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With improvements to both scan quality and facial recognition software, there is

an increased risk of participants being identified by a 3D render of their structural

neuroimaging scans, even when all other personal information has been removed.

To prevent this, facial features should be removed before data are shared or openly

released, but while there are several publicly available software algorithms to do

this, there has been no comprehensive review of their accuracy within the general

population. To address this, we tested multiple algorithms on 300 scans from three

neuroscience research projects, funded in part by the Ontario Brain Institute, to cover

a wide range of ages (3–85 years) and multiple patient cohorts. While skull stripping

is more thorough at removing identifiable features, we focused mainly on defacing

software, as skull stripping also removes potentially useful information, which may be

required for future analyses. We tested six publicly available algorithms (afni_refacer,

deepdefacer, mri_deface, mridefacer, pydeface, quickshear), with one skull stripper

(FreeSurfer) included for comparison. Accuracy wasmeasured through a pass/fail system

with two criteria; one, that all facial features had been removed and two, that no brain

tissue was removed in the process. A subset of defaced scans were also run through

several preprocessing pipelines to ensure that none of the algorithms would alter the

resulting outputs. We found that the success rates varied strongly between defacers, with

afni_refacer (89%) and pydeface (83%) having the highest rates, overall. In both cases,
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the primary source of failure came from a single dataset that the defacer appeared to

struggle with - the youngest cohort (3–20 years) for afni_refacer and the oldest (44–85

years) for pydeface, demonstrating that defacer performance not only depends on the

data provided, but that this effect varies between algorithms. While there were some very

minor differences between the preprocessing results for defaced and original scans, none

of these were significant and were within the range of variation between using different

NIfTI converters, or using raw DICOM files.

Keywords: de-identification, structural MRI, facial recognition, 3D rendering, defacing, privacy—preserving

INTRODUCTION

With the rising prominence of data sharing and large-scale
medical studies, proper removal of protected health information

(PHI) is paramount to preserving the privacy of study
participants. Text identifiers, such as participants’ names, date of
birth, sex, etc. are already commonly removed, but one growing

concern is the ability to recognize a person, based on their face, as
rendered from a structural magnetic resonance image (MRI) (1,
2), arguably falling within the Health Insurance Portability and
Accountability Act (HIPAA) requirement of removing “full-face
photographs and any comparable images” from collected data to
be considered de-identified (3). In a 2019 experiment conducted
by theMayo Clinic, facial recognition software correctly matched
3D renders from 83% of participant scans to their corresponding
photographs (1). While it can be argued that this experiment
may not be wholly representative of standard concerns for data
breaches, as in this set-up there was the artificial foreknowledge
that the scans must belong to one of 84 participants, this is
still a worryingly accurate rate. Combining the constant push
for higher spatial resolution and quality of MRI scans, with
improvements in facial recognition software, such accuracy is
only expected to increase over the coming years.

Unlike text identifiers, which can simply be removed, replaced
by generic codes or randomly generated IDs, or blurred with
ranges as in the case of numeric values such as dates or
ages, removal of faces is more complicated. Voxels containing
data which could be used to reconstruct recognizable features
must be removed, yet regions of interest must also remain
intact. Depending on the research goals for the collected scans,
these regions of interest may also change. Skull stripping
is a common and thorough method for handling this, with
many available methods to choose from (summary in Table 1),

however, for certain studies, the skull or other non-neuronal
tissues are essential for preprocessing or for particular analyses.
One example of this, are the landmarks within the skull and
along the scalp that are used in combined MRI and EEG/MEG
studies to align the multi-modal data (11, 12). With respect to
direct analyses, measurements, such as total cerebral spinal fluid
(CSF) and total intracranial volume, also require tissue that skull
stripping inherently removes (13). While some of these values
may be collected before the skull-stripping is completed and
provided along with the scans themselves, for this to occur there
must be advanced knowledge of which factors would be required,

TABLE 1 | Summary of several commonly used skull-stripping algorithms for

T1-weighted images.

Algorithm Description of method

Brain extraction tool (BET)

(4)

Deformable model which expands from an

estimated center of gravity until the brain

surface is reached, based on intensity-driven

estimates of brain vs. non-brain thresholds.

Fractional intensity threshold, its vertical

gradient, head radius and center of gravity can

be adjusted by the user to improve results.

RObust, learning-based

Brain EXtraction (ROBEX) (5)

Learning model using combined generative

and discriminative models. Fully data-driven; no

user-supplied parameters.

AFNI 3dSkullStrip (6) Modified version of BET, using non-uniformity

correction and edge detection to reduce errors.

Provides multiple parameters and flags that the

user can adjust to improve skull strip.

Brain surface extraction

(BSE) (7)

Uses Marr–Hildreth edge detection after

anisotropic diffusion filtering to improve

boundary contrast. Semi-automated—displays

intermediate results to allow for parameter

tuning of filter and edge detector

antsBrainExtraction (8)

(https://github.com/ANTsX/

ANTs)

Completes brain extraction using N4 intensity

normalization, a template and probability map.

User must determine which template and brain

probability maps work best for their data,

although sample files are provided on

download site.

FreeSurfer (9) Combination of watershed (intensity based),

deformation and atlas-based techniques to

identify and extract brain tissue. User can

adjust seed point and watershed threshold, if

required.

For a more detailed and comprehensive list of skull-stripping techniques, refer to the

following review by Kalavathi and Surya Prasath (10).

limiting future use of the data. Accurate comparison of these pre-
calculated values across multiple datasets may also be impossible,
if different skull stripping software have been used, as there is
a noticeable difference between measurements made by various
methods (14), especially when handling patient data (15). For
these instances, removing only the facial features, i.e., defacing,
may be a more suitable approach (13), as it leaves the rest of
the scan intact and is a method currently adapted by several
large-scale neuroimaging projects (16, 17).
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Another existing method is facial blurring, where voxels that
are identified as containing facial features are blurred, rather
than removed. This method preserves the most information
and by using morphological features rather than registering a
mask to remove the subject’s face, this method also reduces
the risk of removing or altering brain tissue (18, 19). While
this might sufficiently distort features so that visual recognition
is not possible from straight 3D renders of the blurred scans
(18), with the right models it is possible to reverse this blurring
and recreate the original scan (20), rendering such methods
useless in preserving patient privacy. As such, all de-identification
algorithms that relied on this method, were excluded from
this study.

The final method, defacing, is similar to facial blurring,
except that voxels containing facial features are removed,
rather than blurred, eliminating the possibility of reversing
the deidentification (20). There have been numerous, publicly
available software algorithms that have been developed using
this method (13, 21–23) (descriptions in Table 2), and while
there have been a few reports on the success of individual
defacers (13, 24), there has not been a systematic review of the
available choices and how they perform across scans in different
populations. In this study, we sought to fill that gap, by examining
the performance of different defacing algorithms across a wide
range of structural scans. These results will be useful to inform
consortia, such as Ontario Brain Institute (OBI)’s Brain Centre
for Ontario Data Exploration [i.e., Brain-CODE (25–27)], on
the best approaches for maintaining participant privacy within
publicly shared datasets.

MATERIALS AND METHODS

Measuring Defacer Success
One hundred T1-weighted structural MRI scans were randomly
selected from each of three of OBI’s multisite datasets (25), for a
total of three hundred scans, chosen to span different age groups
and patient cohorts—the Ontario Neurodegenerative Disease
Research Initiative (ONDRI) (25, 28), the Canadian Biomarker
Integration Network in Depression (CAN-BIND) (29, 30) and
the Province of Ontario Neurodevelopmental Disorders Network
(POND) (31, 32) [scan parameters previously described in (28,
32, 33), demographic details in Table 3]. Incomplete scans, as
well as those with severe motion or imaging artifacts, were
excluded prior to selection, as those scans would inevitably
be excluded from future analyses and could potentially skew
success rates for datasets (e.g., incomplete scans marked as
having brain removed, which the algorithm would normally
have left intact, or scans marked as defaced because motion or
imaging artifacts obscured remaining facial features). Each scan
was then run through six different publicly available defacing
programs [@afni_refacer_run v2.2 (6), deepdefacer v2.1.2 (22),
pydeface v2.0.0 (23), mri_deface v1.22 (13), mridefacer v0.2
(https://github.com/mih/mridefacer), quickshear v1.1.0 (21),
descriptions in Table 2] and one skull stripper, FreeSurfer v6.0
(9), for comparison. Defaced scans were then manually reviewed
in Mango (34) by three independent raters, to ensure that
the algorithm had not removed any brain tissue. Viewer3D

TABLE 2 | Summary of the method used for each algorithm to deface scans, with

an example sagittal slice after defacing has been applied.

Defacer Method for defacing Example slice

afni_refacer Pre-defined mask

aligned using AFNI

3dAllineate and MNI

template (6)

deepdefacer Pre-defined model of

facial probabilities used

to calculate

probabilities of facial

features within a region.

This is used to create a

binary mask to remove

facial features (22)

mri_deface Assigns probability of

voxel being “face” or

“brain” and removes

voxels that have

non-zero probability of

being “face” but zero

probability of being

“brain” (13)

mridefacer Skull strips input scan,

and aligns result with

pre-defined mask using

FSL FLIRT and a

template T1 brain, then

applies mask to original

scan to remove “face”

and “ear” voxels

(https://github.com/

mih/mridefacer)

pydeface Aligns pre-defined

mask, using FSL FLIRT

and a template T1

structural scan, to the

input scan and

removes “face” voxels

(23)

(Continued)
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TABLE 2 | Continued

Defacer Method for defacing Example slice

quickshear Uses previously

created brain mask to

draw a plane between

“face” and “brain” and

removes all voxels on

the “face” side. A

“buffer” parameter is

used to set the number

of voxels between the

plane and the edge of

the brain mask,

(default:10) (21). All

scans in this study

were defaced using this

default.

TABLE 3 | Participant demographics of scans used in testing defacer accuracy.

Dataset Age range, mean Diagnosis groups # of

scanners

POND 3–20, 12.1 ± 3.7

years

71 Autism Spectrum Disorder,

11 Attention Deficit

Hyperactivity Disorder, 5

Obsessive Compulsive Disorder,

13 Healthy Control

2 Siemens

CANBIND 18–60, 34.9 ±

12.8 years

44 Major Depressive Disorder,

56 Healthy Control

4 GE, 1

Siemens, 1

Philips

ONDRI 44–85, 69.6 ± 8.4

years

33 Alzheimer’s Dementia or Mild

Cognitive Impairment, 11

Amyotrophic Lateral Sclerosis,

13 Frontotemporal Dementia,

17 Parkinson’s Disease, 26

Stroke

3 GE, 6

Siemens, 1

Philips

One of the Siemens scanners was used in data collection for all three datasets, while two of

the GE scanners were the same for CANBIND and ONDRI. All scanners were 3T models.

in MATLAB R2016b (35) was used to generate 3D rendered
images (5 per scan—straight on, and at 30◦ and 45◦, left and
right) to determine whether or not a recognizable face remained.
Defacing was considered to be successful if (1) the 3D render
did not contain more than one partial facial feature (eyes, nose,
or mouth) and (2) no brain tissue had been removed during
defacing. Success rates were then compared between defacing
software and each of the datasets. Inter-rater reliability was
measured using percent agreement and free-marginal kappa
(36, 37).

The initial defacing threshold was set at no facial features
remaining within the 3D render, but was later relaxed to
no more than a single partial feature, due to lack of
recognizability within render and poor rater agreement over what
qualified as “fully defaced” vs. “single facial feature remaining.”
Original results can be found in Supplementary Figure 1 and
Supplementary Table 1.

Because we did not have any photographs of these participants
to test automated facial recognition with (1, 2), we instead used

facial detection within the generated 3D renders, as an estimate
of whether or not a scan still contained features a computer
could use to identify the participant after defacing. The deep
neural networks (DNN) module for the OpenCV v4.1.2
package, with the default pre-trained face detection model,
res10_300x300_ssd_iter_140000.caffemodel (38), in Python
v3.6.4 (39) was used to generate a confidence level that there was
a face within the 3D render. These were then compared between
the defacers, as well as with the levels generated for the renders
of the original, pre-defaced scans.

Testing Facial Recognition
To examine true facial recognition, nine human raters were
asked to complete an online (Google Forms) 3D render MRI
recognition task. Since we were unable to collect photographs
for the participants in the previous 300 scans, another, more
recently-collected dataset was leveraged. Structural MRI scans
using the ONDRI 3DT1 protocol (40) [scan parameters same
as (28)] were obtained from six participants (ages: 46–64, mean
56.5 years old) who participated in the OBI’s Traveling Human
Subject Study (THSS) and who gave consent to have their
photographs and MRI renders to be used for this purpose. Three
of these participants were personally familiar to the nine raters
(mean familiarity 3.9 ± 5.7 years), while the remaining three
participants were not familiar to the raters. Each participant
had undergone scans from the same 12 OBI-affiliated 3T MRI
scanners, for a total of 68 3DT1 scans (note, two subjects only
completed scans at 11 sites and two additional scans were omitted
from the final quiz).

These 68 scans underwent defacing using each of the six
defacing algorithms outlined in section Measuring Defacer
Success. Following the defacing procedure, each image
underwent an additional de-earring step using ear masks
generated with fsl_deface (16). For each of the defacing sets,
three of the twelve scans from each participant were randomly
chosen for the recognition task, for a total test set of 108 defaced
images. Two participants were used as “unknowns,” while
photographs of the remaining four participants (including the
three participants already personally familiar to the raters) were
provided to human raters who then attempted to identify the 108
randomly presented defaced images. To help with recognition,
each image contained three perspectives of the same 3D render
(45◦ left, straight on, and 45◦ right of where the face would be;
see Figure 1). For each image, raters were instructed to select one
of six responses indicating whether they recognized the image as
belonging to the person pictured in photograph 1, photograph 2,
photograph 3, photograph 4, none of the four photographs, or
whether there was not enough information available to make a
confident recognition judgment (i.e., “Can’t identify”).

Once raters had completed the defaced scan recognition
questions, they were then allowed a break before they began
the recognition task of the original pre-defaced scans. Defaced
image identification always occurred prior to original image
identification so as to avoid the possibility of any learned
associations being gleaned from non-defaced images (e.g.,
skull features or markings unique to an individual). Following
the recognition ratings, raters provided answers to debriefing
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FIGURE 1 | True facial recognition task images. Top row: Sample original (pre-defaced) 3D rendered T1 image. Three perspectives of the head were generated,

including 45◦ left, straight on, and 45◦ right. Bottom: The same image after undergoing defacing (in this case, pydeface) and de-earring. Consent was given by the

participant to include their non-defaced MRI render in the publication.

questions asking how difficult they found the task, what cues and
strategies they had employed during recognition, as well as how
personally familiar each of the four persons in the photographs
were to them.

Automated facial recognition was attempted using Microsoft
Azure (https://azure.microsoft.com/en-us/services/cognitive-
services/face/), similar to the procedure of a previous study (1),
however, either due to scan quality or distortion of participants’
heads within the coil, this software was unable to locate faces
within our renders, even for those which had not yet been
defaced, making it impossible to compare them to actual
photographs. In future, other methods of automated facial
recognition may be explored, but for this study, only the manual
ratings were used.

Testing Effects on Preprocessing Pipelines
One concern with defacing images, beyond direct errors made
by the algorithms itself, is that the use of defaced MRI in
preprocessing pipelines and analyses may alter the results (19).

Depending on how the data are processed, the missing facial
features could introduce variations to the output that might
skew subsequent analyses, especially when trying to compare or
pool two datasets where one had been previously defaced and
one had not. To address this, several preprocessing pipelines
were explored using a subset of the THSS sessions. Defaced
T1s were processed through each pipeline following the same
steps and parameters as for the original scans, and the results
compared to see if there were any significant variations. To
provide a baseline for this comparison, the raw DICOM files of
the pre-defaced image and the NIfTI file created using a different
converter—dcm2niix (41) vs. Python’s dicom2nifti (42)—were
also run through the same pipelines and similarly compared to
the original input.

FreeSurfer
Effects on T1 tissue segmentation and signal normalization
were examined using FreeSurfer’s recon-all (9). Total brain,
intracranial, cortical and subcortical gray matter, and white
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matter volumes were extracted for each case, as well as average
left and right hemisphere cortical thickness, and cortical gray-to-
white matter contrast-to-noise ratio (CNR), defined as:

CNR =

(

WMAvg − GMAvg

)2

(WMVar + GMVar)

where GM and WM are the cortical gray and white matter signal
intensities, as demarcated by FreeSurfer’s aseg file. Additionally,
the percent overlap between the brain masks for each of the
defaced and alternate file formats, and the original scan, were
calculated for segmented cortical and subcortical gray matter and

TABLE 4 | MRI scan parameters for fMRI scans.

# of scans Scanner TR (ms) TE (ms) FOV, slices Resolution

(mm)

α (◦)

19 TrioTrim 2,400 30 448x448,250 3.5x3.5x3.5 70

TR, repetition time; TE, echo time; FOV, field of view; α, flip angle.

white matter tissue, as defined by the following equation.

% Overlap =
(TD ∩ TO)

(TD ∪ TO)

Where TO is the segmented tissue for the original brain mask
and TD is the segmented tissue for the brain mask of the scan
being compared.

fMRI Preprocessing
Functional MRI (fMRI) (scan parameters in Table 4) and T1
scans for 19 sessions were processed through the Optimization
of Preprocessing Pipelines for NeuroImaging (OPPNI) (43, 44),
which uses the structural scans to register functional scans to a
common space. Resultant statistical parametric mapping (SPM)
files were then compared using FSL Randomize with family-wise
error correction (45) to see if using defaced T1s for registration
made any significant difference to results.

Image Registration
The final preprocessing aspect examined was the direct
registration of images to a common space. To do this, the brain

FIGURE 2 | Percentage of scans passed by each rater, split by dataset and defacing algorithm. Markers indicate the average percentage for each algorithm. Pooled

ratings indicate the percentage of scans that passed based on rater consensus for each scan. *Disclaimer: afni_refacer_run ratings had to be redone due to a major

software update after initial data collection. Due to the unavailability of the original Rater 2, these ratings were completed by a different person.
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masks previously generated through FreeSurfer were aligned
to the MNI152 2mm template using FLIRT (46) with 12◦ of
freedom (affine). Since all of the defaced scans should start in
the same position as the original, the 12 alignment parameters
were then extracted to see how accurately the scans would match
after registration. For the DICOM and dcm2niix brain masks, the
translation parameters were adjusted to match the 1mm offsets
of their centers’ locations compared to that of the original brain
mask, before comparison.

All plots were generated using Seaborn v 0.9.0 (47) in Python
v3.6.4 (39) or ggplot2 v3.2.1 (48) in R v3.6.3 (49). Statistical
analyses for FreeSurfer and FLIRT outputs were conducted in R.

RESULTS

Manual Ratings
As expected, FreeSurfer had the highest accuracy for successfully
removing facial features (98.7%), with the sole source of error

originating from brain clipping within the ONDRI cohort
(Figure 2). Focusing on the defacer software, afni_refacer
and pydeface performed the best on average (89 and 83%
respectively), although performance seemed to drop with
the POND cohort for afni_refacer (77%), while pydeface’s
performance seemed to suffer with ONDRI (64%). Of all the
algorithms, quickshear performed the worst, with an average pass
rate of only 39% due to its frequent failure to remove eyes, and
sometimes even mouths. Although these factors were not used
to determine pass or failure, quickshear also had a tendency to

leave other possibly identifiable facial structures such as cheeks
and jawline, especially within the younger cohorts. Examples
of successfully, and incorrectly, defaced scans can be seen in
Supplementary Table 2.

The most frequent source of error was missed facial features
(Figure 3), with only FreeSurfer (i.e., skull stripping) failing
solely due to brain removal, and mridefacer with an almost even
split between the missed facial features (51%) and brain removal.

FIGURE 3 | Percentage of scans where errors were detected for each of the seven algorithms, split based on error class. “Face” refers to scans that were failed due

to at least one identifiable facial feature (eyes, nose, mouth) remaining after defacing, “brain” refers to scans that were failed due to the algorithm removing neuronal

tissue, while “both” references scans where both of these errors occurred. Pooled ratings were calculated from the rater consensus for each scan. *Disclaimer:

afni_refacer_run ratings had to be redone due to a major software update after initial data collection. Due to the unavailability of the original Rater 2, these ratings were

completed by a different person.
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In all other cases, brain removal by the algorithms was rare,
accounting for only a little more than 10% of the remaining
errors. When brain removal did occur, the amount was usually
fairly low, averaging at around 0.47 ± 0.9% of brain voxels
removed for most algorithms and primarily occurred around the
frontal pole and along the lateral surface of the temporal lobe. The

TABLE 5 | Inter-rater reliability for manual ratings of each dataset and algorithm,

as measured using percent agreement and free-marginal kappa.

Defacer Percent agreement Free marginal kappa

POND CANBIND ONDRI POND CANBIND ONDRI

FreeSurfer 96.7 100 94.0 0.933 1.00 0.880

afni_refacer 88.7 96.0 100 0.747 0.920 1.00

deepdefacer 84.0 86.0 88.7 0.680 0.720 0.773

mri_deface 73.3 80.7 82.7 0.467 0.613 0.653

mridefacer 92.7 99.3 97.3 0.853 0.987 0.947

pydeface 98.7 84.0 97.3 0.973 0.680 0.947

quickshear 95.3 86.0 92.0 0.907 0.720 0.840

one exception was mridefacer, which frequently removed a much
higher amount, averaging at 6.3 ± 17% of brain voxels removed,
with one scan going as high as 78%, due to an alignment failure.

Inter-rater Reliability
Agreement was fairly high between raters for most defacers
(Table 5); however, this agreement dropped for mri_deface,
probably due to the shape of the mask. While most of the
defacers created a smooth boundary where they removed voxels,
mri_deface created a very jagged edged, at times even disjointed,
mask (Table 2), which added a two-fold difficulty in rating. For
one, when it removed brain voxels, the amount removed tended
to be very small, which could be missed by some of the raters.
The other confound was that when it failed to remove facial
features, it typically still removed part of the feature, which led
to disagreement between raters on whether or not this counted
as identifiable. As such, this particular defacer was more difficult
to rate, leading to the higher discrepancy between raters.

Automated Face Detection
Using the default confidence threshold of 0.5 (38) to determine
whether or not an image contained a face, resulted in several

FIGURE 4 | Total percentage of scans where OpenCV or human raters detected a face within the 3D render, segmented by whether a face was detected by both

(blue), OpenCV only (gray), or through manual ratings only—subdivided into partial faces (1 feature—orange) and full faces (2+ features—red). FreeSurfer was

excluded as none of the scans were determined to have any faces by either manual ratings or OpenCV.
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noticeable disagreements with human raters on the presence
of facial features (Figure 4). While this was mostly seen when
only a single facial feature remained (shown as orange bars),
there were still a number of full faces that fell below the
threshold for detection (red bars), particularly among the
mri_deface scans. In addition, there were a number of renders
where a false face was detected (gray bars), where remnants
of eye sockets, optic nerves, and other structures such as large
tendons or blood vessels may have been mistaken for facial
features by the detector, meaning that simply lowering the
threshold will not solve these discrepancies between human and
automated ratings.

Despite this, the overall trend for facial detection
confidence rates matched what one would expect, with
the average confidence for fully defaced scans well below
the 0.5 threshold, while renders where human raters
detected one visible feature, generated higher confidence
levels, with even higher levels for those with two or
more visible features (Figure 5). Besides the case of the
fully defaced scans, these levels were not equal between
defacers, ranging from an average confidence of 0.42

for mri_deface renders that still contained faces, to 0.95
for afni_refacer.

Face Recognition
Overall, defacing rendered the scans unrecognizable, with
reviewers rating between 69.1 ± 34% (pydeface) to 82.7 ±

33% (afni_refacer) of renders to be completely unidentifiable
(Figure 6), compared to the 10.3 ± 19% for the original scans.
Correct identification was also very low, ranging from 4.3 ± 9%
(afni_refacer) to 13.6 ± 11% (mridefacer), well below the 64.9
± 18% for the original scans and was similar or lower than the
rate at which the defaced renders were matched to the wrong
photograph. This was particularly notable for pydeface, since
although raters attempted to identify a much higher percentage
of these renders than for the other defacers, only 26% of these
attempted matches were actually correct.

The most commonly used features for identification, as
reported by raters, were the nose (89%) and eyes (56%) for
the renders of the original scans, while after defacing, eyebrows
(56%) and skull shape (44%) were typically used in order to try to
identify the participant within the renders.

FIGURE 5 | Average probability of a face within the 3D render as calculated by OpenCV, split based on manual rating consensus. Partial indicates scans where only

one facial feature remained in the render, while Face indicates any scans where two or more features remained. FreeSurfer was excluded as all scans were rated as

having been fully defaced. The gray line indicates the default threshold used by OpenCV to decide whether or not a face is present within the render.
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FIGURE 6 | Bar plot indicating the percent distribution of facial recognition quiz results across the nine raters, for the renders of the defaced and original scans.

Renders that were correctly matched to their corresponding photograph are considered “correct,” renders that were matched to the wrong photograph are

considered “incorrect,” and those that the raters felt were not clear enough to attempt an identification are labeled “can’t identify”.

Influence on Preprocessing Pipelines
FreeSurfer Output
In most cases, while global measures were slightly different
for the defaced images, these values only varied by ∼1% from
the original and were similar to the variation seen between
the different versions of the pre-defaced scans (Figure 7). The
exception to this was the gray-to-white matter CNR, which was
frequently higher and as much as 5.4% different from the pre-
defaced scan, as well as for one scan where mridefacer removed
a small section of the back skull and upper dura, resulting in
an estimated intracranial volume that was 4.4% lower than the
original. DICOM and dcm2niix files saw similar differences,
although it was the estimated intracranial volume that tended to
vary more from the original scan, rather than CNR. AMANOVA
revealed no significant difference [F(64, 1,368) = 0.098934, p =

1] in global measures between any of the defaced or non-
defaced scans.

While the defaced scans may have seen higher variability
in CNR, the overlap of the actual segmented labels with the
original scan was fairly high (>85% overlap for gray and white
matter) and on par with that of the DICOM (>80% overlap) and
dcm2niix (>85% overlap) file formats (Figure 8).

fMRI Preprocessing (OPPNI)
For the OPPNI pipeline, all general parameters—estimated head
motion, optimal pipeline metrics, etc. were identical for all
defaced and pre-defaced inputs. Although there were slight
differences between the SPM files for each of the defaced and
original scans, there were no voxel-wise significant differences
after correcting for family-wise errors, and even raw p-values
were only significant for a very small number of sparse voxels
along the very edges of the brain.

Image Registration (FLIRT)
When aligning the brain masks for the defaced scans to the
MNI 152 template, all rotation parameters were less than a third
of a degree different from the original brain masks, with no
more than 1.5mm difference in translation (Figure 9). There was
also <0.5 percent difference in scale and 7.0 × 10−3 difference
in skew, for all defacers. This was on par with the variation
measured for DICOM and dcm2niix files. MANOVA results
showed no significant difference [F(96, 1,336) = 0.021, p = 1]
between any of the defaced or non-defaced scans, for any of
these parameters.
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FIGURE 7 | Boxplot showing the percent difference between each of the defaced images and the original pre-defaced scan (left) for several global measures

generated from the FreeSurfer pipeline, including total brain volume, estimated total intracranial volume (eTIV), cortical and subcortical gray matter volumes, white

matter volume, average left and right hemisphere cortical thickness and the contrast-to-noise ratio (CNR) between cortical gray and white matter. These are compared

to the variations in the same measures (right) with FreeSurfer output initialized with the original scan in different file formats (raw DICOM and NIfTI files converted using

a different method).

FIGURE 8 | Boxplot showing the percent overlap of FreeSurfer segmented tissues for the defaced scans (left) and different file formats (raw DICOM and NIfTI files

converted using alternate method, right), as defined by the area of the intersection with the original input scan, divided by the area of the union with the original, for

that tissue.
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FIGURE 9 | Boxplot of the difference between FLIRT parameters for the original scans and the defaced scans (left) and different file formats (right) when aligned to the

MNI 152 brain template. Parameters have been split by translation in mm (A), rotation converted to degrees (B), scale (C), and skew (D).
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TABLE 6 | Completion time and prerequisites required for each tested algorithm.

Software Time to

completion for

one scan (min)

Prerequisites

FreeSurfer 25–35 –

@afni_refacer_

run

13–30 AFNI v20.0.02+, @afni_refacer_run

v2.0+–older versions typically removed brain

deepdefacer 1–2 Python v2.7+ (numpy, nibabel, SimpleITK,

TensorFlow, keras)

mri_deface 3–10 –

mridefacer 1–3 FSL, num-utils

pydeface 2–10 Python v2.7+ (numpy, nipype, nibabel), FSL

quickshear ∼1 (does not

include creation

of brain mask)

Python v2.7+ (numpy, nibabel), brain mask

Run times approximated when running on a 64-bit Intel® CoreTM i7-4790 CPU @ 3.60

GHz processor using an Ubuntu 16.04 virtual machine with Windows 7 host.

DISCUSSION

In this study, we sought to determine the best method for de-
identifying MRI scans through a survey of existing publicly
available algorithms. From our analyses, skull stripping seems
to be the safest option for de-identifying structural T1s, both
in terms of removing all identifiable features and for preserving
brain tissue. However, for research studies where more than
just the brain is required, afni_refacer and pydeface appear
to be the most efficient defacers. The best choice for defacer
seems to also depend on the data collected, with many of the
defacers performing poorly with particular datasets; for example,
afni_refacer’s success rate was reduced with the youngest cohort
(POND), while pydeface struggled with the oldest (ONDRI).
These datasets were not the same across defacers, meaning
this phenomenon is algorithm specific and not solely due
to some inherent property of that dataset’s scans that makes
defacing difficult in general. Since there was a large degree of
overlap between scanners among the three datasets tested here,
this is also not a scanner specific issue, but a more complex
interaction of participant age, diagnosis, defacing method, and
other scan features. Practically, this is a useful trait, as scans
that are unsuccessfully defaced by one algorithm, could still be
defaced using another, instead of having to exclude them from
shared datasets.

While there was an overall agreement between automated
facial detection and human raters, there were some noticeable
discrepancies, particularly for a few of the defacers (mri_deface,
pydeface, deepdefacer) where even though the defacer failed
to fully remove the participant’s face, given OpenCV’s low
confidence that the render contained a face, it seems these
algorithms still distorted the scan enough to confuse current
software. Additionally, there were certain factors that appear
more likely to fool OpenCV, either into detecting a face that
is not there (traces of eye sockets, large blood vessels/tendons)
or missing an existing face (noisy images, faces that have been
squished or deformed by the head coil, goggles, etc.)

Visual facial recognition was quite low for defaced scans,
with the majority not leaving enough features to even attempt
matching with photographs. Of the scans where identification

was attempted, only 25–51% of the matches were correct. While
this is still higher than random chance, this does not indicate that
these renders were highly recognizable, especially considering
that raters were only dealing with scans from six volunteers.
This rate was lowest for afni_refacer and pydeface, with these
two also having among the least absolute number of correctly
identified renders, aligning with our findings among the other
three datasets that these two were the most successful at fully
defacing scans. Additionally, these low identification rates were
not due to the inherent difficulties of recognizing participants
from their MRI renders, as the majority of the time, raters were
able to correctly identify participants from the renders generated
from the original, pre-defaced scans.

For the preprocessing pipelines tested, while there were slight
differences between results using the original and the different
defaced scans, the variations were very small and within the range
of the differences between DICOM and NIfTI formats, or the
two different NIfTI converters. The exception seemed to be for
gray-to-white matter CNR for FreeSurfer intensity normalized
data, which typically varied more from the original results for
defaced scans than for the DICOM and dcm2niix files, possibly
due to some of the defacing algorithms removing non-brain
regions that were either hyperintense or suffered from signal
dropout, leading to minor changes in the estimated bias field
and overall intensity normalization. This issue is not exclusive to
defaced scans, but also pertains to neuroimaging scans in general,
where the presence or absence of extreme intensity values could
introduce unwanted variances, supporting the use of pipelines
which conduct intensity normalization based on a skull stripped
image in order to increase consistency between scans.

While this is not conclusive evidence that defacing will never
create discrepancies for subsequent analyses, for at least the
majority of studies, any differences created by utilizing defaced
scans will be negligible.

Other considerations, besides the accuracy of an algorithm at
defacing scans and limiting the influence on the results of future
analyses, include speed and additional software requirements
(summarized in Table 6). The fastest methods were deepdefacer,
mridefacer, and quickshear, taking only a couple of minutes
per scan, although quickshear was only faster in terms of the
actual defacing, as quickshear also requires a brain mask whose
creation was not included in this estimate. Running pydeface
and mri_deface took slightly longer, taking anywhere from 2 to
10min per scan to finish, while the most successful software,
@afni_refacer_run and FreeSurfer, could take roughly half an
hour to complete.

The software prerequisites for all of the tested algorithms are
free, publicly available, and fairly straightforward to install, so in
general, this should not present much of an issue when choosing
which algorithm to go with. The one potential issue is that aside
from deepdefacer and quickshear, all of the algorithms require
either Linux or Mac OS, either for the application itself or for
one of its prerequisites. Still, for Windows users, all of these
applications will run on a Linux virtual machine, so again this
should not be the main factor when deciding which defacing
method to implement.

In conclusion, choice of the best defacer is dataset dependent,
however, overall afni_refacer and pydeface have the highest
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success rates. Defacing scans has been shown to be an effective
method in reducing participant recognizability, both in terms of
automated facial detection and manual facial recognition, while
resulting in only negligible changes to automated pre-processing
pipeline results. Future work should explore the applicability and
appropriateness of defacing software with other high-resolution
structural images (e.g., T2-weighted), however, that is beyond the
scope of this current manuscript.
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