyperparameters of the models. We also incorporated
information from different structural features, such as regional
features (i.e., volume, thickness, and mean curvature), gray
matter, and white matter normalized volume maps, as well as,
information about the acquisition sites in order to improve
the performance of our predictions. We hypothesized that an
ensemble of shallow methods could offer competitive results in
this competition.

2. METHODS

See Figure 1 for an overview of the methods used. All code
used for the analyses is available on GitHub (https://github.com/
Mind-the-Pineapple/mind-the-gap).

2.1. Dataset
The data used in this analysis were derived from T1-weighted
MRI images. All participants of the competition were provided
with the raw NIfTI files as well as the pre-processed data (13).
This dataset was acquired in 17 different sites that were not
disclosed. The cohort used for training our algorithms consisted
of N = 2, 640 healthy individuals (male/female = 1, 237/1, 403,
mean age = 35.87 ± 16.20, range 17 − 90). An independent test
set (N = 660) was used to validate the performance of the model
submitted by each participating team.

2.2. Pre-processing
2.2.1. Normalized Brain Volume Maps
The pre-processed normalized volume maps were already
provided by the PAC 2019 organizers and were generated

following the process described in (13). Briefly, this method
consisted in segmenting gray matter (GM) and white matter
(WM) volumetric maps using SPM12 (University College
London, London, UK) according to their tissue classification. The
normalization to theMNI152 was performed using DARTEL and
a 4 mm Gaussian smoothing kernel. The size of the smoothing
kernel was chosen to be the default value, which has been
commonly used in previous research (12, 23). Lancaster et al. (24)
explored the impact of voxel size and kernel size and observed
that the values suggested by using Bayesian optimization are close
to the values commonly used. To facilitate comprehension and
inform the reader, we have briefly reported here how the WM
and GM extraction was performed, however, we did not perform
this step during our analysis. The only pre-processing that we
have applied to the data was the FreeSurfer analysis, which has
been described in the section below. We have used the WM and
GM volumes that were provided by the PAC organizers. For our
analysis we used a combination of GM,WM, andGM+WMmaps
as input for our models. All maps were acquired using all voxels
and data were pre-processed in order to ensure that all images
were brought into the same space for the appropriate machine
learning analysis.

2.2.2. Brain Regional Features
We also extracted structural features using a surface-based
approach implemented by FreeSurfer pipeline (v6.0). We
obtained the estimations of the cortical thickness, volume, and
mean curvature and anatomical structure volumes using the
“recon-all” command [more detailed information about the
processing in (25, 26)]. The cortical surface of each hemisphere
was parcelated according to the Desikan-Killiany atlas (27).
This process calculated the cortical thickness, volume, and
mean curvature for each of the 68 brain regions (34 in each
hemisphere) and volumes of the 45 anatomical structures (saved
as stats/aseg.stats under the FreeSurfer subject directory).

2.3. Shallow Machine Learning Algorithms
Brain age has been a focus of research in the past few years,
resulting in a rich literature on the topic (13, 28). Despite
this, there is little agreement on which model performs best
on brain data to predict age, mainly due to wide variations
in methodologies and types of data. There are three classical
machine learning models that are commonly used to predict
brain age: Linear Regressors (LR), Support Vector Regressors
(SVR), and Gaussian Process Regressors (GPR). Because of their
popularity, in this work we trained these three models to predict
brain age on the different types of data pre-processing previously
described using K-fold cross-validation on the training set. The
very large number of features made it computationally unfeasible
to train the model directly on the brain volume maps. To
overcome this limitation the pair-wise kernel matrix was pre-
computed to reduce the dataset to an NxN matrix, where N
refers to the number of data points, and was passed to the
SVR models. As for the linear regressor model, the number of
features in the dataset was reduced by Principal Component
Analysis (PCA), by preserving 95% of the original variance
of the dataset. This allowed to reduce the dimensions used
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FIGURE 1 | Overview of the different methods used in our analysis. In addition to the gray matter (GM) and white matter (WM) volume maps provided by the PAC

competition, we also pre-processed the data in order to obtain the regional volume, thickness and mean curvature information of the brain using Freesurfer. We then

used different strategies that involved creating a gram matrix, dimensionality reduction algorithms (e.g., PCA) and TPOT (an automated machine learning framework)

to train different models. In addition, to using different pre-processing, we also trained different models for the different sites where the data was recorded. All models

that had a mean absolute error (MAE) lower than 7 years were used to build a weighted ensemble.

by the models while still maintaining most of information.
Besides training on the whole dataset, the models were also
trained separately on each individual site, to adjust for the
known problem of between-scanner variability (29). The main
idea behind this is that by training all sites separately, every
model will only learn biological features that are relevant to
predict brain age and non-biological information (i.e., different
scanner settings) or potential dataset biases cannot be learned by
the model.

2.3.1. Linear Regression
LR is a simple parametric modeling approach that tries to model
the relationship between the independent variables, X, and the
target variable, y. It does so, by adapting the weights θ to fit a
linear equation to the observed data. This modeling of the data
has an analytical solution to obtain the optimal θ (Equation 1).

LR assumes that the relationship between the independent
variables and the target variable is linear, which is a drawback
from this model, as the brain data that serves as input is
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highly non-linear regarding the dependent variable, age (30). The
main advantages of this modeling approach are its simplicity,
transparency, and analytical solution (Equation A1).

2.3.2. Support Vector Regressor
SVR is a supervised learning model that fits a regression to the
training data by minimizing the distance of the sampled points to
a margin of tolerance around the fitted hyperplane (31). This is a
sparse algorithm, which means it only requires the information
of a small number of data points (i.e., support vectors) to define
the hyperplane that is used for prediction of unseen data. This
facilitates handling of datasets with a high number of data points.
We mapped the original space into a kernel space by applying
a pair-wise kernel function. By pre-computing the kernel space,
we greatly reduce the computational resources spent training the
model, as the number of variables is reduced to be the same size
as the number of data points. We obtained the regularization
hyperparameter C by using Grid-search over the search space of
{2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21}. The hyperparameter C is
used to reduce overfitting by virtue of a trade-off between the
regression complexity and the precision of the model.

2.3.3. Gaussian Process Regressor
GPR is a non-parametric modeling approach that uses Bayesian
inference to solve regression problems (32). It does so, by
learning a probability distribution of possible target values based
on a Gaussian process (GP) prior, which incorporates the prior
knowledge of the space. The GP is specified using a mean
function, 0 in this case, and a covariance function also called
kernel. In this work we analyzed three different kernels: a pre-
computed pair-wise kernel, Radial Basis Function kernel (RBF)
and a white kernel. Because this modeling approach is not sparse,
unlike the SVR, it is computationally burdensome, especially
when dealing with high number of variables as is the case in
voxel-based data. Due to resource limitations, the GPR was only
trained on the surface-based morphometry data.

2.4. TPOT Models
TPOT [Tree-based Pipeline Optimization tool; (33), https://
zenodo.org/record/3872281] is an open source framework that
uses genetic programming to test multiple pipelines and find
the most appropriated machine learning model for the problem
at hand.

TPOT allows the user to define a pool of algorithms to be used.
This pool of models can contain models that are pre-defined by
TPOT or can include any model written by the user, or even
be from any available package [e.g., the scikit-learn library; (34)]
chosen by the user. The pool of models is not limited to machine
learning algorithms but can include different pre-processing as
well feature transformations algorithms. For this analysis we have
included to the pool of models available to TPOT, not only the
most popular algorithms to predict brain age (e.g., SVR, RVR,
and GPR), but we also include other linear models (e.g., Lasso
and Ridge Regression). To see a full list of the models used the
reader can refer to Supplementary Table 1.

TPOT works by (i) selecting the algorithms from the user
defined pool of algorithms, (ii) using with a cross-validation

approach it trains those chosen algorithms and pass those with
the highest accuracy to the next generations, (iii) the 20 pipelines
with the best performance will be mutated/cross-over and passed
to the next generation, (iv) once the last generation is reached
(the number of generations is specified by the user before starting
the analysis) the model with the highest accuracy and lowest
complexity will be returned to the user. Therefore, together with
the fact that TPOT allows the best model and parameter to be
chosen in a data-driven fashion, one of its main advantages is
that it penalizes overfitting by selecting the pipeline with the best
performance but the lowest number of algorithms.

2.5. Ensemble
Ensembles of models tend to outperform single models and are
a common technique to bolster algorithm’s accuracy (35, 36).
Ensembles tend to be more flexible in the functions they can
represent, as they are not limited to a single hypothesis space
of each model it is composed from. To perform a weighted
ensemble, we used the mean absolute error (MAE) of each
model on the K-fold cross validation. All models with a MAE
above 7, our baseline, were discarded. The weight, w, given to
a model’s prediction was calculated by the squared difference
between the baseline and the obtained MAE, in order to benefit
smaller errors, following Equation 2. The weights were then used
for a weighted average of the final prediction. For each site,
only models trained on the site and on the whole training set
were considered (Equation A2).

3. RESULTS

The aim of our study was to develop pipelines that precisely
predict the subject’s age. To do this, we divided our analysis into
two parts (i) we trained our pipelines using the data from all
sites, (ii) we trained separate models for the 17 different sites.
In addition, because different features might be more important
for specific models, we also explored the effects of the different
structural and regional features.

3.1. All Sites Analysis
Among the most used models to predict brain age, the SVR
model trained with a combination of GM and WM achieved
the best performance (MAE = 4.571 years; Table 1). These
results are in line of those observed by (13) where they
describe an increase in performance by combining both GM and
WM information.

On the other hand, when using TPOT and the regional
features to find themost appropriatemodel, the returned pipeline
consisted of a combination of linear regression and random forest
regressor and yielded a MAE of 5.195 years.

3.2. Different Models for the Different Sites
To avoid non-biological variability induced by the different
scanners, acquisition protocols and field strengths, we trained
our best performing model from Table 1 (i.e., the SVR model
which combined GM + WM information) using the data from
each site separately. The performance of the site-specific models
is reported in Table 2. The big oscillation in the MAE can be
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TABLE 1 | Performance of each machine learning model when using the whole

dataset.

Model Data type MAE

SVR WM data 5.589

SVR GM data 5.004

SVR GM+WM data 4.571

SVR vol 7.187

LR PC from GM data 13.609

LR PC from WM data 13.613

GPR curv 7.200

GPR thk+vol 6.385

GPR thk+vol+curv 6.132

The results are presented as the meanMAE for a 5-fold cross validation. WM, white matter

volumetric map; GM, gray matter volumetric map; vol, regional volume; curv, regional

mean curvature; thk, regional thickness; PC, principal components.

TABLE 2 | Performance of the SVR model when using White Matter + Gray

Matter volumetric data from each specific site.

Site # MAE

0 5.087

1 4.473

2 4.887

3 3.620

4 1.662

5 4.527

6 3.091

7 9.777

8 3.850

9 5.678

10 6.266

11 5.188

12 4.846

13 7.084

14 7.070

15 1.159

16 2.447

The results are presented as the mean MAE for a 3-fold cross validation.

attributed to the difference in demographics of the different sites.
As expected, the age-range per site correlated positively with the
models’ MAE (mean Pearson correlation coefficient across sites
± sd: 0.710 ± 0.001), as sites where participants had a small
range of ages were easier to predict. Sample size per site had little
correlation with the models’ MAE (0.117± 0.656) and so did the
sex ratio (0.147± 0.573).

Similarly, we also used the regional features to train TPOT
in a site-specific fashion. In contrast to the results presented in
Table 2 where we only used an SVR model and compared it’s
performance among the different sites, here we allowed TPOT
to search for the best pipeline for each individual site (Table 3;
to improve the readability here we only presented the models
that composed the pipeline. If the reader is interested to know
the models and their hyperparameters that lead to the optimal
performance please see our Github—https://github.com/Mind-

TABLE 3 | Performance of the resulting TPOT pipelines when using thickness,

volume, and mean curvature information from each specific site separately.

Site # Pipeline MAE

0 3 Lasso + RVR + Ridge + RF 5.557

1 Lasso + KNR 4.101

2 ElasticNet + Extra Trees + Ridge 4.721

3 Linear SVR + RF 4.027

4 2 Extra Trees + Ridge 2.05

5 RF 6.667

6 2 GPR 5.940

7 2 ElasticNet 5.638

8 ElasticNet + RF 3.938

9 Lasso + RF + Extra Trees 6.685

10 KNR + DT + Ridge 9.210

11 RVR 4.213

12 DT + Ridge 4.375

13 2 RF + DT + Ridge 10.155

14 Extra Trees + 2 DT + LR + Ridge 10.849

15 LR 1.861

16 RF + ElasticNet + DT 2.220

The results are presented as the mean MAE for a 5-fold cross validation. Lasso, lasso

model fit with least angle regression; RVR, relevance vector regressor; Ridge, linear

least squares with l2 regularization; RF, random forest; KNR, K-neighbors regressor; DT,

decision tree; GPR, gaussian process regressor; LR, linear regression.

the-Pineapple/mind-the-gap). Interestingly, although none of
the sites had the same pipeline the site-specific performance was
in general comparable to that obtained when using only the SVR.

Finally, we combined the predictions of our models
with a MAE < 7 into an ensemble. To make sure that
weakly performing models would not negatively impact our
ensemble performance, we weighted the model’s prediction
on the ensemble based on its performance. In this weighted
combination, we verified that none of the trained linear
regressions performed well enough (their MAE was bigger than
7 years) to be included in the ensemble analysis, therefore we
excluded any linear regression model from the ensemble. Models
trained on individual sites were only considered for ensembles
predicting data from their respective site. As different sites might
have different scanners and other non-biological variations, by
training each site separately every model learns the features
that are relevant for brain-age prediction and its individual
scanner properties and by keeping the sites independently it
allows us to better account for inter-scanner variability. A crucial
limitation that derives from this design choice is that the site
information needs to be released together with the dataset. As
this was the case for the PAC competition, we could use the
subject’s site information to choose the best model to predict
brain age for that individual. Our ensemble had a mean absolute
error of 3.7597 years on the independent test set, which was
used to evaluate the performance of the different teams of the
PAC 2019. To put this result into perspective, the best model,
which consisted of an ensemble of computational intensive
deep-learning models (37), achieved a performance of 2.9043
years on the same dataset.
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4. DISCUSSION

In this paper, we showed that shallow machine learning methods
yield competitive results when predicting the brain age of the
subjects from the PAC 2019 competition. In our approach,
we used genetic-based methods and grid search to tune the
hyperparameters of the different shallow models and trained the
models using different structural measures. Importantly, we also
trained different models for the different sites so that we could
better account for scanner variability.

Deep learning’s popularity is extending widely in various areas
of research and is becoming a common tool in neuroscience.
However, it is still an open question if brain images can profit
from deep neural networks to learn the non-linearities from brain
images with the current small datasets and a high number of
features, while still being able to generalize to unseen datasets
(21, 38, 39). This discussion arises from the fact that neural
networks require more observations in order to learn complex
patterns and significantly surpass the performance of classical
shallow methods. Besides, if deep learning methods are not
provided with sufficient data, they will be more prone to overfit
and not generalize due to the large number of parameters in the
models. To illustrate this problem, while ImageNet, one of the
most commonly used datasets to train deep-learning models to
classify natural images, contains about 14 million images, the UK
Biobank, one of the biggest research consortia, currently provides
45,000 brain scans and aims to have 100,000 by 2050 (40).

Given that the dataset provided by the competition consisted
of a large number of participants (N > 1, 000), our results
support the findings from (21). They showed that while for
two benchmark datasets used in machine learning (i.e., MNIST
and Zalando Fashion datasets) the performance of the deep-
learning methods improved with an increase in the number of
samples used to train the methods, that was not the case for
linear models, where a plateau performance was reached. For
neuroimaging datasets (i.e., volumes, connectivity, and slices)
the performance of shallow models did not approach a plateau
and had very similar performance as deep-learning models.
Therefore, this suggests that even by using a larger dataset, the
maximal performance of shallow models are not reached when
using neuroimaging datasets. Similarly, He et al. (39) showed that
kernel methods are as precise as neural networks when predicting
behavior but have a lower computational cost. Some other
noteworthy advantages of linear models and shallower models
compared to deep neural networks are: (i) they are in general
easier to interpret (22); (ii) they are less computationally intensive
and can more quickly be trained, (iii) deep learning architectures
are hard to adapt to the problem at interest, therefore, one of
the biggest limitations of deep learning is to adapt previous
architecture to the problem at hand. An appropriate adaptation
requires vast experience from the practitioner; (iv) linear models
can run in any computer and does not require GPU access.

One of the biggest challenges of machine learning is to
find the appropriate hyperparameters for the model to be
trained (41). Due to the large number of possible models,
their hyperparameters and suitability for the problem at hand,
finding the most appropriate combination can be a bewildering
and computational intensive task. To address this issue, in this

competition we used: (i) grid search strategy, which repeatedly
performed the analysis over a set of pre-defined hyperparameters;
(ii) a genetic-basedmethod that was performed by TPOT in order
to find the most appropriate model and its hyperparameters (i.e.,
taking into account both precision and complexity). Similarly,
to the results reported by Dafflon et al. (42) and the no
free lunch principle (43), we observed that there was not
a single model that always had the best performance when
predicting age (Table 3). The different models identified by
TPOT for each site probably changed due to biological (i.e.,
age range, population heterogeneity) and non-biological factors
(i.e., field strength and scanner manufacturer). As previous
studies reported, these confounding variables have a significant
influence on the performance of machine learning applications
in neuroimaging data (44–46). Nevertheless, the combination of
models suggested by TPOT leads to an improved performance
that probably balances the strength and limitations of the single
models by combining them into a pipeline. Another interesting
feature of TPOT is that while searching for the best model,
TPOT penalizes models that obtain a better performance due
to overfitting. Despite the risk of overfitting of some of our site
specific pipelines, due to the small sample size of some sites, the
out-of-sample evaluation performed by the PAC committee with
an independent dataset revealed a good performance.

In this paper, we have also taken into account the scanner
where each data point originated from, building site-specific
models, before combining them with models trained on all
scanners. This was an effort to address the common issue of
data variability between scanners, which can add variability in
the dataset (47). For example, different scanner manufacturers,
field strengths, or acquisition protocols which might have an
effect on the algorithm’s performance. One limitation of this site-
specific approach is that some scanners have a small number
of participants, resulting in models trained with low number of
data points. To avoid overfitting to the sites, we discarded the
models with poor performance (MAE> 7). Another limitation
of predicting age from brain images is the inter-variability and
heterogeneity (i.e., different degrees of brain aging that might
reflect different life styles, genetics, exclusion/inclusion criteria,
and undiagnosed diseases) even in healthy participants, resulting
in a noteworthy irreducible error in brain age prediction. In line
with this idea, Holmes and Patrick (48) proposed that variability
is also present in healthy controls and should be better addressed.

In conclusion, this paper shows that leveraging shallow
models and ensemble learning to predict age from brain data
is a simple but effective way of obtaining successful predictive
models, despite the intrinsic non-linearity of the data. This
approach also results in more interpretable models than deep
learning models, as it is easier to deconstruct the model’s
mechanisms. Ultimately, this simple approach obtained a top-10
qualification in the PAC 2019 competition, competing directly
with more complex and non-linear predictive models.
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APPENDIX

θ = (XT
· X)−1

· XT
· y (A1)

wmodel = (7−MAEmodel)
2 (A2)
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