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Background: Depression and anxiety are leading causes of disability worldwide but

often remain undetected and untreated. Smartphone and wearable devices may offer

a unique source of data to detect moment by moment changes in risk factors

associated with mental disorders that overcome many of the limitations of traditional

screening methods.

Objective: The current study aimed to explore the extent to which data from smartphone

and wearable devices could predict symptoms of depression and anxiety.

Methods: A total of N = 60 adults (ages 24–68) who owned an Apple iPhone

and Oura Ring were recruited online over a 2-week period. At the beginning of the

study, participants installed the Delphi data acquisition app on their smartphone. The

app continuously monitored participants’ location (using GPS) and smartphone usage

behavior (total usage time and frequency of use). The Oura Ring provided measures

related to activity (step count and metabolic equivalent for task), sleep (total sleep time,

sleep onset latency, wake after sleep onset and time in bed) and heart rate variability

(HRV). In addition, participants were prompted to report their daily mood (valence and

arousal). Participants completed self-reported assessments of depression, anxiety and

stress (DASS-21) at baseline, midpoint and the end of the study.

Results: Multilevel models demonstrated a significant negative association between

the variability of locations visited and symptoms of depression (beta = −0.21, p =

0.037) and significant positive associations between total sleep time and depression

(beta = 0.24, p = 0.023), time in bed and depression (beta = 0.26, p = 0.020),

wake after sleep onset and anxiety (beta = 0.23, p = 0.035) and HRV and

anxiety (beta = 0.26, p = 0.035). A combined model of smartphone and wearable

features and self-reported mood provided the strongest prediction of depression.
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Conclusion: The current findings demonstrate that wearable devices may provide

valuable sources of data in predicting symptoms of depression and anxiety, most notably

data related to common measures of sleep.

Keywords: digital phenotyping, predicting symptoms, depression, anxiety, mobile sensing

INTRODUCTION

Depression and anxiety are leading causes of disability
worldwide, with estimated lifetime prevalence rates of 20%
(1). Whilst the majority of individuals with depression and
anxiety are treated in primary care settings, over 50% of people
are not recognized or adequately treated (2, 3). Given the adverse
health outcomes and costs associated with untreated conditions
and the recent increase in the prevalence of common mental
disorders (4–6), adequate diagnosis and timely treatment of
depression and anxiety has become an urgent priority.

Traditionally, researchers have relied on questionnaire data
administered by a clinician or self-reported to assess an
individual’s mental health. However, these methods may be
limited in their ability to detect the moment-by-moment
changes in psychological factors that is required for preventative
measures and rapid interventions. First, questionnaires often
take place sporadically, with long intervals between them, during
which time symptoms may change considerably. Second, these
questionnaires often rely on retrospective evaluations and, as
such, are prone to recall bias (7, 8). Third, there may be a
tendency for respondents to provide socially-desirable answers
(9, 10). Finally, patients typically only meet with a clinician
or undertake assessments once the symptoms have already
progressed to a certain level of severity, making prevention far
more challenging.

Smartphone devices may offer a unique opportunity to
overcome some of these limitations. Equipped with an array
of sensors, smartphones unobtrusively provide a continuous
stream of data related to an individual’s mental health, including
location, smartphone usage behavior, physical activity and social
interactions (11, 12). This moment-by-moment quantification of
the individual-level human phenotype in situ using data from
personal digital devices is referred to as “digital phenotyping”
(13, 14). There is now a growing body of research demonstrating
that digital phenotyping data may enable the identification of
people suffering from or at risk of developing mental disorders,
in some cases even before symptoms are visible (or detectable)
using traditional methods (11, 15–18).

One source of data that has yielded promising results in
identifying those suffering from mental disorders is location
data derived from smartphone global positioning systems (GPS).
Saeb et al. (19), e.g., found that regularity of participants’ 24-h
movement patterns (r =−0.63), the variance of locations visited
(r =−0.58) and the proportion of time spent at home (r = 0.49)
were related to depressive symptom severity in a non-clinical
population (19). Beiwinkel et al. (20) found that the total distance
traveled had a significant negative relationship with clinical
manic symptoms in patients diagnosed with bipolar disorder

(beta = −0.37). Finally, in a meta-analytic review of studies
assessing the correlation between smartphone and wearable
device data and affective disorders, Rohani et al. (15) revealed
that the association between time spent at home and depressive
symptoms was the most consistently significant finding of any
smartphone-derived feature in the analysis.

Yet, whilst GPS may provide a valuable source of data to
predict symptoms of mental ill-health, there may be certain
situations in which GPS data is not available (e.g., due
to technological limitations or privacy concerns) or when
movement is limited (e.g., due to physical ill-health), requiring
us to establish other digital phenotyping data sources to aid
the identification of symptoms or risk factors associated with
mental disorders.

One plausible source of these additional data points may
be consumer wearable devices, such as the Apple Watch
(www.apple.com/watch), Fitbit (www.fitbit.com) or Oura Ring
(www.ouraring.com). In recent years, the number of connected
wearable devices worldwide has proliferated and is expected to
exceed 1 billion by 2022 (21).Whilst wearable devices differ in the
type and quality of data they collect, common measures include
activity (e.g., number of steps and energy expenditure), heart rate
and sleep. Individually - and combined - these data points may
offer the opportunity for a richer digital phenotyping data set and
alternative digital biomarkers in the absence of, or in addition to,
valid GPS location data.

The most widely used sensor in wearable devices is the
accelerometer, most commonly used to measure an individual’s
physical activity. There is a large body of research demonstrating
the relationship between physical activity and mental health
(22–26). In one of the largest studies conducted to-date using
wrist-worn devices to measure physical activity in a population-
based sample of 2,862 participants, Vallance et al. (27) found
a strong association between accelerometer-based activity and
decreased rates of depression. In a clinical study of older adults
diagnosed with depression, O’Brien et al. (28) found that physical
activity was significantly reduced in individuals diagnosed with
depression compared to healthy controls.

Decades of research has also demonstrated that sleep
alterations are highly prevalent in mental disorders (29–31). A
number of sleep markers, including total sleep time, sleep onset
latency, sleep efficiency (the ratio of total sleep time to time in
bed), and rapid eye movement (REM) have consistently been
found to be associated with measures of mental health (32).

Finally, a growing number of wearable devices are now
available measuring heart rate variability (HRV). HRV is the
variation in time interval between adjacent heart beats (the R-
R interval). Typically recorded by an electrocardiogram (ECG)
(33), HRV indexes neurocardiac function and is a validated
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measure of balance in the activity of the autonomic nervous
system (ANS) (34, 35). In addition to associations with general
cardiovascular health and being a significant predictor of
mortality (36), several studies have demonstrated that lower HRV
is also associated with increased symptoms of depression (37),
anxiety (38), and later stages of bipolar disorder (39). Taken
together, consumer wearable devices may therefore provide a
valuable source of additional data to help identify moment by
moment changes in risk factors associated with mental disorders.

The aim of the current study was to assess to what extent data
from smartphone and wearable devices may be used to predict
symptoms of depression, anxiety and stress during periods of
restricted movement. The study was conducted during the first
wave of the coronavirus disease 2019 (COVID-19) pandemic as
governments across the world instated widespread restrictions on
individual movement and social interaction intended to reduce
the incidence of the virus. This provided an opportunity to assess
the role of GPS in predicting symptoms of depression and anxiety
during periods of limited movement and examine the predictive
power of other digital phenotyping data sources.

We sought to answer the following questions:

(1) Can location features derived from smartphone GPS data
be used to predict symptoms of depression and anxiety?
i.e., do previous findings replicate during periods of
restricted movement?

(2) Can measures of physical activity, sleep and HRV derived
from consumer wearable devices predict symptoms of
depression and anxiety?

(3) Which digital phenotyping variables have the strongest
predictive power?

(4) What is the difference in predictive power between digital
phenotyping data and a daily self-report mood measure in
predicting depression and anxiety symptoms?

MATERIALS AND METHODS

Study Design
The current study was a longitudinal observation study with
repeated measurements over a 30-day period. Measurements
consisted of baseline (day 1), a midpoint (day 16) and endpoint
questionnaire (day 31) and daily assessed digital phenotyping
variables extracted from smartphone data and wearable data
(Oura Ring).

Participants and Procedure
Participants (N = 60) were recruited via posts on online
communities and social media sites. Recruitment started on 12
April and was closed on 29 April 2020. Interested individuals
were included in the study if they (a) were at least 18 years
of age, (b) were able to read and speak English, (c) owned an
iPhone with access to the internet, (d) owned an Oura Ring.
All participants signed a consent form agreeing with the data
collection and analysis. According to the local ethical guidelines
in the conduct of research (40), the study was exempt of a
formal ethical committee approval since: (1) the study does not
deviate from the informed consent; (2) the research does not

intervene in the physical integrity of the participants; (3) all our
participants are above 15 years old; (4) our study does not expose
participants to strong stimuli; (5) there is no intervention nor
there is a foreseeable potential formental harm to the participants
that exceed the limits of participants’ normal daily life or those
around them. As compensation for participating in the study all
participants received a personalizedmental health and well-being
report reviewed by a clinical psychologist (L.B.S.) at the end of
the study.

Following completion of the online consent form, participants
were emailed an online link to download a custom smartphone
application called “Delphi” developed for Apple (iOS)
smartphones. The Delphi app was used to gather all study
data, including baseline, midpoint and endpoint questionnaire
data and data related to participants’ daily mood, activity, sleep,
HRV, smartphone usage, and context throughout the duration
of the study. Participants were required to provide Delphi with
permission to access location data at all times, Apple Healthkit
and enable notifications from the app. Tomonitor data collection
and compliance during the study period, a secure web-based
dashboard was developed displaying the data gathered for all
participants, updated at 15-min intervals. Cases of missing data
were resolved via email. At the end of the study, participants
were requested to uninstall the app.

The present study used methods from a previous study
(19) investigating the correlation between GPS variables and
depressive symptom severity with a sample size of N = 40.
However, as dropout rates in longitudinal observation studies
using digital phenotyping data are typically high, recruitment was
continued for 2 weeks after reaching the required sample size to
compensate for dropout.

Assessment
Mental Health Outcomes
Mental health outcomes were assessed at baseline (T0), the
midpoint of the study (16 days; T1) and the end of the study
(31 days; T2). Symptoms of depression, anxiety and stress were
assessed with the Depression Anxiety Stress Scales (DASS-21).
The DASS-21 is a 21-item short form of the DASS (41). It
measures depressive mood, anxiety, and chronic tension/stress
during the past week (e.g., “I was aware of dryness of my mouth”;
“I couldn’t seem to experience any positive feeling at all.”). All
items are rated on a 4-point Likert scale ranging from 0 (“did
not apply to me at all”) to 3 (“applied to me very much or
most of the time”). The subscores range from 0 to 21, with
higher subscores indicatingmore severe symptoms of depression,
anxiety and stress. The DASS21 has demonstrated high internal
consistency for the three subscales of depression, anxiety, and
stress in previous administrations (42).

To further quantify the baseline severity of participants
we used the standard cut-off values for the DASS. The sub-
scale “depression” was categorized as normal 0–4, mild 5–6,
moderate 7–10, severe 11–13, or extremely severe 14+; the
subscale “anxiety” as normal 0–3, mild 4–5, moderate 6–7,
severe 8–9, or extremely severe 10+; and the subscale stress as:
normal 0–7, mild 8–9, moderate 10–12, severe 13–16, extremely
severe 17+ (41, 42).
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Ecological Momentary Assessment (EMA) of Mood
To assess participant mood, notifications were sent by the
Delphi app asking participants to report their mood 3 times
per day, randomized within a 30-min window during the
morning, afternoon and evening (i.e., ∼09:00, 14:30, and 20:00).
Mood was assessed through the circumplex model of affect
(43), which conceptualizes mood as a two-dimensional construct
comprising different levels of valence (positive/negative) and
arousal (low/high). We used a single item question, “How are
you feeling right now?” and 2 response scales, representing the
two dimensions. Levels on both dimensions were tapped on a 9-
point scale scored from −4 to 4 (low to high). The default mode
was set to zero.

Smartphone Sensor Data
Delphi uses the AWARE open source framework (44, 45) to
collect raw data from smartphone sensors. Sensors enabled in
the current study included Battery, GPS, Screen (on and off),
and Timezone. In addition, we used the ESM Scheduler plugin
to deliver the EMAs. Supplementary Table 1 provides a detailed
list of sensors used in the study, the data collected by each sensor
and the sampling frequency.

Data collected by Delphi is first stored locally on the
participant’s device and then uploaded onto a secure server in the
cloud when a WiFi connection is established. To ensure privacy
and data protection AWARE obfuscates and encrypts the data
using a one-way hashing of logged personal identifiers, such as
phone numbers. Increased security is achieved with application
permissions, certificates, user authentication, and the use of
secure network connections to access and transfer the logged data
between the client and the dashboard. For further information on
the AWARE framework see Ferreira et al. (44) and Nishiyama et
al. (45).

Activity, Sleep, and HRV Data
We used the Oura Ring to measure participants’ activity,
sleep and HRV. Activity measures included number of steps
(“step count,” measured via the device’s 3D accelerometer) and
metabolic equivalent for task (MET). MET is a standardized
measurement of the amount of energy used by the body during
physical activity, as compared to resting metabolism (46). One
MET is defined as the energy the body uses at rest. In the
current study we used an average score to determine the energy
expenditure during a 24-h period.

To measure sleep, the Oura Ring uses a combination of
accelerometer data, heart rate, HRV and pulse wave variability
amplitude in combination with machine learning models to
calculate deep (N3), light (N1+N2) and rapid-eye-movement
(REM) sleep in addition to sleep/wake. The Oura Ring has been
shown to have high agreement with polysomnography (PSG; the
gold-standard for measuring sleep) in the whole night estimation
of total sleep time (TST), sleep onset latency (SOL) and wake after
sleep onset (WASO) (47). For the current study we measured
participants’ TST, SOL, WASO and time in bed (TIB).

We also used the Oura Ring to measure participants’ average
night-time heart rate variability (HRV). The Oura Ring calculates
HRV using the root mean square of successive differences

between normal heartbeats (RMSSD). Although the R-peak
detection typical of ECG is not directly available via the Oura
Ring, the device has been shown to have high agreement (r2 =

0.98) with ECG (the gold standard for measuring HRV) (48).

Data Processing
Data Preprocessing
We converted the UNIX timestamps of each sensor data
into a human-readable local date and time format using each
participant’s timezone data. We then aggregated the data at the
“day” level. To ensure location accuracy, we removed all duplicate
entries in the database as well as GPS coordinates with accuracy
> 80th percentile of all participants’ GPS accuracies and GPS
coordinates with latitude 0.0 and longitude 0.0 that arose due to
sensing errors.

Preprocessing and extraction of the location features were
computed according to Saeb et al. (19). Prior to feature
extraction we established whether each GPS location data sample
represented a stationary state (e.g., at home) or transition state
(e.g., walking outside). This was determined by calculating the
movement speed at each location sample using its time derivative.
A movement speed > 1 km/h was defined as a transition state.
We then applied a K-means clustering algorithm (49) to the
stationary state data samples to identify the locations where
participants spent the majority of their time.

Location Feature Extraction
We extracted five location features from the GPS data: Total
Distance, Location Variance, Entropy, Normalized Entropy and
Time at Home.

Total Distance was defined as the total number of kilometers
traveled by the participant during the specified time period. It
was calculated as the sum score of the distances between the
location samples.

Location Variancewas defined as the variability in participants’
GPS locations. It was calculated from the logarithm of the sum
of the variance in latitude and longitudinal coordinates of the
stationary states.

Location Entropy was defined as the variability of the time
participant spent at the location clusters. It was computed as:
[Entropy = –

∑
ipilog pi] where each i = 1, 2, . . . , N represented

a location cluster, N represented the total number of location
clusters, and pi represented the percentage of time spent at
the location cluster. Higher entropy reflected the fact that the
participant spent similar amounts of time at different clusters
(e.g., 50% of time at home and 50% of time at work), lower
entropy reflected that participants spent significantly more time
at certain clusters than others (e.g., 70% of time at work, 30% of
time at home).

Normalized Location Entropy was computed to provide a
measure of entropy that is invariant to the number of clusters
a participant spent time at. It was calculated by dividing the
entropy by its maximum value, which is the logarithm of the
total number of clusters. The resulting value ranges from 0 to 1,
where 0 represents that all location data points belong to the same
cluster and 1 indicates that they are uniformly distributed across
all clusters.

Frontiers in Psychiatry | www.frontiersin.org 4 January 2021 | Volume 12 | Article 625247

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Moshe et al. Digital Phenotyping Depression and Anxiety

Time at Home was defined as the proportion of time a
participant spent at home relative to other location clusters. To
calculate it we first defined the home cluster as the cluster with
the most GPS coordinates between the hours of 00:00 and 06:00.
We then computed the percentage of time by dividing the total
time spent in the home cluster by 24 h.

Phone Usage Feature Extraction
We extracted two features related to phone usage. First, Phone
Usage Frequencywas defined as the number of times a participant
interacted with their phone during the specified time period.
Interactions were calculated based on a screen unlocking event.
Second, Phone Usage Duration was defined as the total number
of minutes a participant interacted with their phone during the
specified time period. The usage session duration was calculated
as the time from when phone is unlocked until it was locked.

Statistical Analysis
Before beginning the analyses, study dates were converted into
the study day (1–30) specific to each participant. The extracted
smartphone features, wearable data, EMA data (independent
variables) and scores on the DASS-21 subscales (depression,
anxiety, stress; dependent variables) were then synchronized
according to the study day.

Correlation Analysis
To ensure that all variables in the analyses reflected the same
time period, the daily smartphone and wearable feature data was
pooled for the first 2 weeks and second 2 weeks of the study
to align with the timing of the DASS-21 measurements. For
example, we calculated the average Total GPS Distance during
days 1–15 and correlated this with the DASS-21 scores at T1 (day
16) and calculated the average Total GPS Distance during days
16–30 and correlated this with the DASS-21 scores at T2 (day 31).
According to this, all features were pooled and correlations with
the respective DASS-21 were investigated (average feature data
from day 1–15 with T1 DASS-21 and average feature data from
day 16–30 with T2 DASS-21). Correlations were calculated using
the Spearman’s correlation coefficient, since the data was not
normally distributed. P-values were adjusted for multiple testing
based on the Bonferroni Holmmethod (50) with a false discovery
rate of 0.05. To avoid biases introduced bymissing values we used
full information maximum likelihood as the estimator (51, 52).
However, p-value adjustment methods are sensitive and since
the present study is of an exploratory nature, adjustment was
only performed cluster-wise (e.g., separately for GPS features
and wearable features) to avoid an overcorrection by p-value
adjustment leading to a false-rejection of findings.

Predicting Mental Health Symptom Severity From

Smartphone and Wearable Data
To account for the hierarchical structure of the data we used a
multilevel model (MLM) to predict the influence of smartphone
and wearable data on mental health scores (53–55). MLMs
take into account that data is nested within persons, i.e., the
observations are not independent (56) and reduce the likelihood
of Type I errors (57). In the current study, the repeated

measures (level 1) are nested within the person (level 2). Intra-
class correlations (ICC) underlined the necessity of a MLM
(all ICC > 0.05).

To investigate whether mental health symptom severity can
be predicted from smartphone and wearable device data, we
pooled the data in the same manner as the correlation analyses
and applied the MLM with random intercepts and random
slopes to four sets of independent variables: GPS features (total
distance, location variance, entropy, normalized entropy, and
time at home); smartphone usage features (usage duration and
usage frequency); wearable device data (step count, MET, TST,
SOL, WASO, TIB, and HRV); and EMA mood data (valence and
arousal). Variables were z-standardized.

The intercept represents the average depression, anxiety, stress
scores across the study and the slope represents the association
between mental health scores and the smartphone and wearable
data. Two-sided p< 0.05 were considered statistically significant.

In a first step, regression models were built separately for
each predictor to investigate its predictive power on depression,
anxiety and stress scores. In a second step we explored whether
the combination of multiple predictors could outperform single
predictor models. Only predictors showing predictive power in
single predictor models were included in the combined model.
All models were fitted using maximum likelihood. Combined
models with different predictors were compared to each other to
investigate whether more complex models with more predictors
were superior. For the comparison of the models, likelihood ratio
tests were used (51, 58, 59).

Missing Data Handling
Missingness only occurred in the DASS-21 assessment (10%) and
the sensing variables (9.1%) and was assumed to be missing at
random (MAR), meaning missingness depended on observed
data (51, 52). To avoid bias introduced by missingness we
used multiple imputations to handle missing values in the
correlation and regression analysis. The imputation model took
the nested structure of the data into account and followed
guidelines for multilevel multiple imputations (58). To make the
MAR assumption hold, variables related to non-response and
explaining variance in observed variables were included in the
imputation model. Predictive mean matching for multilevel was
used as imputation method. The number of imputed data sets
was set to 20 and the number of iterations to 15. Convergence
was visually assessed and confirmed (58). Regression analysis was
performed on each imputed data set and results were pooled
using the Rubin’s rule (60).

Software
The pre-processing and feature extraction were performed using
Python (version 3.7.6), R (version 4.0.2) (61), snakemake (version
5.20) (62) and following workflow examples from RAPIDS (63).
All analyses were conducted in R. Correlations were calculated
using the “psych” package (52). MLM was carried out using the
packages lme4 (64) and lmerTest (65). For multiple imputations
the “MICE” package was used (58).
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RESULTS

Participant Characteristics and Adherence
Of the 60 participants at intake, 1 participant (1.7%) dropped
out of the study due to concerns over privacy, 2 participants
(3.4%) dropped out due to burden of self-report and 2
(3.4%) participants dropped out for unknown reasons.
Of the remaining 55 participants, 47 (85.5%) completed
the midpoint questionnaire and 54 (98.2%) completed the
endpoint questionnaire.

Of the 55 participants, 30 (54.5%) were female and 25 (45.5%)
were male. Their ages ranged from 24 to 68 with a mean of 42.8
(SD 11.6). There were 2% with no secondary education, 17% with
high school as the highest education, and 80% with bachelor’s
degree or a higher degree. The mean depression severity was
M = 3.78, SD = 3.48 (normal: 67.3%, mild-moderate: 25.4%,
severe: 7.3%), the mean anxiety severity was M = 2.73, SD =

2.68 (normal: 70.9%, mild-moderate: 23.7%, severe: 5.5%), and
the mean stress level was M = 6.00, SD = 3.82 (normal: 65.5%,
mild-moderate: 29.1%, severe: 4.4%). Table 1 provides a detailed
summary of all participants included in the final analysis.

The majority of participants (66%) were from Finland.
During the time of the study, the restrictions in Finland
were such that the government strongly recommended that
individuals maintain social distancing, companies adopt remote
work wherever possible and the majority of public and private
facilities (e.g., libraries, museums, bars and sports facilities)
were temporarily closed. A multi-level model predicting the
daily distance traveled (using categorized country Finland vs.
other as predictor) revealed no significant distance between
the average daily distance traveled between participants
from Finland and those from other countries (β = −922.9
[in meters], p= 0.943).

Correlations Between Smartphone and
Wearable Data and Mental Health
Symptoms
Table 2 presents Pearson’s correlation matrixes of the four sets
of independent variables (GPS, smartphone-usage, wearable, and
EMA features) and mental health symptom severity.

For all three mental health outcomes, significant small-to-
medium correlations with the obtained EMA data – valance
and arousal - were found (see Table 2). In contrast, none of
the wearable or smartphone usage features were associated
with mental health symptom severity in the correlation analysis
(p>0.05). Also, for GPS features only the location variance and
the entropy showed a significant correlation with depression.
All other GPS features as well as variance and entropy
for anxiety and stress were non-significant (see Table 2 for
more details).

Predicting Symptom Severity From
Smartphone and Wearable Data
Analyses of the GPS-derived location features showed that
location variance had a negative association with subsequent
depressive symptom severity (beta = −0.21, SE = 0.10,

TABLE 1 | Participant characteristics.

Variable %/M (SD) n

Age 42.8 (11.6) 55

Gender

Female 54.5 30

Male 45.5 25

Ethnicity

Asian/Pacific Islander 1.8 1

Hispanic or Latino 3.6 2

White 92.7 51

Other 1.8 1

Education

Less than a high school diploma 1.9 1

High school degree or equivalent 16.7 9

Bachelor’s degree (e.g., BA, BS) 44.4 24

Master’s degree (e.g., MA, MS) 33.3 18

Doctorate (e.g., PhD, EdD) 1.9 1

Prefer not to say 1.9 1

Employment

Employed full-time (35+ h a week) 49.1 27

Employed part-time (< 35 h a week) 7.3 4

Unemployed (currently looking for work) 1.8 1

Unemployed (not currently looking for work) 3.6 2

Student 5.5 3

Retired 1.8 1

Self-employed 21.8 12

Unable to work 7.3 4

Prefer not to say 1.8 1

Marital status

Single (never married) 25.5 14

Married 49.1 27

In a domestic partnership 20.0 11

Divorced 5.5 3

Mental health status at baseline

Depression 3.78 (3.48) –

Normal 67.3% 37

Mild 12.7% 7

Moderate 12.7% 7

Severe 5.5% 3

Extremely severe 1.8% 1

Anxiety 2.73 (2.68) –

Normal 70.9% 39

Mild 16.4% 9

Moderate 7.3% 4

Severe 1.8% 1

Extremely severe 3.6% 2

Stress 6.00 (3.82) –

Normal 65.5% 36

Mild 18.2% 10

Moderate 10.9% 6

Severe 3.6% 2

Extremely severe 1.8% 1

Values are based on observed data.
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TABLE 2 | Correlations between smartphone and wearable data and mental health scores.

Depression Anxiety Stress

r p r p r p

GPS features

Location variance −0.31 0.035* −0.26 0.110 −0.28 0.077

Total distance −0.26 0.110 −0.28 0.077 −0.17 0.572

Location entropy −0.30 0.035* −0.17 0.572 −0.22 0.251

Normalized location entropy −0.26 0.100 −0.13 0.788 −0.20 0.298

Homestay 0.12 0.788 0.13 0.788 0.07 0.788

Smartphone usage features

Usage time 0.09 > 0.99 0.05 > 0.99 0.07 > 0.99

Usage frequency 0.15 0.716 0.24 0.079 0.12 0.971

Wearable device data

Steps −0.23 0.516 −0.16 > 0.99 −0.19 > 0.99

Metabolic equivalent for task −0.21 0.99 −0.07 > 0.99 −0.06 > 0.99

Total sleep time 0.15 > 0.99 0.04 > 0.99 0.12 > 0.99

Sleep onset latency 0.08 > 0.99 0.06 > 0.99 0.04 > 0.99

Wake after sleep onset 0.20 > 0.99 0.14 > 0.99 0.16 > 0.99

Time in bed 0.15 > 0.99 0.03 > 0.99 0.11 > 0.99

Heart rate variability 0.08 > 0.99 0.12 > 0.99 0.09 > 0.99

Mood

Arousal −0.30 0.003* −0.35 0.001* −0.36 0.001*

Valence −0.48 < 0.001* −0.44 < 0.001* −0.48 < 0.001*

All p-values are adjusted cluster-wise for multiple testing; * indicates significance.

t(81) = −2.13, p = 0.037), but no significant relationship with
symptoms of anxiety or stress. No significant association between
the other GPS-derived features (total distance, location entropy,
normalized location entropy and time at home) and symptoms of
depression, anxiety or stress were found.

With regards to smartphone usage features, we found no
significant relationship between smartphone usage duration
or smartphone usage frequency and symptoms of depression,
anxiety and stress.

The analyses of wearable device data showed no significant
association between any of the physical activity measures (MET
and steps) and depression, anxiety, and stress. From the sleep
measures, we found a significant relationship between total sleep
time and depression [beta = 0.24, SE = 0.11, t(73) = 2.33, p =

0.023], time in bed and depression [beta = 0.26, SE = 0.11, t(59)
= 2.39, p = 0.020] and WASO and anxiety [beta = 0.23, SE =

0.11, t(90)= 2.13, p= 0.035]. Additionally, we found a significant
association been HRV and anxiety [beta = 0.26, SE = 0.12, t(71)
= 2.15, p= 0.035]. None of the sleep measures were significantly
related to stress.

The EMA data (valence and arousal) showed that valence
was significantly related to depression [beta = −0.39, SE =

0.11, t(55) = −3.43, p = 0.001], anxiety [beta = −0.30, SE =

0.12, t(57) = −2.54, p = 0.014], and stress [beta = −0.39, SE
= 0.11, t(74) = −3.64, p < 0.001]. There was no significant
relationship between arousal and depression, anxiety or stress.
Supplementary Tables 2–4 provide the full set of results from
single predictors.

Combined Predictions
Depression could be predicted by EMA and smartphone and
wearable data. EMA performed better than smartphone and
wearable data models, but the combination yielded the best fit
(see Table 3). For anxiety and stress, EMA-only data models were
the strongest predictors (see Tables 4, 5).

DISCUSSION

The current study assessed whether data from smartphone and
wearable devices could predict symptoms of depression and
anxiety during periods of limited movement. We found that
GPS (location variance on depression) and wearable device data
(total sleep time and time in bed on depression; wake after
sleep onset and HRV on anxiety), were able to predict mental
health. Furthermore, a combined model of GPS and wearable
data significantly increased the ability to predict symptoms of
depression and anxiety compared to GPS data alone.

The finding that greater diversity in visited locations
predicted lower depression severity supports previous research
demonstrating that participants who move about more through
geographic space are less depressed (19, 67). Furthermore, it
indicates that, despite limited movement and social interaction,
GPS may still provide a valuable source of data for the
identification of individuals at risk of developing mental
disorders. However, contrary to previous findings (19, 67–
69), we did not find a significant relationship between the
other smartphone features (total distance, location entropy,
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TABLE 3 | A comparison of MLM model performance on the prediction of depression.

Model Fixed effects Goodness of fit and Comparison*

Estimate SE t-value Df p-value F df1, df2 P-value

Baseline model

Intercept 0 0.13 0 105 > 0.999

EMA model

Intercept 0 0.11 0.00 104 > 0.999 10.52 1, 172 0.001a

Valence −0.39 0.11 −3.49 55 0.001

GPS model

Intercept 0 0.12 0 104 > 0.999 4.574751 1, 568 0.033a

Variance −0.21 0.10 −2.15 81 0.035

Extended digital phenotyping model: GPS and wearable data

Intercept 0 0.11 0.00 103 > 0.999 5.23 1, 136 0.024b

Variance −0.21 0.10 −2.17 78 0.033

Time in bed 0.25 0.10 2.43 58 0.018

Combined model: EMA and digital phenotyping model

Intercept 0 0.10 0.00 102 > 0.999 11.47 1, 176 0.001c

Variance −0.21 0.09 −2.32 72 0.023 5.42 2, 560 0.005d

Time in bed 0.24 0.09 2.54 59 0.014

Arousal −0.38 0.10 −3.61 52 0.001

*For more details on the likelihood ratio test see chapter 5.3.1 in Van Buuren (66). aComparison against baseline, bComparison against GPS, cComparison against extended sensing

model, dComparison against EMA model.

TABLE 4 | A comparison of MLM model performance on the prediction of anxiety.

Model Fixed effects Goodness of fit and comparison*

Estimate SE t df p-value F df1, df2 P-value

Baseline model

Intercept 0 0.12 0.00 105 > 0.999

EMA model

Intercept 0 0.11 0.00 104 > 0.999 5.63 1, 191 0.019a

Valance −0.30 0.12 −2.60 57 0.012

GPS model

No predictors identified

Wearable data model

Intercept 0 0.12 0.00 > 0.999 4.45 1, 997 0.035a

WASO 0.23 0.11 2.16 0.034

Combined model: EMA and digital phenotyping model

Intercept 0 0.11 0.00 103 > 0.999 5.03 1, 240 0.026c

Valence −0.27 0.11 −2.41 59 0.001 3.67 1, 2,655 0.055d

WASO 0.19 0.10 1.90 90

*For more details on the likelihood ratio test see chapter 5.3.1 in Van Buuren (66).
aComparison against baseline, bComparison against GPS, cComparison against extended sensing model, dComparison against EMA model.

normalized location entropy and time spent at home) andmental
health measures. This may be explained by weaker associations
found in the current study compared to previous studies or
by abnormal movement patterns during COVID-19. As such,
it highlights the importance of further research on the role
of context and other moderating variables that may influence
the relationship between different GPS-derived features and
mental health.

From the physiological data derived from the wearable device,
we found total sleep time and time in bed to be significant
predictors of depressive symptom severity. One explanation for
this may be the lack of motivation and fatigue exhibited by
individuals suffering from depression. The additional finding that
longer periods of wakefulness after falling asleep significantly
predicted symptoms of anxiety may be explained by the hyper-
vigilance or hyperarousal characteristic of anxiety disorders
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TABLE 5 | A comparison of MLM model performance on the prediction of stress.

Model Fixed effects Goodness of fit and comparison*

Estimate SE t df p-value F df1, df2 P-value

Baseline model

Intercept 0 0.12 0.00 105 > 0.999 282.3 290.4 –

EMA model

Intercept 0 0.10 0.00 104 > 0.999 11.09 1, 434 0.001a

Arousal −0.39 0.11 −3.71 74 < 0.001

GPS model

No predictors identified

Wearable data model

No predictors identified

Combined model: EMA and digital phenotyping model

Not applicable

*For more details on the likelihood ratio test see chapter 5.3.1 in Van Buuren (66).
aComparison against baseline.

causing individuals to wake up more frequently during their
sleep (70). Similar findings to these have been reported in
previous studies using polysomnography in a laboratory setting
(32), however this is the first study to use validated consumer
wearable devices to provide sleep data in real-life settings. Given
the transdiagnostic nature of sleep disturbances (30) and that
insomnia has been identified as a precursor to the development of
full clinical syndromes (71), sleep data from consumer wearables
may thus provide valuable tools to identify early warning signs of
mental disorders, thereby facilitating time-sensitive preventative
measures (72).

Finally, the superior performance of the combined GPS
and wearable data model compared to the GPS-only model in
predicting symptoms of depression and anxiety demonstrates the
value of wearable data during times of restrictive movement such
as COVID-19. Furthermore, our finding that adding smartphone
and wearable data to EMA data had the highest predictive power
of all models in the analysis suggests that a combination of
passive sensing and active assessment may provide the greatest
predictive power in identifying people suffering from symptoms
of depression and anxiety.

A number of limitations of the study should be taken
into account. First, it is important to highlight that this is
a longitudinal observational study, thus the current findings
do not necessarily represent a causal relationship between the
behavior measured by smartphone and wearable devices and
symptoms of depression and anxiety, nor can they explain
the direction between them. For example, an increase in total
time in bed may be a cause or effect of the increase in
depressive symptom severity or it may be explained by another
third variable (73). Furthermore, as pooling data prevented us
from exploring high-frequency processes (e.g., the relationship
between movement and mood), we were unable to establish
temporal precedence (74). Second, the small sample size meant
that the study was likely underpowered to find statistically
significant results for a number of predictors exhibiting small
effect sizes. Forthcoming, studies should therefore assess whether

the current findings are replicated in a larger sample size.
Third, there were some sample biases. The sample was heavily
skewed toward white, employed individuals who were more
educated than the general population. Related to this, the
study was open only to participants with an Apple (iOS)
smartphone. Research has shown that sociodemographic status
and smartphone usage behavior may differ between iOS and
Android users (75, 76). Future studies should therefore assess the
relationship between digital phenotyping data and mental health
across both platforms and in populations with more diverse
backgrounds. Forth, participants were a non-clinical sample
recruited from the general population. This was intentional as
the focus of the current study was related to the detection of
depression across a continuous spectrum and in a naturalistic
setting. Although participants scored highly on the depression
subscale in particular (over 25% of participants had at least
mild-to-moderate depression severity), clinical diagnosis was
not an inclusion criterion. Future research would therefore
benefit from examining the relationship between the current
smartphone and wearable device data and mental health in a
clinical population. Finally, individual responses to restrictions
on movement during the COVID-19 pandemic are likely to
have varied considerably. As the study commenced after the
onset of the pandemic, we were unable to provide any data
comparing participants’ movement before and during the study
to confirm that their movement was indeed more limited during
the study period.

Notwithstanding these limitations, the current study provides
promising indications of digital phenotyping data derived from
consumer wearable devices for the identification of individuals
suffering from or at risk of developing a mental health
condition. Future research would benefit from assessing how data
from additional sensors [e.g., speech and voice (77), keyboard
interactions (78), bio-sensing (79), and smartphone app usage
(80)], combined with machine learning models may be used to
further improve predictive accuracy (81–85). Given the issues
quantifying explained variance in multilevel models (86, 87),
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future research would also benefit from understanding the
amount of variance explained in symptomatology by smartphone
and wearable sensing data. Studies with larger samples sizes,
conducted over longer periods of time are also needed, both to
ensure adequate power as well as to assess how digital phenotypes
may be used to predict changes in symptomatology over time
(88, 89). Such researchmay also provide valuable insights into the
causal mechanisms underlying mental disorders (e.g., behavioral
activity, loneliness) and thereby enable the development of
early mental health warning systems and more effective, timely
interventions targeted to the individual based on personalized
models of psychopathology (90, 91).
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