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Morphological changes in the brain over the lifespan have been successfully described

by using structural magnetic resonance imaging (MRI) in conjunction with machine

learning (ML) algorithms. International challenges and scientific initiatives to share open

access imaging datasets also contributed significantly to the advance in brain structure

characterization and brain age prediction methods. In this work, we present the results

of the predictive model based on deep neural networks (DNN) proposed during the

Predictive Analytic Competition 2019 for brain age prediction of 2638 healthy individuals.

We used FreeSurfer software to extract some morphological descriptors from the

raw MRI scans of the subjects collected from 17 sites. We compared the proposed

DNN architecture with other ML algorithms commonly used in the literature (RF, SVR,

Lasso). Our results highlight that the DNN models achieved the best performance with

MAE = 4.6 on the hold-out test, outperforming the other ML strategies. We also

propose a complete ML framework to perform a robust statistical evaluation of feature

importance for the clinical interpretability of the results.

Keywords: brain aging, deep neural networks, machine learning, MRI, FreeSurfer, morphological features,

aging biomarker

1. INTRODUCTION

The last few decades have seen significant advances in neuroimaging methodologies and machine
learning (ML) techniques focused on identifying structural and functional features of the brain
associated with the age. Age prediction is typically performed using a multivariate set of features
derived from one or multiple imaging modalities. A dataset is then specified by including the
characteristics of different subjects and their chronological ages. The dataset is employed to train
one or more supervised machine learning algorithms which attempt to predict a given subject’s
brain age by using the brain imaging features while minimizing the difference from the true age
and preventing overfitting. Different metrics are commonly used to assess the delta between the
predicted age and the actual age of the participants (i.e., the brain age gap), such as Mean Absolute
Error (MAE) (1).

A great variety of ML approaches including deep learning techniques have been proposed to
predict age from brain magnetic resonance imaging (MRI) scans (2, 3). Typically, a number of
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selected features are extracted from images such as
morphological descriptors, complex network-based models
or radiomic features (4–7) or raw high-dimensional data are
exploited to feed more complex models such as convolutional
neural networks (8–10). One of the most promising uses of
the brain age prediction is its relevance and use as a biomarker
to assess the risk of an individual to develop cognitive decline
and propensity to neurodegenerative diseases (11–13). The idea
underlying this approach is that the age gap could be a reliable
clinical marker as it has been related to abnormal age changes
in different pathologies such as schizophrenia (14), Alzheimer’s
disease (15), traumatic brain injury (16).

In order to ensure both generalization and reliability, the ML
algorithms should return accurate responses on unseen datasets.
However, choosing a model suitable for heterogeneous dataset
requires high computational complexity and extensive evaluation
of parameter combinations. International competitions facilitate
the comparison of different techniques on large datasets favoring
a deeper comparison of algorithms and classification strategies
with transparent procedures and data sharing policies (17–19).

In this work, we present the results of the predictive model
based on deep neural networks (DNN) proposed during the
Predictive Analytic Challenge 2019 for brain age prediction of
healthy individuals by using some morphological descriptors
extracted from their raw MRI scans. Recently we have used
a set of morphological features to describe the trajectories of
neurodevelopment on a cohort of ABIDE database (20), proving
the efficiency of this representation for brain age prediction in
a limited age range (21). In this paper we propose a different
architecture and a machine learning framework for a more
in-depth comparison with other machine learning techniques
commonly used in the literature. Another fundamental objective
of the work is to provide a robust statistical evaluation of
feature importance for the explanation of the results obtained
with the DNN models in order to facilitate their inclusion in
clinical contexts.

2. MATERIALS

2.1. Subjects
In this study, we included 2638 T1-weighted MRI brain images
collected from 17 sites and provided by the organizers of
Predictive Analytic Competition (PAC) 20191. This competition
consisted of two sub challenges: (i) to achieve the lowest mean
absolute error for brain age prediction; (ii) to achieve the lowest
MAE while keep the Spearman correlation between the brain-
age delta and the chronological age under 0.1. We processed the
T1 raw images with FreeSurfer software on ReCaS Datacenter as
described in section 2.2. After the preprocessing step, 478 subjects
were excluded from the next steps of the analysis either because
of pipeline failure or because they were marked as outliers during
the quality assessment step of the features extracted from the
pipeline. The demographic characteristics of the remaining 2,170
subjects are listed in Table 1 for each of the 17 sites.

1https://web.archive.org/web/20200214101600/; https://www.photon-ai.com/

pac2019

TABLE 1 | Demographic information of the subjects per site.

Site Samples Age (years) Gender (M/F)

0 304 34.1± 12.6 120/184

1 129 26.9± 9.3 53/76

2 492 35.4± 12.3 211/281

3 140 25.5± 6.6 122/18

4 131 21.3± 2.0 52/79

5 35 31.5± 7.7 15/20

6 9 62.4± 7.1 7/2

7 23 43.1± 11.4 8/15

8 156 24.7± 5.2 68/88

9 415 49.2± 16.7 180/235

10 73 32.9± 11.2 51/22

11 18 69.9± 7.9 9/9

12 29 29.2± 7.9 15/14

13 115 40.6± 17.2 70/45

14 56 41.7± 19.2 17/39

15 17 23.2± 1.2 3/14

16 28 22.9± 2.8 8/20

2.2. Morphological Features
As in our previous work (21), we exploited ReCaS datacenter2

to create a custom pipeline for preprocessing and analysis of T1
raw images (22). The ReCaS-Bari computing farm has been built
by the ReCaS project3, funded by the Italian Research Ministry
of Education, University and Research to the University of Bari
and INFN (National Institute for Nuclear Physics) and offers
a complete scientific high-throughput and high- performance
computing environment to deal with common problems of
large-scale neuroimaging processing.We integrated the software
tool FreeSurfer4 into a pipeline to extract the morphometric
properties of both cortical and sub-cortical brain structures. In
particular, the morphological features were extracted by using
the FreeSurfer v.6.0.0 recon-all pipeline (23–25). The recon-
all workflow allows for the fully automated cortical and sub-
cortical segmentation and reconstruction by using several steps
such as motion correction, non-uniform intensity normalization,
transform in Talairach space, intensity normalization, skull
stripping, cortical and sub-cortical parcellation. More details
about all the steps included into the pipeline can be found at
the web page of the pipeline5. The Desikan-Killiany atlas (26)
was adopted for the cortical segmentation of each MRI scan
into 68 anatomical regions of interest and the Aseg Atlas (25)
for the sub-cortical segmentation into 40 regions of interest.
The recon-all pipeline returns a list of metrics that statistically
describe both the intensity- related andmorphometric properties
of the segmented regions. In particular, here we considered the
following statistical features:

2https://www.recas-bari.it/index.php/en/
3http://www.pon-recas.it
4https://surfer.nmr.mgh.harvard.edu/
5https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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• Volume of 40 sub-cortical brain structures (40 features
included in aseg.stats file);

• Volume of white matter parcellation of brain cortex (68
features included in wmparc.stats file);

• Volume, surface area, mean curvature, mean thickness for the
34 cortical brain regions of each hemisphere (272 features
included in aparc.stats file);

• Global brain metrics including surface and volume statistics
of each hemisphere; total cerebellar gray and white matter
volume, brainstem volume, corpus callosum volume, white
matter hypointensities (9 features included in wmparc.stats,
aparc.stats and aseg.stats files).

ReCaS scientific environmental offers some facilities to perform
quality check and output verification of the implemented
pipelines by integrating information extracted in log files and
crash files. Specifically, the quality assessment of the resulting
features was performed by excluding extreme outliers through
the MAD criterion (27) and subjects on which some pipeline
steps have failed. At the end of this stage, we constructed a
matrix of features N × P with N = 2, 170, and P = 389,
where each row represents a single subject described with P
morphological features.

3. METHODS

3.1. Machine Learning Framework
A schematic overview of theML framework is shown in Figure 1.
We stratified the age values in order to obtain a representative
test sample so the database was divided into training set (1,500
subjects) and hold-out independent test (760 subjects).

For the training phase, T = 10 re-sampling of a K = 10-
fold cross-validation were executed producing 100 bootstraps
of the training dataset. In each iteration, nine-folds of the
dataset were input to four different regression models (Support
vector Regression, Random Forest, Lasso and Deep Neural
Networks). We performed the same min-max normalization
procedure on the training set within each round and applied the
parameters to normalize the left fold. For the Random Forests
and Support Vector Regression models, we trained stepwise
models for ranked subsets of increasing size obtained by using
embedded and recursive feature elimination (RFE) algorithms,
respectively. The performance of the each model was evaluated
on the left test fold. The main goal of this stepwise analysis
was to detect the specific subset of features that minimizes the
averaged prediction error (28). As a result, this step returns the
optimum number of non-redundant features kopt to retain in
order to achieve the best performance and the best performing
model for this set of features. For Lasso and DNN models,
we trained a single model within each cross-validation round
that was tested on the left fold in order to tune the model
parameters since these methods perform an embedded selection
of the best features.

For each regression algorithm, we applied an ensemble
strategy by testing each of the final 100 models on the hold-out
independent test and by averaging the resulting predictions to
obtain the final age of each subject.

The best performing algorithm for age prediction was
identified by comparing the performance of all the models. We
also compared the sets of ranked features across models by using
a stability index for the clinical interpretation of the results. Each
step of the framework is described in the following sections more
in details.

3.2. ML Regression algorithms
The four different regression models support vector regression
(SVR), random forest (RF), Lasso and deep neural networks
(DNN) were evaluated to predict brain ages of N subjects Y ∈

R
N based on the matrix of predicting variables X ∈ R

N×P.
To evaluate the regression performance, two different metrics
were employed:

• Mean Absolute Error (MAE):

MAE =
1

N

N
∑

i=1

|yi − ŷi| (1)

• Pearson correlation coefficient (R):

R =

∑N
i=1(yi − ȳ)(ŷi − ¯̂y)

√

∑N
i=1(yi − ȳ)2

√

∑N
i=1(ŷi −

¯̂y)2
(2)

with N being the sample size, yi the chronological age, ŷi the
predicted brain age and ȳ and ¯̂y denote their sample means.

3.2.1. Support Vector Regression
Support vector regression (SVR) is a machine learning algorithm
that aim to determine a cost function f (x) with deviations ǫn < ǫ

from each target point yn and each training point xn (29).
It represents a kernel-base method that can also be viewed as

a linear regression into a higher dimensional space in which the
data are mapped through a non-linear kernel function (30). In
our analysis we applied the SVR implementation of the “Caret” R
package6 with linear kernel and the default parameters (ǫ = 0.1).

For feature ranking we applied the Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) algorithm as it is able
to perform both feature selection and regression task. Indeed, this
algorithm requires that firstly the regression model is trained,
then the ranking of all features is determined and lastly the
features with the smallest ranking criterion are excluded from
the initial list. This process is reiterated until all the features have
been removed from the list (31).

3.2.2. Random Forest
Random forest (RF) algorithm is an ensemble of tree-based
base learners. The target outcome is independently predicted by
each tree, while the final predictions are based on the average
of individual tree predictions (32). They are constructed by
introducing randomness as a subset of observations is randomly
selected for each tree and a random set of mtry candidate
predictors is selected to create a split within each tree. The node
input samples are divided into two sets according to a purity

6https://cran.r-project.org/web/packages/caret/caret.pdf
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FIGURE 1 | Schematic overview of the ML framework.

metric and a decision threshold and each tree is grown until
nodes have split their inputs into subsets with a single label. The
samples not used for a specific tree are comprised in the out of
the bag (OOB) set for that tree. The samples of the OOB set are
used to assess the accuracy of RF as:

OOB−MSE =
1

n

n
∑

i=1

(yi − ¯̂yiO)
2 (3)

where ¯̂yiO denotes the average prediction for the ith observation
from all trees for which this observation has been OOB.

We computed the RF feature importance by applying
the permutation-based MSE reduction criterion (33). The
importance of each feature in each tree is assessed by permuting
the OOB data of the feature for the tree and by computing the
difference between the permuted and the actual OOB-MSE. The
final MSE reduction for each features is obtained by averaging
these differences over all the trees of the forest. The main
rationale of this approach is that if a feature does not affect the
performance, the difference between the accuracy computed with
the actual values of the feature and that computed by using its
permuted values is expected not to be significant.
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We used the “RandomForest” R Package7 with the default
parametermtry = P/3 and ntree = 500.

3.2.3. Lasso
Lasso (Least Absolute Shrinkage and Selection Operator) is a
regression method introduced by (34) to solve issues related
to overfitting and multicollinearity in ordinary least square
regression (OLS). In this method a penalty term is introduced
to control the complexity of the model which is optimized for
sparseness. Hence, the coefficients of the least significant features
are shrinked to zero. This algorithm is also applied for feature
selection as the subset of the features with non-zero weights can
be extracted as an outcome of the model.

Lasso minimizes the residual sum of squares (RSS) to find the
weights of the features:

RSS =
1

2
||Y − βX||22 − λ||β||1 (4)

We used the Lasso implementation in “Caret” R package. The
inner round of each fold of the cross validation has been used
to find the best value of λ by searching in the range [10−4, 104]
with step 0.1.

In addition, since the absolute values of the Lasso coefficients
could be used to find the number of useful features, we exploited
both the frequency of occurrence of non-zero weights and their
averaged absolute value across the validation rounds to identify
the features most representative of the population, regardless the
specific training fold.

3.2.4. Deep Neural Networks
In this work we adopted a feed-forward deep neural networks.
This class of networks comprise multiple layers of computational
neurons, interconnected in a feed-forward way. Each neuron in
one layer form connections with the neurons of the subsequent
layer (35). This DNN architecture was implemented with the
“h2o” R package8. We performed a grid search optimization
provided by the “h2o” package on the inner round of each fold
of the cross validation in order to reach a stable configuration
by setting number of layers, neurons per layer and activation
function. We obtained the final configuration with four hidden
layers respectively including 256, 128, 56, and 24 neurons with
linear rectifier (i.e., ReLU) as activation function.

In order to avoid overfitting, we adopted the default values
provided by “h2o” R package for all the remaining parameters.
In details, as described on the reference manual, h2o implements
an adaptive learning rate for the stochastic gradient descent
optimization. This methods depends on two parameters that
control the balance of global and local research efficiencies: ρ

is the similarity to prior weight updates and ǫ prevents the
optimization to get stuck in local optima. Defaults values used
in this work are ρ = 0.99 and ǫ = 10−8. In addition, the weights
were randomly initialized within each cross-validation round to
increase the network robustness.

7https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
8https://cran.r-project.org/web/packages/h2o/h2o.pdf

The Gedeon method (36) was employed to obtain a ranked
list of features. This algorithm considers the weight matrices
connecting the inputs with the first two hidden layers to compute
the relative importance of each variable.

3.3. Feature Importance
At the end of all cross-validation rounds, we obtained a matrix of
ranked features N× P for each regression algorithm. This matrix
has been analyzed to compute a features ranking representative
of the whole population and independent from the specific cross-
validation round. A consensus ranking algorithm was applied to
select the most stable features across all the 100 cross- validation
rounds. The main goal of a consensus ranking algorithm is to
assess the stability of a ranked list of features with regard to
minor alterations in the training sets drawn from the sample
distribution (37). In particular, the robust rank aggregation
(RRA) algorithm has proved to be one of the most effective to
assess the final aggregated ranked list of multiple base rankers
(38). Indeed,this approach computes the list of statistically
significant items in the final ranking by comparing the position
of each item in all the ranked lists to a null model of random
permutations of the items. Here we extracted the final ranked list
of features for each regression algorithm by applying the RRA
method and then we evaluated the overlap between each couple
of ranked list resulting from the different ML algorithms.

For Lasso algorithm, we also verified the correspondence
among the final ranked set and the most important
features obtained with the embedded frequency- and
weights-based criterion.

The percentage of overlap between two set of features was
computed through the Jaccard index as:

J(A,B) =
|A ∩ B|

|A ∪ B|
(5)

where A and B are two sets of ranked features. This index
expresses the consensus between the two sets of features and
is closely linked to the stability of the selected features with
respect to the machine learning algorithms (39). Since 0 ≤ J ≤

1, a higher percentage of overlap between the two sets means
that the selected features are more invariant with respect to the
ML algorithm.

4. RESULTS

4.1. Cross-Validation Performance
Figures 2A,B show the average MAE values and standard
deviations for different subset of the ranked features obtained
with the RF and SVR algorithms. It is interesting to note
that RF shows a decay in performance after a minimum peak
reached for kopt = 40 and therefore the other features are
poorly informative and redundant. On the other hand, SVR
shows the best performance for all the ranked features so we
selected the 100 cross-validated RF models for kopt = 40
and the 100 cross-validated SVR models for kopt = 389.
Figure 2C shows the averaged β weights and the frequency
of occurrence of the features across the validation rounds for
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FIGURE 2 | Shadow performance curves with the average MAE achieved by all the stepwise models in cross-validation with the standard errors for (A) RF models

and (B) SVR models; (C) averaged weights vs. frequency of occurrence of the features across all the validation rounds resulting from Lasso algorithm.

Lasso algorithm. Among the total set, 32 features were identified
with averaged weights above the 90th upper percentile of the
distribution of the averaged beta values across the rounds. These
features also present a 100% frequency of occurrence meaning
that they are selected in all the cross-validation rounds. The
Gedeon algorithm returns the relative importance of each feature
using a posterior evaluation of the net weights, so a specific
subset from the total set of the features was not identified,
setting kopt = 389.

We compared all the cross-validated models for the four
regression algorithms. The Violin plots of the distributions of
MAE values and R values for the four models are presented
in Figure 3. Table 2 also summarizes the mean and standard
deviation values of the two performance metrics. The best
performance is achieved by using the DNN algorithm, which
MAE values resulted significantly different from the other

distributions (p < 0.001 for Bonferroni post-hoc test). There are
no substantial differences between the distributions of Pearson’s
values among the algorithms, while RF resulted the worst
regression method for both performance metrics.

We better analyzed the behavior of the ML algorithms on
the training set, by inspecting the comparison between the
chronological age and the predicted age for each sample across
all the validation rounds as shown in Figure 4. We also evaluated
the age bias of the models, by considering the age gap 1 =

chrnological age − predicted age vs. the chronological age of the
subjects in the training set (see Figures 4B,D,F,H). The color of
each point represent the absolute value of the age gap resulting
from each validation round. All models exhibit samples with high
age error in the first range (age < 25 years) or in the last range
(age > 80 years), however the DNN models show the lowest age
bias reporting Spearman coefficient R = 0.38.
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FIGURE 3 | Violin plots of the distributions of (A) MAE values and (B) R values for the four models.

4.2. Hold-Out Test
Figure 5 summarizes the performance of the models on the
independent hold-out test. We used different colors for the
17 sites of the subjects. Similarly to the cross-validation, the
DNN resulted the best models for both age prediction and age
bias, reporting MAE = 4.6, Pearson correlation R = 0.91
between the chronological age and predicted age and Spearman
coefficient R = 0.4.

It is worth noting that several samples belonging to specific
sites reported systematic age underestimation or overestimation
showing larger deviations from the ideal age model for all the
ML regression algorithms. We better investigated the effect of
the site heterogeneity on the prediction accuracy by grouping
the MAE values for each site. As shown in Figure 6, the DNN
models exhibit the greatest homogeneity across the sites with the
exception of the site 14, which appears to be an outlier site for all
the models.

In addition, we evaluated the ensemble variability as proposed
in (40). This metric is assessed as the standard deviation of
the prediction error within the ensemble and is related to the
uncertainty in neural networks (41). We divided the 15–90 age
range into 15 bins of 5 years each in order to compare uncertainty
to available training sample and prediction error in different
age ranges.

Figure 7 reports the mean ensemble variability as a function
of age range. It is clearly evident that as the training sample
decreased, the uncertainty increased and vice versa, but the DNN
models show lower variability and greater stability over the age
ranges with few training examples compared to other models.

4.3. Identification of Best Features
We computed the feature ranking list resulting from each ML
algorithms by applying the RRA method. The overlap between
each couple of ranked list was assessed to verify the consensus
between each couple of ML algorithms and for the clinical

TABLE 2 | Mean MAE ± SD resulting from age prediction in cross-validation

rounds for the four regression models RF, SVR, Lasso, and DNN.

Model MAE R

RF 6.71± 0.39 0.83± 0.02

SVR 6.25± 0.41 0.85± 0.02

LASSO 5.99± 0.36 0.86± 0.02

DNN 5.39± 0.34 0.84± 0.03

interpretability of the results. Figure 8 shows the overlapping
between the feature ranking of each couple of algorithms for
increasing number of features. It can be noted that for the first
10 features, DNN and Lasso show an overlap around 70%, as
well as between RF and SVM. The overlap index decreases by
increasing the number of features, showing how the different
classification approaches actually identify different descriptors
significantly associated with the age prediction. The list the most
important features for the DNNmodels with the ranking position
is reported in Table 3.

5. DISCUSSION

In this work we applied different ML algorithms to predict the
brain age of 2,170 healthy subjects by using the morphological
features extracted from T1-weighted MRI provided during the
Predictive Analytic Competition 2019. Our results highlight
that the DNN models achieved the best performance with
MAE = 4.6 on the hold-out test, outperforming the other
regression strategies.

The prediction accuracy we obtained compares favorably with
other studies in which several morphological measures have been
used to predict brain age (0.6 < R < 0.9 and 4 < MAE <

6) (3, 5, 42–47). Most of these studies are focused on younger
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FIGURE 4 | Results of brain age prediction for the training set in cross-validation rounds for (A) the RF model, (C) the SVR model, (E) the Lasso model, (G) the DNN

model; results of age gap (1) for the training set in cross-validation rounds for (B) the RF model, (D) the SVR model, (F) the Lasso model, (H) the DNN model.
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FIGURE 5 | Results of brain age prediction for the independent test set for (A) the RF model, (C) the SVR model, (E) the Lasso model, (G) the DNN model; results of

age gap (1) for the independent test set for (B) the RF model, (D) the SVR model, (F) the Lasso model, (H) the DNN model. Each color indicates a specific site.
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FIGURE 6 | Mean values and standard errors of MAE resulting from the independent hold out test set grouped by the different sites for the four models.

subjects (age< 20 years) and reported MAE< 2 (42, 43, 46, 47),
while other works showed that the prediction error increases
with increasing age with MAE> 3 (6, 44, 45). For example, (3)
obtained a MAE = 4 year by using a sample with subjects aged
from 45 to 91, while (44) reported lower accuracy for the older
group with MAE ranging between 1.57 (for the 8− 18 age range)
and 5.5 (for the oldest group in 65–96 age range) with neural
networks using all the morphological descriptors. In our very
recent works we obtained MAE = 2.2 with complex network
modeling (7) and MAE = 2.5 with morphological features (21)
on ABIDE dataset (6–40 years).

Several solutions have been proposed to overcome these
limitations. As an example, (48) proposed a completely
automated pipeline that can find the most appropriate model for
the dataset under analysis and provide a complete comparison
with themost commonly usedmodels. Differentmodels and their
hyperparameters are extensively tested to provide the optimal
model for the training dataset.

Other much more complex models in conjunction with
different techniques have been proposed with the aim of
generalizing the predictive models and making them as
independent as possible from the training database. Peng et al.
(49) developed a Simple Fully Convolutional Network (SFCN)
architecture that uses 3D minimally-preprocessed T1 brain
image for brain age prediction. Their model achieved state-
of-the-art MAE = 2.14 years in the UK Biobank dataset
(14,503 subjects, of which 12,949 are used for training) by
using proper data augmentation and regularization techniques.
They also used their trained models on the dataset provided by

Predictive Analysis Competition 2019 resulting the best team
with MAE = 2.90 years. (40) proposed an ensemble of CNN
models trained and tested on an minimally processed T1 MRI
scans of 10,176 subjects collected from 15 large-scale open-
access databases in order to produce a result that is more
robust to scanner’s type, field strength, and resolution. The
authors showed that by using both CNN models and data
augmentation the results improved with MAE = 3.07 years
and a correlation between chronological and predicted age of
R = 0.98. These architectures employ raw high-dimensional
data and have been proven to be particularly effective in learning
relevant representations and latent relationships among raw
data and outcomes. Indeed, convolutional neural networks can
perform predictions directly from unprocessed neuroimaging
data, thus overcoming some image processing steps, reducing
pre-processing time and eliminating the feature engineering
phase (8). On the other hand, here we exploited a feature-based
learning approach based on morphological features extracted
by using the FreeSurfer software. FreeSurfer has been widely
adopted by scientific communities to investigate the effects of
several disorders on morphological age-related brain changes
(5, 50, 51), hence having both neurodevelopmental and aging
models based on such features could improve the identification
of normal trajectories, which could be used in turn, for example,
to compare different studies and several diseases and to assess
more accurately potential morphological abnormalities linked to
a specific condition.

A salient point is the model homogeneity with respect to the
demographic characteristics of the samples such as age range and
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FIGURE 7 | (A) Training sample size reported for bins of 5 years; (B) ensemble variability within the test set quantified as the standard deviation of the prediction error

within the ensemble of models for each ML algorithm.

acquisition sites. Indeed, reporting a constant behavior across
acquisition sites and for different age bins is important to ensure
the reliability and generalization of the ML models. The second
aim of the PAC 2019 Challenge was to minimize the Spearman
correlation coefficient between the age gap and the chronological
age in order to achieve an unbiased algorithm for brain age
prediction. Figures 4, 5 show that although the DNN models
exhibit the lowest correlation values (R = 0.38 for cross-
validation and R = 0.4 for the independent test), a systematic age
underestimation in the age range 60 − 90 and overestimation in
the age range 20−35 can be noted. This finding indicates that age
bias correction techniques need to be further applied to achieve
less biased models (52, 53).

Regarding the homogeneity behavior of the learning
algorithm across sites, some methods have been proposed to
minimize the effect of the sites. In the work of (54), this aspect
has been tackled specifically through the strategy of transfer
learning: the authors trained CNNmodels on a dataset of healthy
Icelanders and tested on the two datasets IXI and UK Biobank,
reporting MAE = 3.39 and R2 = 0.87. These works highlight
that significant improvements can also be achieved by greatly
expanding the sample size and by using approaches such as
ensemble prediction models.

Here we tested the performance heterogeneity across sites and
prediction uncertainty. Model uncertainty can be seen as the lack
of confidence in the prediction caused by the model’s failure to
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FIGURE 8 | Overlapping between the top (A) 10 features; (B) 20 features; (C) 30 features of each couple of models.

TABLE 3 | Top 30 ranked features for DNN models grouped by category (R, Right; L, Left; curv, mean curvature; thick, thickness; vol, volume).

Sub-cortical volume Cortical features WM volumes Global features

(5) L Thalamus (1) L superiorfrontal thick (10) wm L transversetemporal (9) WM hypointensities

(6) R Thalamus (11) L superiorfrontal vol (18) wm R precentral (3) Brain Stem

(13) L Putamen (2) R superiorfrontal thick (27) SubCortGrayVol

(16) R Putamen (12) R superiorfrontal vol

(7) 3rd Ventricle (8) L lateraloccipital thick

(14) L Lateral Ventricle (17) R rostralmiddlefrontal thick

(15) R Lateral Ventricle (19) L inferiortemporal curv

(22) L choroid plexus (20) R inferiortemporal curv

(23) R choroid plexus (4) L transversetemporal curv

(21) R caudalanteriorcingulate curv

(26) R posteriorcingulate curv

(28) R cuneus curv

(24) R superiorfrontal vol

(25) R parsorbitalis vol

(29) L superiorparietal curv

(30) L lateralorbitofrontal curv

The ranking position for each feature is reported in brackets.

catch the true data generation process (41). Here, uncertainty
was measured by calculating the prediction variability within
the ensemble. Figure 7 shows that the DNN models exhibit
lower variability where training sample decreased in contrast to
the other ML strategies. Moreover, our results point out that
the proposed DNN architecture shows lower MAE consistently
across all sites, except for one site that was found to be an
outlier for all machine learning algorithms (see Figure 6). We
applied a robust consensus strategy to identify the final ranked
features for each algorithm. Our analysis had the two-fold
purpose of providing a clinical interpretability for the most
performing models and explaining the different performance of
the algorithms through the comparison of the most important
predictors for each strategy. Figure 8 clearly shows that the
ranked list of the most important features for the DNN model
is different from the other strategies, except for a higher overlap
of the first 10 most important features with those of the Lasso
algorithm. Such overlap could also explain the performance

of Lasso method which resulted the second best performing
algorithm withMAE = 5.8.

Table 3 shows the most relevant features for age prediction:
we found morphological attributes of superior frontal, middle
frontal and cingulate cortical regions among the most important
features. Our findings are consistent with previous works in
which brain changes have been related to age in frontal lobe,
several parietal regions, cingulate cortex, brainstem and sub-
gyral regions (46, 47, 55–59) Moreover, both putamen and
thalamus volumes have been identified as important predictors.
In the literature, the impact of age on different subcortical brain
volumes have been thoroughly studied, revealing heterogeneous
age responses for thalamus, caudate, hippocampus and cerebellar
white and graymatter (60–62). In particular, the integrity and size
of the thalamic nuclei were found to correlate negatively with age
and with the ability to perform attention and memory cognitive
processes (63). Interestingly, for our DNN models the ventricles
and choroid plexus were identified among the most relevant for
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age prediction. These findings are particularly in agreement with
studies describing the brain’s fluid-filled ventricles as a biomarker
of the aging brain (64, 65). We found an high overlap with
the regions identified in the work of (40). The authors used
CNN models in conjunction with explainable AI techniques to
derive explanation map which highlighted a major contribution
of ventricles and cisterns. Here we also identified the choroid
plexus that represents the principal source of cerebrospinal fluid
(CSF), whose expansion have been associated to decrease in
WM/GM volumes, resulting a reliable aging marker and index
for brain atrophy (66).

It is worth noting that although the automated segmentation
techniques such as those provided by FreeSurfer software
have been proved effective in detecting longitudinal changes
and have been used for studying brain development and
aging (67), here we found lower performance compared to
other strategies adopting convolutional neural networks such
as the algorithm proposed by the winner of the challenge.
Indeed, the FreeSurfer automated segmentation methods exploit
probabilistic atlas generated from a set of manually labeled T1-
weighted scans that return information about the shape and
location of the brain areas. Hence the segmentation accuracy
may depend on several factors such as age (68) and brain
size (69), highlighting the need to reduce bias and improve
accuracy of automated segmentation models. These limitations
are overcame by the winning model that leverages single voxel-
based information. It is interesting to note that the authors
achieved better performance by adding white matter and gray
matter maps to the raw scans, proving that the information
contained in the two maps would be complementary to that
provided by the raw scans and useful to refine the proposed
predictive model.

6. CONCLUSION

In this work we tested the effectiveness of a DNN architecture
to predict the brain age by using the morphological features
extracted from the T1-weighted images of 2,170 subjects during
the Predictive Analytic Competition 2019. We extensively

evaluated different aspects of the proposed architecture by
comparing both performance with other commonly used
ML algorithms and by proposing a robust rank aggregation
scheme to derive the most important features. Besides the best
performing algorithm, the DNN model we proposed shows
important differences with the other ML algorithms: the lower
ensemble variability suggests that the DNN architecture can be
consistently used to estimate age even when datasets exhibit non-
homogeneous age distribution over the age range. Moreover, the
low-overlap with the most important features selected by the
other methods indicates that the DNN models could provide
different indications on the morphological aging mechanisms
by identifying reliable imaging biomarkers. In our work we
presented a comparison of a DNN architecture with other more
widespread regression algorithms, however other approaches
such as XGBoost models could be investigated for further
analysis. Furthermore, here we performed a partial tuning of the
DNN parameters, while a refinement of the tuning procedure
could improve the accuracy of the models. The proposed models
could be further improved by applying age bias correction
methods and by using an higher number of samples to ensure
the generalization of results.
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