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Smartphones provide convenience in everyday life. Smartphones, however, can elicit

adverse effects when used excessively. The purpose of this study was to examine

the underlying neurobiological alterations that arise from problematic smartphone use.

We performed resting state seed-based functional connectivity (FC) analysis of 44

problematic smartphone users and 54 healthy controls. This analysis assessed the

salience, central executive, default mode, and affective networks. Compared to controls,

problematic smartphone users showed enhanced FC within the salience network and

between the salience and default mode network. Moreover, we observed decreased FC

between the salience and central executive network in problematic smartphone users,

compared to controls. These results imply that problematic smartphone use is associated

with aberrant FC in key brain networks. Our results suggest that changes in FC of key

networks centered around the salience network might be associated with problematic

smartphone use.

Keywords: probelmatic smartphone use, salience network, functional connectivity, fMRI, neuroimaging

INTRODUCTION

For the past two decades, smartphones have radically changed human lives, becoming ubiquitous
in everyday life (1, 2). Smartphones have brought about changes to various areas of life, such
as productivity, information seeking, social information and interaction, diversion, relaxation,
entertainment, monetary compensation, and personal status (3). However, with greater integration
of smartphones into daily lives, concerns for psychological and behavioral dysfunction due to
problematic smartphone use have begun to accumulate (4, 5).

The clinical characteristics of problematic smartphone use share conceptual similarities with
typical addictive disorders (6). Lin et al. have suggested a diagnostic standard for smartphone
addiction, with core symptoms of “impaired control” and withdrawal (7). According to the
Interaction of Person-Affect-Cognition-Execution model, which lays the theoretical framework
for addictive behaviors, an association between cue-reactivity/craving and diminished inhibitory
control contribute to the development of addictive behaviors (8, 9). The frontoinsular cortex, which
acts as a mediator between the limbic and prefrontal-striatal system, and an imbalance between
hyperactive involvement of limbic structures and hypoactive involvement of prefrontal-striatal
circuits are thought to play crucial roles in the pathophysiology of addictive behaviors (8, 9). While
numerous attempts have beenmade to identify neural correlates undergirding behavioral addiction,
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most studies have been published on gambling
and Internet gaming disorder; neural correlates
responsible for problematic smartphone usage remain
largely unknown.

Resting-state functional magnetic resonance imaging is a
powerful tool that can be utilized to investigate correlates
related to various neurological and psychiatric disorders. The
salience network, central executive network, default mode
network, and affective network play key functions in the human
brain (10, 11). The salience network, comprising nodes in
the right frontoinsular cortex and anterior cingulate cortex,
facilitates orientation to stimuli and allocates attention (12).
The central executive network, which is responsible for goal-
directed behavior involving decision making, comprises the
dorsolateral prefrontal cortex and posterior parietal cortex (12).
The default mode network, which is responsible for stimulus-
independent thought processes, comprises the medial prefrontal
cortex, the rostral parts of the anterior cingulate cortex, the
precuneus, and the posterior cingulate cortex (13). Lastly, the
affective network, which is relevant for emotion perception
and regulation, comprises a set of interconnected neural
structures in the amygdala and subgenual anterior cingulate
cortex (14, 15).

Research into changes in intrinsic connectivity networks in
behavioral addiction has primarily been limited to Internet
gaming disorders and has revealed aberrant functional
connectivity (FC) between and within intrinsic connectivity
networks in the brain (16–18). In Internet gaming disorder,
deficient modulation of central executive network activity
versus default mode network activity by the salience network
has been suggested as a neurobiological mechanism in the
maintenance of addictive behaviors (16). Furthermore, altered
FC to the frontal lobe over the amygdala has been found
to contribute to vulnerability to Internet gaming disorder
(19). Meanwhile, a few neuroimaging studies on problematic
smartphone use have also suggested changes in FC in brain
regions related with cognitive control and emotional processing:
One study reported altered neural deactivation of the prefrontal
and cingulate cortex during facial emotion processing in
problematic smartphone users, compared to controls (20).
These results suggest that problematic smartphone use
may affect cognitive control during emotional processing
via altered integrity of functional brain networks. Another
study reported that adolescent problematic smartphone
users had reduced FC in brain regions related to cognitive
control (21). Although these studies provide some insights
into the neurobiological basis for problematic smartphone
use, relatively few neuroimaging studies have focused on
underlying neural correlates responsible for problematic
smartphone use.

Thus, we aimed to identify changes in intrinsic connectivity
networks in problematic smartphone use. We investigated
alterations in FC among core intrinsic connectivity networks
(salience network, central executive network, default
mode network, and affective network) in problematic
smartphone users based on regions of interest in these
core networks.

MATERIALS AND METHODS

Participants
Ninety-eight subjects participated in this study: 29 males with
excessive smartphone use, 15 females with excessive smartphone
use, 32 healthy males, and 22 healthy females. All subjects
were right-handed and between 16 and 54 years of age (mean:
23.6 ± 4.8 years). All participants were administered the
Structured Clinical Interview from the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition to evaluate major
psychiatric illness (22). The Korean version of theWechsler Adult
Intelligence Scale IV was used to assess intelligence quotient
(23). Exclusion criteria for all subjects were major psychiatric
disorder, intellectual disability, neurological or medical illness,
and contraindications on magnetic resonance imaging (MRI)
scan. None of the subjects included in this study received
psychiatric treatment, including psychopharmacology.

Psychometric Measures
The Smartphone Addiction Proneness Scale (SAPS) test,
developed by the Korean National Information Society Agency
to assess problematic smartphone use (24), consists of 15
questions and includes the following four subscales: disturbance
of adaptive functions, virtual life orientation, withdrawal, and
tolerance. Subjects with the following SAPS scores were classified
as high-risk smartphone users: (a) total SAPS score of ≥44
and (b) disturbance of adaptive functions, withdrawal, and
tolerance subscale scores of ≥15, ≥13, and ≥13, respectively.
In this study, subjects with the following SAPS scores were
classified as potentially at-risk smartphone users: (a) total
SAPS score of ≥40 and ≤43 or (b) disturbance of adaptive
functions subscale score of ≥14. The high-risk or potentially
at-risk users were classified as problematic smartphone
users. The Cronbach’s alpha of the SAPS was 0.932 in the
present sample.

The Internet Addiction Test (IAT) was administered to assess
Internet addiction status (25), with a Cronbach’s alpha value of
0.933 in the present sample. The Barratt Impulsiveness Scale
version 11 (BIS-11) was administered to test impulsivity (26),
with a Cronbach’s alpha in the present sample of 0.800. To
evaluate comorbid psychiatric conditions of depression, anxiety,
and alcohol use disorder, all subjects were administered the Beck
Depression Inventory (BDI, Cronbach’s alpha = 0.790), Beck
Anxiety Inventory (BAI, Cronbach’s alpha= 0.796), and Alcohol
Use Disorder Identification Tests (AUDIT, Cronbach’s alpha =

0.782), respectively.

FC Analysis
Brain MRI data were acquired using a 3T MRI scanner
(Magnetom; Siemens, Munich, Germany) equipped with an
eight-channel head coil. The structured MRI data were
obtained through a T1-weighted spoiled gradient echo sequence
(echo time = 2.19ms, repetition time = 1,780ms, flip
angle = 9◦, field of view = 256mm, matrix = 256 ×

256, transverse slice thickness = 1mm). The functional
MRI data were obtained through a single-shot T2-weighted
gradient echo planar pulse sequence (echo time = 30ms,
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repetition time = 2,500ms, flip angle = 90◦, field of view
= 240mm, matrix = 64 × 64, slice thickness = 3.5mm).
During the acquisition of functional MRI data, subjects were
instructed to look at a white cross in the center of a
black background for 6min without any cognitive, lingual, or
motor activities.

Imaging data were processed using a Microsoft Windows
platform running MATLAB version 9.3 (R2020a) (The
MathWorks Inc, Natick, MA, USA) and the MATLAB-
based CONN-fMRI Functional Connectivity toolbox, version
19.c (Cognitive and Affective Neuroscience Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA).
The default CONN preprocessing pipeline was applied. To
correct motion across volumes, functional images were aligned
to the first volume using a least-square minimization and a
six-parameter rigid body spatial transformation. Unwarping and
slice-timing correction were also applied.

Next, we ran the ART-based automatic outlier detection for
later scrubbing. Specifically, functional volumes were deemed
outliers if their signal intensity deviated more than five
standard deviations from the mean signal intensity of the
whole series or showed evidence of displacement superior
to 0.9 mm in relation to the preceding volume. Subjects
for whom more than 15% of frames were censored for
scrubbing were excluded: all subjects were included in the
FC analysis because none met these exclusion criteria. Both
functional and structural images were then subjected to gray and
white matter and cerebrospinal fluid segmentation, and a bias
correction was performed to remove varying intensity differences
across images.

Finally, structural and functional data were spatially
normalized in parallel through non-linear transformations
to the Montreal Neurological Institute space. Images were
re-sliced to a 2-mm isotropic resolution and smoothed with an
8-mm full-width at half-maximum (FWHM) isotropic Gaussian
kernel. After preprocessing, imaging data were denoised from
residual movement and physiological noise (i.e., respiration,
cardiac pulsations, slow involuntary head position motion, or
“spike-like” movements) (27). Specifically, the denoising steps
included a temporal de-spiking, regressing out confounding
factors (i.e., BOLD signal small ramping effects at the beginning
of each session, six rigid body realignment parameters and their
first order derivatives), an anatomical component-based noise
correction method (aCompCor, which reduces physiological
and movement noise), the ART scrubbing protocol, linear
detrending to remove linear signal drift, and band-pass
filtering to restrict the analysis to a range of frequencies of
interest (0.008–0.09 Hz).

Seed-to-voxel FC maps for each subject were constructed
using the CONN-fMRI toolbox 19.c (http://www.nitrc.org/
projects/conn). While configuring individual seed-to-voxel FC
maps, movement parameters for each subject were preserved as
confounders within the general linear model. For four networks,
the following spherical seeds with a 6-mm radius were selected:
the dorsal anterior cingulate cortex (6 45 9) (28) and the anterior
frontoinsular cortex (left anterior frontoinsular cortex:−45 35 9;
right anterior frontoinsular cortex: 45 3 15) (29) of the salience

network; the bilateral frontal eye field (left frontal eye field: −24
−15 66; right frontal eye field: 28 −10 58) (29) and bilateral
dorsolateral prefrontal cortex (left dorsolateral prefrontal cortex:
−40 18 24; right dorsolateral prefrontal cortex: 40 18 24) (30)
of the central executive network; the posterior cingulate gyrus
(−5 −49 −40) (31), the medial prefrontal cortex (−1 47 −4)
(31), and the bilateral rostral anterior cingulate cortex (left
rostral anterior cingulate cortex: −5 34 28; right rostral anterior
cingulate cortex: 5 34 28) (32) of the default mode network;
and the bilateral amygdala (left amygdala: −24 −4 −16; right
amygdala: 24 −4 −16) (33) and bilateral subgenual anterior
cingulate cortex (left subgenual anterior cingulate cortex: −5
25 −10; right subgenual anterior cingulate cortex: 5 25 −10)
(32) of the affective network were selected as regions of interest
(ROIs). All seed regions were built using the MarsBaR toolbox in
SPM to create 6-mm spherical ROI images. Signals from white
matter and ventricular regions were also eliminated through
linear regression (34). To reduce artifacts caused by head
motion, estimated subject-motion parameters (35) implemented
in CONN’s default denoising guideline were applied to the
linear regression model. Correlation coefficients were estimated
and converted to z-values using Fisher’s r-to-z transformation
for the calculation of FC strengths. Afterwards, FC strength
estimates were compared between groups using an analysis
of covariance (ANCOVA) on each voxel, after controlling for
age and sex. All imaging analyses were corrected for multiple
comparisons using a combination of voxel-level thresholds
(p < 0.001) and cluster extent threshold false discovery rate
correction (p < 0.05).

Statistical Analysis
Statistical analyses were conducted using the Statistical Package
for the Social Sciences (SPSS) version 25.0 (SPSS Inc.,
Chicago, IL, USA). Differences with p-values <0.05 were
considered statistically significant. To compare demographic
and psychological features, we employed independent Student’s
t-tests and χ

2 tests. We conducted correlation analyses to
verify that FC strengths were correlated with clinical variables
(smartphone usage times, SAPS score, and BIS score). In
subsequent partial correlation analyses, parameters related
to comorbidity conditions (age and gender) were added
as covariates.

Ethics
This study was carried out in accordance with the latest version of
the Declaration of Helsinki, and under the guidelines for human
subject research established by the Institutional Review Board
at Yonsei University. All protocols for this study were approved
by the Institutional Review Board at Severance Hospital, Yonsei
University. Written informed consent was obtained from all
participants before enrollment.

RESULTS

Participant Characteristics
Problematic smartphone users and controls did not significantly
differ with respect to age, sex, full scale IQ, or AUDIT scores
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TABLE 1 | Demographics and clinical characteristics of study participants.

Excessive smartphone

users (n = 44) Mean (SD)

Healthy controls (n = 54)

Mean (SD)

Test df Test

Age (years) 24.6 (6.1) 22.7 (3.3) t = 1.871 96 t = 1.871

Sex (male), number (%) 29 (47.5%) 32 (52.5%) χ
2 = 0.456 1 χ

2 = 0.456

Full-scale IQa 110.5 (12.0) 109.7 (10.7) t = 0.341 96 t = 0.341

SAPS 45.0 (4.7) 29.4 (6.3) t = 13.983 95.299 t = 13.577

Disturbance of adaptive functions 15.3 (1.8) 9.6 (2.4) t =13.454 95.391 t =13.070

Virtual life orientation 4.2 (1.3) 2.8 (1.0) t = 6.055 96 t = 6.055

Withdrawal 11.8 (2.2) 8.1 (2.5) t = 7.749 96 t = 7.749

Tolerance 13.6 (1.5) 8.9 (2.7) t = 10.875 84.497 t = 10.279

IAT 48.8 (13.6) 36.8 (17.7) t = 3.693 96 t = 3.693

BIS 55.5 (8.8) 49.8 (8.7) t = 3.207 96 t = 3.207

BDI 8.7 (4.6) 6.2 (5.0) t = 2.531 96 t = 2.531

BAI 8.5 (5.9) 5.0 (4.4) t = 3.239 78.262 t = 3.333

AUDIT 9.6 (5.3) 7.7 (5.1) t = 1.739 96 t = 1.739

Duration of smartphone use per day

(hours)

6.9 (2.1) 2.6 (1.2) t = 12.147 65.910 t = 12.783

AUDIT, alcohol use disorder identification test; BAI, Beck anxiety inventory; BDI, Beck depression inventory; BIS, Barratt impulsivity scale; IAT, Internet addiction test; IQ, intelligence

quotient; SAPS, smartphone addiction proneness scale. SD, standard deviation.
a IQ was assessed using the Wechsler Adult Intelligence Scale.

TABLE 2 | Whole-brain seed-based functional connectivity analysis results.

Region BA kE Tmax x y z

Salience network - dorsal ACC

Excessive smartphone users > control Left Anterior FIC 48 209 4.23 −40 24 2

Salience network – anterior FIC

Excessive smartphone users > control Left Precuneus 5 207 3.82 −4 −42 58

Right Supramarginal gyrus 5 169 4.5 64 −34 26

Right Orbitofrontal cortex 34 266 5.3 24 8 −20

Left Dorsal ACC 24 354 4.76 −6 20 26

Control > excessive smartphone users Left DLPFC 9 190 4.01 −16 30 50

Left VLPFC 47 361 4.59 −38 38 −12

Central executive network - DLPFC

Excessive smartphone users > control Left Postcentral gyrus 3 188 4.11 −66 −10 32

Default mode network - rostal ACC

Excessive smartphone users > control Left Anterior FIC 48 169 4.31 −26 20 12

Affective network - Amygdala

Excessive smartphone users > control Left DLPFC 9 563 5.25 −34 12 46

Affective network - subgenual ACC

Control > excessive smartphone users Left Lingual gyrus 18 233 4.4 −26 −84 −14

ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; FIC, frontoinsular cortex; VLPFC, ventrolateral prefrontal cortex. Brain regions showing a significant difference in

functional connectivity between groups.

(Table 1). Psychometric self-repost scales showed significant
group differences in SAPS (p < 0.001), IAT (p < 0.001),
BDI (p = 0.013), BAI (p = 0.001), and BIS (p = 0.002)
scores. Problematic smartphone users spent significantly
more time daily using their smartphones than the control
group (p < 0.001).

FC Analysis Results
Salience Network

Problematic smartphone users showed stronger FC
between the dorsal anterior cingulate cortex and anterior
frontoinsular cortex, as well as anterior frontoinsular
cortex-based FC with the precuneus, supramarginal gyrus,
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FIGURE 1 | Increases and decreases in dorsal anterior cingulate cortex (dorsal ACC) and frontoinsular cortex-based functional connectivity (FC) in problematic

smartphone users, compared to controls. All imaging analyses were corrected for multiple comparisons using a combination of voxel-level thresholds (p < 0.001) and

cluster extent threshold false discovery rate correction (p < 0.05). (A) Dorsal ACC-based FC was enhanced with the left anterior frontoinsular cortex in problematic

smartphone users, compared to controls. (B) Left frontoinsular cortex-based FC was decreased with left ventrolateral prefrontal cortex (VLPFC) and left dorsolateral

prefrontal cortex (DLPFC) in problematic smartphone users, compared to controls. (C) Left frontoinsular cortex-based FC was enhanced with precuneus, right

supramarginal gyrus, right orbitofrontal cortex and dorsal ACC.

FIGURE 2 | Increases and decreases in seed-based FC among problematic smartphone users, compared to controls. All imaging analyses were corrected for

multiple comparisons using a combination of voxel-level thresholds (p < 0.001) and cluster extent threshold false discovery rate correction (p < 0.05). (A–C) Brain

regions with enhanced FC in problematic smartphone users, compared to controls. (A) Left dorsolateral prefrontal cortex (DLPFC)-based FC was increased with the

left postcentral gyrus. (B) Right rostral anterior cingulate cortex (ACC)-based FC was increased with the left anterior frontoinsular cortex. (C) Right amygdala-based

FC was increased with DLPFC. (D) Brain regions with decreased FC in problematic smartphone users, compared to controls. The right subgenual ACC and left lingual

gyrus show differences in functional connectivity with right subgenual ACC-seeded analysis between the groups.

orbitofrontal cortex, and dorsal anterior cingulate cortex,
relative to control users (Table 2, Figure 1). In contrast,
problematic smartphone users demonstrated weaker

anterior frontoinsular cortex-based FC with the dorsolateral
prefrontal cortex, and ventrolateral prefrontal cortex than
control users.
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FIGURE 3 | Network model of problematic smartphone users. ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; FIC, frontoinsular cortex; VLPFC,

ventolateral prefrontal cortex.

Central Executive Network

Problematic smartphone users exhibited stronger dorsolateral
prefrontal cortex FC with the left precentral gyrus than control
users (Figure 2).

Default Mode Network

Problematic smartphone users showed greater right rostral
anterior cingulate cortex FC with the anterior frontoinsular
cortex than control users.

Affective Network

Compared to the control group, problematic smartphone users
exhibited stronger FC between the amygdala and dorsolateral
prefrontal cortex. Problematic smartphone users also showed
weaker FC between the right subgenual anterior cingulate cortex
and lingual gyrus.

Correlation Between FC Strengths and
Psychometric Measures
We found no significant correlations between FC strengths and
clinical variables (smartphone usage times, SAPS score, and
BIS score).

DISCUSSION

Consistent with our hypothesis, we comprehensively identified
FC changes in the salience, central executive, default mode,
and affective networks among problematic smartphone users
(Figure 3). We observed enhanced FC within the salience

network and between the default mode network and salience
network in problematic smartphone users, compared to controls.
Meanwhile, we noted decreased FC between the salience
network and central executive network among problematic
smartphone users. Overall, neurobiological changes in FC of key
networks centered around the salience network were observed in
problematic smartphone users.

Enhanced FC within the salience network was observed
among problematic smartphone users. In particular, we noted
enhanced FC between the anterior frontoinsular cortex and
dorsal anterior cingulate cortex during the resting state and
enhanced FC between the anterior frontoinsular cortex and
supramarginal gyrus. The salience network reacts to degrees of
subjective salience and acts as a switch between the default mode
network and the central executive network (10, 36). The anterior
frontoinsular cortex and dorsal anterior cingulate cortex are the
two key nodes of the salience network (10); the supramarginal
gyrus is also known as a salience network node (37). The anterior
frontoinsular cortex facilitates bottom-up detection of salient
events and modulates access to attention and working memory
resources. Strong neural functional coupling between the anterior
frontoinsular cortex and dorsal anterior cingulate cortex has
been shown to facilitate rapid access to the motor system (10).
Enhanced interaction within the salience network in problematic
smartphone users may represent enhanced salience for cues
related to smartphones and may provoke more frequent use of
smartphones in problematic users.

Our data highlighted enhanced FC between the salience
network and default mode network in problematic smartphone
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users, as enhanced FC was found between the rostral anterior
cingulate cortex and anterior frontoinsular cortex, as well as
between the precuneus and anterior frontoinsular cortex. The
rostral anterior cingulate cortex and precuneus are critical
hubs of the default mode network (38), and enhanced FC
between the salience and default mode networks in problematic
smartphone users suggests decreased engagement of executive
control or reflective system (39). Our findings are consistent
with previous studies that reported enhanced FC between the
frontoinsular cortex and default mode network in nicotine-
dependent smokers (40) and Individuals with Internet gaming
disorder (17). Aberrant FC between the frontoinsular cortex
and default mode network is known to be involved in
development and maintenance of addiction (41). Altogether,
these results suggest a need to consider changes in resting state
FC in problematic smartphone users as indicative of behavioral
addiction. Additionally, we also noted enhanced FC between
the anterior frontoinsular cortex and orbitofrontal cortex in
problematic smartphone users. The orbitofrontal cortex is a
major area of motivation, drive, and salience evaluation and
has been found to be impaired in drug addiction (42) and
behavioral addiction (43–45). Overall, our results are consistent
with viewing problematic smartphone use from the perspective
of behavioral addiction.

Interestingly, we recorded reduced FC between the salience
network and central executive network, observing reduced
FC between the anterior frontoinsular cortex and dorsolateral
prefrontal cortex and between the anterior frontoinsular cortex
and ventrolateral prefrontal cortex in problematic smartphone
users, compared to healthy controls. The dorsolateral prefrontal
cortex is a critical node of the central executive network (10),
and the ventrolateral prefrontal cortex, which coactivates with
the central executive network, is known to be involved in
numerous cognitive operations (43). In a previous study of
altered core brain network interactions in adolescents with
Internet gaming disorder, abnormal functional and structural
connections between the salience network and central executive
network were deemed to be mediators of impaired cognitive
control in adolescents with Internet gaming disorder (41).
Also, one previous study proposed weakened cognitive control,
which is related to function of the central executive network,
as an important neurobiological basis of Internet gaming
disorder (43). When using smartphones, individuals need to
find a balance between the bottom-up smartphone-related
salient stimuli and top-down inhibitory control of excessive
usage, which negatively affects daily function. The reduced FC
between the salience network and central executive network
in problematic smartphone users observed in this study may
suggest that these individuals are unable to control their
smartphone usage and thus succumb to the temptation of
pleasure from overuse.

Also noteworthy is that we were able to identify enhanced FC
between the affective network and salience network and between
the affective network and central executive network.We observed
enhanced FC between the amygdala and dorsolateral prefrontal
cortex during the resting state in problematic smartphone users.

The amygdala is a key area responsible for generating and
processing emotion that is involved in bottom-up attention to
emotional stimuli (44, 44), and researchers have reported that
levels of impulsivity were positively correlated with amygdala-
dorsolateral prefrontal cortex connectivity (46). These results
may indicate that aberrant FC between the affective network
and central executive network might contribute to impulsivity in
problematic smartphone users.

Lastly, we observed aberrant FC in brain regions responsible
for sensory processing (e.g., the postcentral gyrus and lingual
gyrus). Previous studies have demonstrated that patients
with Internet gaming disorder and problematic smartphone
users show aberrant FC in brain regions responsible for
sensory processing (44, 45). Taken together, aberrant
FC in brain regions responsible for sensory processing
may reflect “bottom-up” neural processing in problematic
smartphone users.

We acknowledge that this study has several shortcomings.
Firstly, this study was designed as a cross-sectional analysis
and thus limited in identifying causal relationships between
changes in resting state FC and problematic smartphone use.
Secondly, this study was limited in that problematic smartphone
usage was evaluated only by self-reporting questionnaires and
clinical interviews. Future studies with more precise measures
of smartphone usage patterns are needed. Third, resting-state
scan time was relatively short. Sufficient scan length can improve
reliability and enable rigorous censoring for motion correction
(46). Lastly, the age distribution of the subjects enrolled in
this study was relatively large. As smartphone usage time was
evaluated via self-reports, differences in smartphone usage time
and smartphone usage pattern across different age groups might
not be accurately reflected in the study. These limitations might
account for why we found no significant correlation between
FC strength and clinical variables. When related research is
conducted in the future, stratification analysis according to age
will be required.

Despite these limitations, we identified changes in underlying
neural correlates of problematic smartphone users by analyzing
key networks, including the salience, central executive,
default mode, and affective networks, from the perspective
of behavioral addiction. Overall, our results from multiple
network analysis suggests that neurobiological changes centered
around the salience network are associated with problematic
smartphone use.
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