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Major depressive disorder (MDD) is a leading cause of distress, disability, and suicides. As

per the latest WHO report, MDD affects more than 260 million people worldwide. Despite

decades of research, the underlying etiology of depression is not fully understood.

Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory

neurotransmitters, respectively, in the matured central nervous system. Imbalance in

the levels of these neurotransmitters has been implicated in different neurological

and psychiatric disorders including MDD. 1H nuclear magnetic resonance (NMR)

spectroscopy is a powerful non-invasive method to study neurometabolites homeostasis

in vivo. Additionally, 13C-NMR spectroscopy together with an intravenous administration

of non-radioactive 13C-labeled glucose or acetate provides a measure of neural

functions. In this review, we provide an overview of NMR-based measurements of

glutamate and GABA homeostasis, neurometabolic activity, and neurotransmitter cycling

in MDD. Finally, we highlight the impact of recent advancements in treatment strategies

against a depressive disorder that target glutamate and GABA pathways in the brain.

Keywords: antidepressant, brain, 13C-NMR spectroscopy, glutamine, ketamine, neurocircuitry, neurometabolism,

neurotransmitter

INTRODUCTION

Major depressive disorder (MDD) is a neuropsychiatric condition, characterized by low mood,
loss of interest in pleasurable activities, and suicidal ideation. It affects ∼5% of the population
worldwide (1). As per the WHO report (2020), around 0.8 million people commit suicide
every year, and more than 90% of these had a psychiatric diagnosis (2, 3). MDD is one of the
major contributors to chronic disease burden over the world population, and imparts a high
socioeconomic impact (4). Despite several decades of research, there are no robust physiological
andmolecular markers for psychiatric disorders. Therefore, diagnosis of these disorders is achieved
mostly by questionnaire-based psychiatric evaluation. The diagnostic criteria for psychiatric
disorders have been evolving continuously. The diagnostic standards and specifiers of MDD as
per the latest edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5, 2013)
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BOX 1 | Symptoms of MDD: as per diagnostic and statistical manual of mental disorder (DSM-V) at least �ve of the following symptoms must be present during

entire 2-week period (5).

➢ Consistently feeling sad, empty, and hopeless

➢ Markedly diminished interest in pleasurable activities

➢ Significant weight loss or weight gain

➢ Increased or decreased appetite

➢ Insomnia or hypersomnia

➢ Fatigue or loss of energy

➢ Feeling of worthlessness, feeling excessive, or inappropriate guilt

➢ Diminished ability to think or concentrate, or indecisiveness

➢ Recurrent thoughts of death and suicidal ideation without a specific plan

➢ Psychomotor agitation or retardation

These symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning. Moreover, the episode is not

attributable to the physiological effects of a substance or another medical condition.

are described in Box 1 (5). Very often, the symptoms of different
neuropsychiatric disorders overlap with each other and interfere
in precise diagnosis. Hence, there is a need for extensive research
on the identification of biomarkers for the development of
novel diagnostic strategies for MDD. Depression is a highly
variable disorder with multiple risk factors and causes that vary
at the individual level. Certain environmental factors such as
prematernal stress, childhood abuse, physical and sexual abuse,
continuous failures, substance abuse, sadness and severe trauma
increase the risk of depression (6, 7). Depression has been often
seen to be associated with various neurodegenerative disorders
(8) such as Parkinson’s disease, Alzheimer’s disease, amyotrophic
lateral sclerosis, and systemic diseases like diabetes (9) and
cancer (10).

Despite enormous efforts made by the global psychiatric
research community, the molecular mechanism of MDD is not
yet very clear. Several neuroimaging and postmortem studies
have shown a loss of neuronal and glial population in the
cingulate cortex, prefrontal cortex (PFC) (11) and hippocampus
(12, 13) of depressed subjects (Figure 1) (14, 15). Various genetic
factors (16), epigenetic changes (17) and endocrine pathways (18)
are believed to be involved in the pathophysiology of the disorder.
The elevated activity of the hypothalamic–pituitary–adrenal
(HPA) axis is at the heart of the neurobiological presumptions
of depression (19). Higher activity of HPA axis increases levels
of glucocorticoids in blood, plasma and cerebrospinal fluid
(CSF), which are greatly associated with stress. Additionally,
environmental factors and stress influence neuronal function
epigenetically. These factors alter gene expression by histone
acetylation or DNA methylation (20).

The role of epigenetics in depression is supported by
studies reporting antidepressive effects of histone deacetylase
inhibitors in rodent models of depression (20, 21). Additionally,
a large number of studies have reported a reduced level of
brain-derived neurotrophic factor (BDNF) in the hippocampus
(HPC) and PFC of depressed subjects (22). BDNF is crucial
for the activity-dependent formation and maintenance of
synapses by regulating the activity of the mTORC1 complex.
Activation of mTORC1 pathways promotes de novo synthesis of

various synaptic proteins, including GluA1, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits
and postsynaptic density protein 95 (PSD95) (23). Interventions
with different antidepressants have shown increased expression
of BDNF in PFC of the rodent brain (24, 25).

Neurotransmitters are the chemical messengers present
in presynaptic nerve terminals and are released into the
synaptic cleft in response to the action potential (26). These
neurotransmitters bind to specific receptors present on the
postsynaptic membrane, and thus facilitate the transmission of
the action potential across the synapse (26). Neurotransmitters
are broadly classified into amino acids, peptides, and
monoamines depending on their chemical properties. Amino
acid neurotransmitters include glutamate, γ-aminobutyric acid
(GABA), aspartate and glycine, which are abundant in the central
nervous system (CNS). Substance P, cholecystokinin, opioids and
neuropeptide Y belong to the peptide neurotransmitter category
(27). In the monoamine category, several neurotransmitters
including serotonin, dopamine, norepinephrine and epinephrine
are well-studied, and are shown to be involved in various
neuropsychiatric disorders (28, 29). Functionally, glutamate,
aspartate, dopamine, epinephrine and norepinephrine are
considered as excitatory neurotransmitters, while GABA, glycine
and serotonin are the major inhibitory neurotransmitters in the
matured mammalian CNS (30).

1H magnetic resonance spectroscopy (MRS) has emerged as
a powerful non-invasive method for the measurement of levels
of neurometabolites including glutamate and GABA in the brain
(31). In addition, 13C-MRS in conjunction with administration
of 13C-labeled respiratory substrates (glucose and acetate) allows
analysis of the cell-specific metabolic activity in animals as
well as in the human brain. This provides a non-invasive
measurement of the cerebral metabolic rate of glucose oxidation,
ATP production and neurotransmitter cycling (32, 33).

Neurocircuitry of Reward and Emotions
Depression is characterized by a deficit in various aspects
of reward, which is defined as responses toward positive
emotional stimuli such as food, sex and social interaction (34).
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FIGURE 1 | Schematic of glutamatergic and GABAergic projections involved in mood regulation and reward pathway. A subset of several known interconnections

among different brain regions are shown. Major glutamatergic projections (red color) arise from the frontal cortex to the anterior cingulate cortex (ACC), thalamus (TH),

ventral tegmental area (VTA), hippocampus (HPC) and nucleus accumbens (NAc). Additionally, glutamatergic neurons originate from hippocampus, and innervate into

hypothalamus (HT), VTA, NAc and PFC and from amygdala to HT, ACC and NAc. The GABAergic projections (green color) are widely distributed throughout the brain.

The major projections that are relevant to this review are from HT to the occipital and parietal cortex, HPC to PFC, and NAc to the thalamus and VTA. The structural

changes observed in the brain regions of depressed subjects are shown in the respective boxes.

Several brain regions such as prefrontal cortex (PFC), nucleus
accumbens (NAc), ventral tegmental area (VTA), hippocampus
(HPC) and amygdala are interconnected with each other
via dopaminergic, serotonergic, glutamatergic and GABAergic
neurons, which comprise the reward circuit (35, 36). The reward
circuitry mainly includes dopaminergic projection from VTA
to NAc, PFC, hippocampus, amygdala, as well as other brain
regions. Additionally, glutamatergic and GABAergic projections
interconnect these regions very densely (Figure 1). The cortical
glutamate connections can be divided broadly into five major
arcs that include PFC to the brainstem, PFC to the striatum
and NAc, cerebral cortex to the thalamus, intracortical glutamate
projections, and from the thalamus to the cerebral cortex (37, 38).
Moreover, glutamatergic connections are found in subcortical
regions: hippocampus to VTA, hypothalamus, NAc and PFC;
and amygdala to NAc, hypothalamus and ACC. GABAergic
neurons also make dense connections between brain regions
that include projections from the striatum to substantia nigra
(SN) and brainstem; thalamus to SN; HPC to occipital and
parietal cortex; HPC to thalamus and striatum; NAc to VTA and
thalamus; and VTA to PFC and NAc (Figure 1) (37, 39). The
brain reward regions have been linked with specific behavioral

functions, e.g., PFC for decision making and intelligence, HPC
for emotional management, amygdala as the fear center, and
NAc-VTA for motivation, pleasure and reward. These brain
regions have broader functions in the management of emotional
and cognitive behavior. Various imaging and postmortem studies
have shown reduced volume and atrophy in these brain regions
of depressed subjects and animal models of depression (11–15).

Neurometabolites Homeostasis in Healthy
Brain
Neurometabolites homeostasis plays a very important role in
brain function, and has been shown to be affected in animal
models and human subjects of various neuropsychiatric disorders
including MDD (40, 41). Several small molecules including
N-acetyl-aspartate (NAA) (∼9 µmol/g), alanine (∼1 µmol/g),
aspartate (∼1.2 µmol/g), choline (∼1.5 µmol/g), creatine (∼7
µmol/g), GABA (∼1.5 µmol/g), glutamate (∼10 µmol/g),
glutamine (∼2.5 µmol/g), glycine (∼1 µmol/g), myo-inositol
(∼6 µmol/g) and taurine (∼1.2 µmol/g) contribute to major
fraction of neurometabolites pool in healthy brain (42).

In addition to precursors for different metabolites, these
molecules play various critical functions that include signal
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transduction, osmoregulation, cell growth and protein synthesis
(42). Glutamate released into synaptic cleft increases the
membrane potential of postsynaptic neurons, making them
more likely to lead to an action potential. Moreover, it plays a
critical role in long-term potentiation (43), synaptic plasticity
(44), learning and memory (45), and various cognitive functions
(46). Likewise, GABA, the major inhibitory neurotransmitter in
the matured CNS, inhibits the propagation of action potential
(47). Several studies have revealed the involvement of GABA
in learning and memory (48–50), aggressive–defensive behavior,
and impulsivity (51, 52). NAA is localized mostly in neurons, and
is known to be a marker of neuronal viability and health. It acts as
a precursor for NAAG, the storage form of aspartate, and serves
a variety of other functions (53). Myo-inositol, mostly localized
in astroglia, acts as an osmolite, plays an essential role in cell
growth, and is believed to be amarker of the glial population (42).
Moreover, it is considered an inflammatory marker in CNS (42).
Nearly 20 vital metabolites, which include the above-mentioned
molecules, can be detected and quantified in vivo by different
MR spectroscopic approaches in human (54) and animal brains
(55) (Figure 2). The most commonly used NMR methods for
detection and quantification of brain metabolites are described
in the subsequent section.

Glutamate and GABA Energy Metabolism
in Brain
The human brain accounts for 2% of the body weight, but it
contributes to 20% of the total energy consumed, indicating
the overwhelming energy demand of the brain (56, 57). In
a matured brain, this energy requirement is majorly fulfilled
by the oxidation of glucose. Most of the energy harvested
in the brain is utilized for the processes associated with
glutamatergic and GABAergic neurotransmission (57). The
glutamate released from glutamatergic neurons into the synaptic

cleft is taken up by astrocytes and converted to glutamine
by glutamine synthetase. Glutamine is transported back to

neurons, hydrolyzed to glutamate, and repackaged into vesicles
for the next release. This process is referred as glutamate–

glutamine neurotransmitter cycling (58). Similarly, substrate

cycle involving GABA and glutamine (GABA–glutamine) occurs
between GABAergic neurons and astrocytes (58). In this

cycle, the released GABA into the synapse is taken up
majorly by astrocytes, wherein it is metabolized to succinate
by GABA-transaminase, and enters into the TCA cycle and
ultimately converted to glutamine. The glutamine thus formed
is further transported to GABAergic neurons and converted to
GABA by the successive action of glutaminase and glutamate
decarboxylase (59, 60). The rates of neuronal glucose oxidation
and neurotransmitter cycling have been monitored by a
tracer approach, wherein 13C-labeled glucose is administered
intravenously, and labeling of brain amino acids is measured in
vivo by 13C-NMR spectroscopy (61). The metabolism of [1,6-
13C2]glucose via glycolysis followed by TCA cycle labels GluC4 in
glutamatergic and GABAergic neurons (Figure 3). In GABAergic
neurons, GluC4 is decarboxylated to GABAC2 by glutamate
decarboxylase (GAD). GlnC4 gets labeled from GluC4 and
GABAC2 through glutamate–glutamine and GABA-glutamine
neurotransmitter cycling, respectively. Further metabolism of
GluC4 and GABAC2 in the corresponding TCA cycle labels
AspC2/C3, GluC2/C3, and GABAC3/C4. The kinetics of label
incorporation in different amino acids is analyzed to determine
the rate of glucose oxidation in the glutamatergic, GABAergic
neurons, and rate of neurotransmitter cycling (59). Energy
budget estimates for the cost of signaling based on anatomic
and physiological data in the cerebral cortex indicated that most
of the signaling energy is utilized on postsynaptic glutamate
receptors, followed by action potentials and resting potentials.
In the cerebellar cortex, glutamatergic neurons use 75%, while

FIGURE 2 | A representative localized in vivo 1H-NMR spectrum from mouse cerebral cortex. NMR spectrum was recorded using, a vertical wide bore magnet

interfaced with 600 MHz MR spectrometer. 1H-MR spectroscopy was carried out using STEAM method in conjunction with outer volume suppression (OVS) and

water suppression (VAPOR) from a voxel (4.0 × 1.2 × 2.5 mm3 ) with TE/TR = 4/4,000ms with 512 averaging: Peak labels are Asp, aspartate; Cho, choline; Cr,

creatine; GABA, γ-aminobutyric acid; Gln, glutamine; Glu, glutamate; Glx, glutamate + glutamine; Lac, lactate; m-Ino, myo-inositol; MM, macromolecule; NAA,

N-acetyl aspartate; Tau, taurine.
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FIGURE 3 | A schematic of three compartment metabolic model showing 13C

labeling of amino acids from [1-13C]glucose. Metabolism of [1-13C]glucose via

glutamatergic and GABAergic TCA cycle labels GluC4. In GABAergic neurons,

GluC4 is further decarboxylated to GABAC2 by glutamate decarboxylase

(GAD). The labeling of GlnC4 occurs by release and uptake of GluC4 and

GABAC2 in astrocytes followed by transamination by glutamine synthetase

(GS). Further metabolism of GluC4 and GABAC2 transfers the label into

AspC2/C3. α-KGC4, α-ketoglutarate-C4; AcCoA2, acetyl co-enzymeA-C2;

AspC2/C3, aspartate-C2/C3; GABAC2, γ-aminobutyric acid-C2; GluC4,

glutamate-C4; GAD, glutamate decarboxylase; GlnC4, glutamine-C4; GS,

glutamine synthetase; OAAC2/C3, oxaloacetate-C2/C3; PAG, phosphate

activated glutaminase; SucC3, succinate-C3; Vcyc(GABA−Gln), GABA–glutamine

cycling flux; Vcyc(Glu−Gln), glutamate–glutamine cycling flux; Vshunt, flux of GABA

shunt; VTCA(glia), astroglial TCA cycle flux; VTCA(GABA), GABAergic TCA cycle

flux; VTCA(Glu), glutamatergic TCA cycle flux.

GABAergic neurons use 25% of the signaling energy (57). Hence,
an estimate of the energy expenditure of the glutamatergic and
GABAergic neurons using 13C-MRS approach directly reflects
their functional status.

HYPOTHESIS

The most prevalent hypothesis of depression posits that
depletion in monoamine neurotransmitters level is the
underlying cause of the disease (62, 63). Recent studies in animal
models and human subjects have suggested an association of
glutamatergic and GABAergic systems with the pathophysiology
of depression (64–66). Reduced expression of receptor subunits,
imbalances in their levels, decreased glutamatergic and
GABAergic neurotransmission, and altered energy metabolism
are known to play a critical role in the progression of
depression (64, 65).

Glutamatergic Hypothesis of Depression
Glutamatergic neurons constitute approximately 80% of
the synapses in the neocortex (67). Glutamate is released
at synapses throughout the brain, and exerts changes in
postsynaptic excitability and neuroplasticity (68). It activates
various downstream pathways of nuclear genes by binding
to a variety of membrane-bound receptors present on the
postsynaptic membrane, which regulate secondary messenger
systems. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPAR), N-methyl-D-aspartate (NMDAR), and kainate
are the fast-acting ionotropic receptors that get activated by
glutamate binding (69). Glutamate also binds to G-protein-
coupled receptors, known as metabotropic glutamate receptors,
which mediate various cellular processes and slow-acting
changes through secondary messengers such as cyclic adenosine
monophosphate (cAMP), cyclic guanosine monophosphate
(cGMP) and phosphatidylinositol (69). AMPA and kainate
receptors help in the conduction of action potential primarily
through the flux of Na+ ions, while NMDAR is distinguished by
its more permeability to Ca2+ ions. NMDA receptor signaling
promotes various responses such as excitation, neurotrophic
function, and can even activate cell death pathways. Abnormal
activity of NMDA receptor imparts harmful effects on neurons
(69). Overexcitation of NMDAR by excessive glutamate release
or impaired synaptic clearance leads to the death of neurons by
excitotoxicity (70).

A large number of clinical as well as animal studies have
reported impairment in the glutamatergic system in various
limbic and cortical areas of the brain of depressed subjects
(71, 72). Additionally, postmortem histopathology (73) and a
number of 1H-MRS studies (74, 75) have shed light on the
association of the aberrant glutamate system with maladaptive
changes in the structure and function of excitatory circuitry.
Several studies have reported decreased expression of NMDA
(73, 76, 77) and AMPA receptor subunits (77, 78) in PFC of
depressed individuals. Reduced expression of NMDA receptor
subunits has also been seen in the postmortem brains of
suicide victims (73, 79). Moreover, the decreased availability
of metabotropic receptor mGluR5 in PFC, cingulate cortex,
thalamus, hippocampus, and other cortical regions has been
reported in depressed individuals (80, 81). Additionally, loss of
glutamatergic neurons in the orbitofrontal cortex is associated
with the pathophysiology of depression (82). These shreds of
evidence suggest the involvement of glutamatergic system with
the pathophysiology of MDD.

GABAergic Hypothesis of Depression
Glutamate acts as the precursor for GABA, the predominant
inhibitory neurotransmitter in the matured brain (83).
GABAergic neurons contribute to one-third of total synapses
in the CNS and help in shaping the neural network dynamics
(84). These inhibitory neurons are known to play a pivotal role
in physiological processes that are often affected in psychiatric
disorders such as neural plasticity, sensory processing, stress
reactivity, memory formation, and attention (84, 85). GABA
binds to two different classes of receptors, the fast-acting ligand
gated or ionotropic receptor GABAA and GABAB. Activation
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of GABAA receptor leads to an influx of chloride ions, which
inhibits the propagation of action potential. However, activation
of GABAB receptors stimulates K+ channel opening, which
helps in achieving a hyperpolarized state that leads to reduced
transmission of action potential (86, 87).

GABAergic interneurons are identified by their expression
of specific receptors for somatostatin (SST), parvalbumin (PV),
and 5-HT3a. SST and PV interneurons make up to 30 and
40%, respectively, of the total GABAergic neuronal pool (88).
Postmortem studies of depressed subjects have shown a reduced
level of SST and PV interneurons in PFC as well as in other
cortical areas (89). Additionally, a decrease in the level of
SST messenger RNA (mRNA) has been reported in several
brain regions, including dorsolateral PFC (90, 91), ACC (92)
and amygdala (93) in depression (47). Moreover, multiple
studies have reported reduced expression of GAD67 and GABA
transporters in the brain of MDD subjects (90, 93, 94). In
addition, genetically modified animals with deletion of specific
GABA receptor subunits show depressive phenotypes (95,
96). Furthermore, treatment with various antidepressants (97),
electroconvulsive therapy (ECT) (98) and cognitive behavioral
therapy (74) tends to restore GABA level in depressed
subjects (47). These multiple evidence suggest that impairment
in GABAergic transmission plays a significant role in the
pathophysiology of depression (99).

IN VIVO 1H-MR SPECTROSCOPY

Proton (1H) is the most abundant and sensitive NMR active
nucleus, and is an integral part of every neurometabolite. Due
to the presence of different functional groups, 1H belonging
to different molecules or attached to different carbon atoms
within the same molecule experiences variation in the electronic
environment. This results in differences in 1H frequencies, which
is commonly known as chemical shift. This parameter is used for
the distinction of metabolites by 1H-MR spectroscopy without
administering any chemical agent.

The neurochemical profile provides valuable information
when measured from a well-defined region/volume of the brain.
This is measured using localized in vivo MR spectroscopy.
The localization methods in MR spectroscopy are generally
based on magnetic field gradients and radiofrequency pulses.
A three dimensional voxel is selected by application of band
selective radiofrequency (RF) pulses together with magnetic field
gradient along X-, Y- and Z-axes. The most commonly used MR
localization methods are described below.

Image Selected in vivo Spectroscopy
This approach employs three frequency selective inversion
pulses followed by non-selective excitation of the entire sample
in the presence of three orthogonal magnetic field gradients.
Image selected in vivo spectroscopy (ISIS) achieves complete 3D
localization of voxel in eight scans (100).

Point-Resolved Spectroscopy (PRESS)
This is referred as a double spin-echo localization method,
wherein a 90◦ radiofrequency pulse is followed by two 180◦

pulses together with magnetic field gradients along three
orthogonal axes (101). This produces signals exclusively from the
desired volume of interest. Due to complete refocusing of the
magnetization, the signal-to-noise ratio (SNR) is relatively higher
in point-resolved spectroscopy (PRESS).

Stimulated Echo Acquisition Mode
(STEAM)
It is a single scan localization technique, which involves
application of three 90◦ radiofrequency pulses together with
magnetic field gradients along three orthogonal axes. Due
to selection of stimulated echo using three slice-selective
90◦ radiofrequency pulses, stimulated echo acquisition mode
(STEAM) provides signals from metabolites at a very short echo
time (∼5ms) (102). Furthermore, as all the three pulses are 90◦

in STEAM, the amount of energy absorbed per mass of tissue
is lower in this sequence as compared with PRESS. However, as
STEAM focuses only 50% of the magnetization, the SNR of NMR
signal in STEAM is 50% of that obtained in PRESS approach.

A combination of these localization methods together
with outer volume suppression (103) provides better quality
localization, especially when the voxel is relatively small to
the entire excited volume. Furthermore, in vivo measurements
of metabolites whose concentration is in the range of 1–30
µmol/g often encounter huge water signals (55,555 µmol/g),
hence requires effective suppression of water for quantification.
Various NMR characteristics like relaxation time, scalar coupling,
chemical shift and diffusion have been exploited to develop
several effective approaches for water suppression. Chemical shift
selective (CHESS) (104) and variable pulse powers and optimized
relaxation delay (VAPOR) (105) are commonly used approaches
for water suppression during in vivo 1H-MR spectroscopy.

13C-MR Spectroscopy
1H-MRS provides static information for metabolites from a given
brain region. In contrast, 13C-MRS is very useful in monitoring
the flow of labels from 13C-labeled substrates to different
neurotransmitters such as GABA, glutamate and aspartate,
similar to that is used in the tracer approach to evaluate the
functional status of tissues and organs (Figure 4). The kinetics
of 13C labeling of brain amino acids from 13C-labeled precursors
(glucose/acetate) is useful to estimate the rates of synthesis and
catabolism, and thus offer a measurement of neuroenergetics in a
given brain region. 13C-NMR spectroscopy in the brain has been
exploited extensively to understand brain energy metabolism in
healthy and different neurological disorders (61).

NEUROMETABOLITES HOMEOSTASIS
AND METABOLISM IN DEPRESSION

As mentioned earlier, the maintenance of neurometabolites
homeostasis is critical for the proper functioning of a healthy
brain. The changes in the levels of glutamate, GABA, and NAA
are often reported under MDD. These are described in details in
the following sections.
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FIGURE 4 | A representative 13C NMR spectrum of cortical extract of mouse brain showing labeling of various amino acids from [1,6-13C2]glucose. Urethane

anesthetized mouse was infused with [1,6-13C2]glucose for 90min. Brain metabolites were extracted from the cerebral cortex, and 13C NMR spectrum of the extract

was recorded at 150 MHz NMR spectrometer using power gate decoupling. The spectrum shown in the upper panel is the expansion from 24 to 41 ppm. AspC3,

aspartate-C3; GABAC2, γ-aminobutyric acid-C2; GABAC3, γ-aminobutyric acid-C3; GABAC4, γ-aminobutyric acid-C4; GluC2, glutamate-C2; GluC3, glutamate-C3;

GluC4, glutamate-C4; GlnC2, glutamine-C2; GlnC3, glutamine-C3; GlnC4, glutamine-C4; GlxC1, (glutamate + glutamine)-C1; GlcC1β, β-D-glucose-C1; GlcC1α,

α-D-glucose-C; LacC3, lactate-C3.

Glutamate Homeostasis Under Depression
The 1H-MRS method has been used extensively for the
assessment of glutamate and other metabolite levels in the brain
of depressed subjects and rodent models of depression (Table 1).
Reduced level of glutamate has been reported in PFC of mice
in different models of depression such as chronic unpredictable
mild stress (CUMS) (66), chronic social defeat stress (CSDS)
(112, 116), and chronic forced swim stress (CFSS) (122). The
decreased glutamate level in PFC has also been reported during
the first episode of depression (107, 114). The progress of
depression plays a crucial role in abnormalities in glutamate,
e.g., chronic or remitted–recurrentMDD subjects showed further
reduction in glutamate level in PFC as compared with the
first episode depressed subjects (119). Antidepressive medication
aids in the restoration of neurometabolite homeostasis to
normal level. The unmedicated subjects exhibited lower levels
of glutamate plus glutamine (Glx) in the dorsomedial/dorsal
anterolateral prefrontal and ventromedial prefrontal cortex as
compared with the medicated ones (71). However, there are
few inconsistencies in the level of glutamate in depression, as
some reports have shown increased glutamate in PFC of the
postpartum depressed female subjects (117) and animal model
of depression (125).

Glutamate level was reported to be decreased together with
myo-inositol (a glial marker) and NAA in ACC of depressed

subjects (120, 126). Reduced levels of Glx and glutamine have
also been reported in the hippocampus of unipolarMDD subjects
(121). In accordance with these findings, a reduction in the levels
of Glu and NAA have been reported in the hippocampus of
chronic mild stress (CMS) (118) and CFSS mouse models of
depression (122). In a very recent study, levels of glutamate and
glutamine have been reported to be reduced in the sensorimotor
cortex of the chronic restraint stressed (CRS) rat model of
depression. However, several studies have shown an increase in
the level of glutamate in ACC of depressed subjects (106, 111),
hippocampus of MDD subjects with alcoholic tendencies (115),
and CSDS model of depression in mice.

A meta-analysis of 1H-MRS studies involving depressed
subjects has revealed a decrease in levels of glutamate and
glutamine primarily in ACC including the reduced level of Glx
in other brain regions (127). Additionally, a very recent meta-
analysis involving a greater number of participants concluded
that lower levels of glutamatergic metabolites (glutamate and
glutamine) in the medial frontal cortex are linked with the
etiology of MDD (128). The reduced level of glutamate in
MDD may be due to a lower supply of precursor glutamine
by glutamate–glutamine, impaired glucose metabolism, and
altered glial activity (64). The impaired functionality of glial
cells in depression could lead to a reduction in synaptic
glutamate uptake, which may result in elevated extracellular

Frontiers in Psychiatry | www.frontiersin.org 7 April 2021 | Volume 12 | Article 637863

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sarawagi et al. GABA and Glutamate in Depression

TABLE 1 | Brain glutamate homeostasis in depression.

S. No. Diagnosis/model Brain region Species Technique Quality index Glu Glx NAA References

1. MDD dACC Human (H 25, D 51) MEGAPRESS, 4T CRI < 19% ↓ – – Benson et al. (106)

2. MDD vmPFC Human (H 63, D 31) PRESS, 3T CRLB < 30% ↓ ↓ – Draganov et al.

2020 (107)

3. MDD RFL Human (H 32, D 32) EPSI, 3T CRLB < 25% NS – ↓ Kahl et al. (108)

4. Depression (CRS) SSC Rat (H 8, D 33) PRESS, 9.4T CRLB < 15%, NR > 9.5 ↓ ↓ – Seewo et al. (109)

5. Depression (CRS) NAc Mice (H 14, D 14) SPECIAL, 14.1T CRLB < 20% ↓ – ↓ Cherix et al. (110)

6 BID EU ACC Humans (H 80, D 128) PRESS, 3T CRLB < 20%, SNR > 10 ↑ ↑ NS Soeiro-de-SouZa

et al. (111)

7. Depression (CSDS) PFC Mice (H 24, D 25) Ex vivo, 1H-[13C]-NMR, 14T – ↓ – ↓ Mishra et al. (112)

8. MDD rdPFC Human (H 33, D 25) SPECIAL CRLB < 20% NS ↓ ↓ Jollant et al. (113)

9. MDD PFC Human (H 27, D 22) PRESS, 3T CRLB < 10% ↓ ↓ – Shirayama et al.

(114)

10. MDD HPC Human (H 38, D 63) PRESS, 3T CRLB < 20% ↑ – – Hermens et al.

(115)

11. Depression (CSDS) PFC Mice (H 15, D 30) Ex vivo, 1H-[13C]-NMR, 14T – ↓ – ↓ Veeraiah et al.

(116)

12. PPD mPFC Humans (H 12, D 12) STEAM, 3T CRLB < 20% ↑ NS NS McEwen et al.

(117)

13. Depression (CMS) PFC & HPC Rat (H 10, D 10) PRESS, 7T CRLB < 20% ↓ ↓ ↓ Hemanth Kumar

et al. (118)

14. MDD vmPFC Humans (H 15, D 45) PRESS, 3T CRLB < 30% ↓ – ↓ Portella et al. (119)

15. MDD ACC Humans (H 26, D 23) PRESS, 3T CRLB < 20%, SNR > 15 ↓ NS ↓ Järnum et al. (120)

16. MDD HPC Humans (H 10, D 18) PRESS, 3T – – ↓ – Block et al. (121)

17. Depression (CFSS) PFC Mice (H 12, D 12) Ex vivo, 1H NMR, 11.7T – ↓ ↓ NS Li et al. (122)

HPC ↓ NS ↓

18. MDD dm/da PFC Humans (H 20, D 20) PRESS based J editing, 3T – – ↓ NS Hasler et al. (71)

19. MDD Subcortical nuclei Humans (H 21, D 20) PRESS, 1.5T – ↓ ↓ – Ajilore et al. (123)

20. MDD OCC Humans (H 38, D 33) ISIS, J-editing, 2.1T – ↑ – – Sanacora et al.

(72)

21. MDD ACC Humans (H 18, D 19) PRESS, 1.5T – ↓ ↓ NS Auer et al. (124)

ACC, anterior cingulate cortex; BID EU, euthymic bipolar I disorder; CFS, chronic forced swim stress; CRS, chronic restraint stress; CUMS, chronic unpredictable mild stress; CSDS,

chronic social defeat stress; CRI, Cramer–Rao index; CRLB, Cramer–Rao lower bound; dACC, dorsal anterior cingulate cortex; dm/daPFC, dorsomedial/dorsal anterolateral PFC;

EPSI, echo planar spectroscopic imaging; EAP, experimental autoimmune prostitis; HPC, hippocampus; ISIS, image selected in vivo spectroscopy; LD, light deprivation; MDD, major

depressive disorder; mPFC, medial prefrontal cortex; MEGA-PRESS, Meshcher–Garwood point-resolved spectroscopy; NAc, nucleus accumbens; NS, no significant change; OCC,

occipital cortex; PFC, prefrontal cortex; PPD, postpartum depression; PRESS, point-resolved spectroscopy; rdPFC, right dorsal PFC; RFL, right frontal lobe; SNR, signal-to-noise ratio;

SPECIAL, spin echo full intensity acquired localized sequence; SSC, sensorimotor cortex; STEAM, stimulated echo acquisition mode; TRD, treatment resistant depression; UDR, unipolar

depression; vmPFC, ventromedial prefrontal region; ↓ depicts decrease, ↑ represents increase. The numbers in the parenthesis under species represent the number of healthy (H) and

depressed (D) subject.

glutamate level that ultimately accelerates neuronal death by
glutamate excitotoxicity (129). In fact, reduced expression of
excitatory amino acid transporter (EAAT2) and glutamate
synthetase (GS) transcripts, which are localized in glia, have been
reported in CSDS mouse model of depression (116, 130). These
studies support the hypo-glutamatergic hypothesis of depression
and suggest that modulation of the glutamatergic system for
remission of depression.

GABA Homeostasis Under Depression
GABAergic system is involved in most psychiatric disorders
including major depressive disorder (131), schizophrenia (132),
bipolar disorder (133) and autism (134). Several approaches
including epigenetics, postmortem studies, and measurement of
GABA level in cerebrospinal fluid and plasma have been used
to unravel the role of the GABA system in the pathophysiology

of psychiatric disorders (131). Lower GABA levels in plasma
(135) and cerebrospinal fluid (136) have been reported in
depressed subjects. A summary of 1H MRS-based measure of
GABA level in the depressed subjects as well as in animal
models of depression is presented in Table 2. Several studies
have shown a lower level of GABA in MDD subjects as
compared with healthy controls (131, 154). These include lower
GABA concentration in OCC (72, 75, 144), dorsomedial/dorsal
anterolateral PFC (71) and ACC of depressed subjects (137,
139, 142, 143, 155). Moreover, a very recent report has
shown reduced GABA level in ventromedial PFC (107) of
depressed subjects. Additionally, reduced level of GABA has
been reported in PFC of chronic stress model of depression
in rodents (112, 118). Hence, lower GABA level is often
considered as one of the most promising endophenotypes of
MDD (156).
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TABLE 2 | Brain GABA homeostasis in depression.

S. No. Diagnosis/model Brain region Species Technique Quality index GABA NAA References

1. MDD vmPFC Human (H 63, D 31) PRESS, 3T CRLB < 30% ↑ – Draganov et al.

(107)

2. MDD Striatum Human (H 16, D 20) J-edited MEGAPRESS, 3T – ↑ – Bradley et al.

(137)

ACC ↓ –

3. CUMS HPC Rat (H 12, D 12) PRESS, 9.4T CRLB < 10% ↑ NS Sekar et al. (138)

4. MDD ACC Human (H 36, D 44) J-edited, 3T – ↓ – Gabbay et al.

(139)

5. MDD ACC Human (H 26, D 33) J-edited, 3T – ↓ – Abdallah et al.

(140)

6. MDD ACC Humans (H 21, D 20) J-edited, 3T – ↓ – Gabbay et al.

(141)

7. CMS PFC and HPC Rat (H 10, D 10) PRESS, 7T CRLB < 20% ↓ ↓ Hemanth Kumar

et al. (118)

8. MDD ACC and OCC Humans (H 24, D 33) J-edited, 3T – ↓ – Price et al. (142)

9. MDD pgACC Humans (H 24, D 19) 2D-JPRESS, 3T CRLB < 20% NS NS Walter et al.

(143)

10. MDD-R OCC and ACC Humans (H 11, D 12) MEGA-PRESS, 3T CRLB < 20% ↓ NS Bhagwagar et al.

(144)

11. MDD dm/da PFC Humans (H 20, D 20) PRESS based J editing, 3T – ↓ NS Hasler et al. (71)

12. PPD OCC Humans (H 14, D 9) J-editing, 2.1T – ↓ – Epperson et al.

(145)

13. MDD OCC Humans (H 38, D 33) J-editing, 2.1T – ↓ – Sanacora et al.

(72)

14. MDD OCC Humans (H 18, D 14) J-editing, 2.1T – ↓ – Sanacora et al.

(75)

ACC, anterior cingulate cortex; CMS, chronic mild stress; CUMS, chronic unpredictable mild stress; CRLB, Cramer–Rao lower bound; dm/daPFC, dorsomedial/dorsal anterolateral PFC;

HPC, hippocampus; MDD, major depressive disorder; MDD-R, recovered depression; MEGA-PRESS, Meshcher–Garwood point-resolved spectroscopy; NS, no significant change;

OCC, occipital cortex; pgACC, pregenual anterior cingulate cortex; PFC, prefrontal cortex; PPD, postpartum depression; PRESS, point-resolved spectroscopy; SNR, signal-to-noise

ratio; vmPFC, ventromedial prefrontal region; ↓ depicts decrease, ↑ represents increase. The numbers in the parenthesis under species represent the number of healthy (H) and

depressed (D) subject.

In contrast to glutamate, whose level is independent of
the mood of depressed subjects, the GABA level is state
dependent, as its concentration in remitted MDD subjects
is similar to healthy controls (40). It has been observed
that unmedicated patients had reduced level of GABA in
the dorsomedial/dorsal anterolateral PFC as compared with
medicated subjects. Additionally, longitudinal 1H-MRS studies
in MDD subjects have shown restoration of GABA level after
electroconvulsive therapy (98), cognitive behavioral therapy (74),
treatment with ketamine (150), and selective serotonin reuptake
inhibitors (SSRIs) (97). Moreover, 1H-MRS measurements have
shown lower OCC GABA level in treatment-resistant depressed
subjects as compared with non-resistant depressed subjects and
healthy volunteers (142, 157).

N-Acetyl Aspartate Homeostasis Under
Depression
NAA is the strongest signal in 1H-MRS, and is exclusively
localized in neurons. Although the physiological role of NAA
in neural function is unclear, it is typically associated with
neuronal integrity and mitochondrial health (158). Reduced level
of NAA is reported in different brain regions of depressed
subjects, including PFC (112, 113), ACC (120, 126), right frontal
and parietal lobe (108), and in the hippocampus (122, 159)

(Tables 1, 2). A lower level of NAA has also been seen in
the hippocampus (122), nucleus accumbens (110) and PFC
(112, 116) of rodent models of depression. Reduced levels of
NAA along with glutamate suggest decrease in viability of
glutamatergic neurons in depression.

Glutamate and GABA Energy Metabolism
in Depression
Positron emission tomography (PET) (160, 161) and 13C-
MRS are widely used techniques for evaluating brain energy
metabolism (162) in humans and rodents. Neurometabolic
activities have been investigated using 13C-MRS with an
administration of 13C-labeled substrates (59, 61). As 13C-
MRS can distinguish labeling of different carbon positions of
glutamate, glutamine, GABA and aspartate, it is possible to
measure TCA cycle fluxes separately for glutamatergic neurons,
GABAergic neurons and astrocytes by appropriate modeling
of the 13C turnover of neurometabolites (60, 163). Early 13C-
MRS studies from Shulman et al. have led the foundation
of quantitative measurement of rates of neuronal glucose
oxidation and neurotransmitter cycling (164, 165). The 13C-
NMR measurements together with the infusion of 13C-labeled
substrates in mice (60), rats (163) and human (166) have
shown that neuronal mitochondrial TCA cycle in the cerebral

Frontiers in Psychiatry | www.frontiersin.org 9 April 2021 | Volume 12 | Article 637863

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Sarawagi et al. GABA and Glutamate in Depression

cortex contributes ∼70–85% of the total energy produced
and the remaining (∼15–30%) by astroglia. The GABAergic
mitochondrial TCA cycle contributes to ∼20% of total neuronal
TCA cycle in rats (59) and mice cerebral cortex (60). Most of the
neuronal energy is used to support the processes associated with
glutamate signaling such as postsynaptic glutamate receptors
(50%) and action potential (20%) in the cerebral cortex (56,
57). Most importantly, 13C-NMR measurements have shown
that rates of oxidative glucose metabolism in neurons and
neurotransmitter cycling are stoichiometrically (1:1) coupled
(165, 167), indicating that energy requirement for cycling of each
glutamate molecule is powered by complete oxidation of one
molecule of glucose in neurons (168, 169).

There is limited information about brain mitochondrial

energetics in depressed subjects. A recent 13C-MRS study

performed by the Yale Psychiatric group has reported a

∼25% reduction in the mitochondrial energy production in

glutamatergic neurons in the occipital cortex of depressed

subjects (64). However, there was no change in the GABA

synthesis rate and glutamate–glutamine neurotransmitter cycling
flux. Using CSDS mouse model of depression, we have
reported a reduction in the rate of glucose oxidation in
glutamatergic and GABAergic neurons in PFC of C57BL6
mice (116). Additionally, glutamate–glutamine cycling was
reduced in mice exhibiting depression-like phenotype (112).
Moreover, a very recent measurement has revealed decreased
glutamatergic (40%) and GABAergic (20%) neurometabolic
activity in PFC of CUMS model of depression (66). These
alterations were reflected in a large reduction in the rate of
neuronal ATP synthesis. Additionally, excitatory and inhibitory
synaptic transmissions were reduced by∼40% in these mice. The
reduced synaptic transmission in CUMS mice was corroborated

by decreased labeling of GABA-C2, Glu-C4, and Gln-C4 from
[2-13C]acetate (66).

Effect of Antidepressants on the
Glutamatergic and GABAergic Systems
Antidepressants are categorized into different classes: selective
serotonin reuptake inhibitors, serotonin–norepinephrine
reuptake inhibitors, and selective norepinephrine reuptake
inhibitors, which increase the level of synaptic monoamine
neurotransmitters by blocking their reuptake in neurons.
The antidepressants belonging to the monoamine oxidase
inhibitors category increase tissue levels of monoamines by
suppressing the activity of corresponding oxidases. These
molecules increase synaptic plasticity, activate neurogenesis
in the adult hippocampus, and enhance the expression of
neurotrophic factors (170, 171). However, despite the increase
in brain monoamine level with few doses of conventional
antidepressants, the desired outcomes are usually achieved only
after several weeks to months of continuous administration
(172). Moreover, a significant fraction of subjects, commonly
referred to as treatment-resistant, do not respond to these
antidepressants despite the use of various therapeutic
strategies (173).

Interestingly, a single subanesthetic dose of ketamine,
a non-competitive NMDA channel blocker, produces rapid
antidepressant actions within hours of administration, and the
effects last for several days (150, 174) (Table 3). Although, the
precise mechanism of ketamine action is elusive, various studies
have reported that acute intervention with a low dose of ketamine
increases glutamate efflux in PFC of mice and rats (112, 175,
176). These studies led to hypothesize that partial antagonism
of NMDA receptor by a subanesthetic dose of ketamine may

TABLE 3 | Impact of ketamine on neurometabolites homeostasis in depression.

S. No. Species Brain region Sample size Dose Technique Quality index Glu Glx GABA References

1. Human (MDD) pgACC HP: 12, HK: 11

DP: 16, DK: 18

0.5 mg/kg (iv) for

40min

PRESS, 7T SNR > 150 NS – – Evans et al. (146)

2. Human (HV) ACC HP: 16, HK: 31 0.23 mg/kg (iv) in

1 h

PRESS, 3T – – ↑ – Javitt et al. (147)

3. Humans (HV) pgACC HP: 14, HK: 12 0.5 mg/kg (iv) for

40 min

STEAM, 7T CRLB < 20% ↓ – – Li M. et al. (148)

4. Human (HV) HPC HP: 12, HK: 15 0.27 mg/kg (iv) PRESS, 3T CRLB < 20% – ↑ – Kraguljac et al.

(149)

5. Human (MDD) mPFC DK: 11 0.5 mg/kg (iv) for

40 min

J-editing, 3T – – ↑ ↑ Milak et al. (150)

6. Rats (Social isolation) ACC HP: 8, HK: 8 25 mg/kg (ip) PRESS, 7T CRLB < 25% NS – ↓ Napolitano et al.

(151)

7. Rat (CUS) ACC HP: 5, HK: 6

DP: 6, DK: 7

40 mg/kg (ip) Ex vivo CPMG, 11.7T CRLB < 20% NS NS ↓ Perrine et al. (152)

8. Rat (H) PFC HP: 12, HK: 12 30 mg/kg (sc) for

6 days

PRESS, 4.7T CRLB < 30% ↑ – – Kim et al. (153)

ACC, anterior cingulate cortex; CPMG, Car–Purcell–Meiboom–Gill; CRLB, Cramer–Rao lower bound; CUS, chronic unpredictable stress; DK, depressed subject with ketamine; DP,

depressed subject with placebo; HK, healthy subject with ketamine; HP, healthy subject with placebo; HPC, hippocampus; HV, Healthy volunteer; ip, intraperitoneal; iv, intravenous; MDD,

major depressive disorder; NS, no significant change; PFC, prefrontal cortex; pgACC, pregenual anterior cingulate cortex; PRESS, point-resolved spectroscopy; SNR, signal-to-noise

ratio; sc, subcutaneous; STEAM, stimulated echo acquisition mode; ↓ depicts decrease, ↑ represents increase.
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induce antidepressive effects by increasing neurotransmission
and neurometabolism in PFC (175).Moreover, the antidepressive
effects of ketamine could be related to the selective impact on
GABAergic interneurons. Ketamine blocks the NMDA receptors
of GABA interneurons, thus suppresses their ability to inhibit
pyramidal neurons, thereby induces cortical excitation (11, 177).

A very recent pilot study has evaluated the impact of
intravenous ketamine administration on neurotransmitter levels
in the medial prefrontal cortex (mPFC) of MDD subjects (150).
GABA/water and Glx/water peaked ∼38% above baseline within
30min of ketamine infusion (150) (Table 3). However, the
majority of the studies reported insignificant changes in GABA
and glutamate levels following ketamine treatment (178, 179).
As mentioned above, the antidepressant effects of ketamine
could be related to its impact on neurotransmitter cycling,
oxidative energy metabolism, and neuronal–astroglial coupling.
Very recently, we have shown that the subanesthetic dose of
ketamine (10 mg/kg, intraperitoneal) increases 13C labeling
of glutamate, GABA and glutamine from glucose and acetate
in PFC of CSDS mice. These findings indicate that ketamine
normalizes the neurometabolic activity of glutamatergic and
GABAergic neurons along with astrocytes in depression (112,
175). Moreover, recent studies with ketamine in MDD subjects
indicated an increase in the rate of glutamate–glutamine
neurotransmitter cycling without any change in oxidative energy
production in neurons (180, 181).

OUTLOOK

The homeostasis of tissue glutamate and GABA plays important
role in neural activity. The GABAergic neurons are known to
control the dopaminergic reward circuitry in the VTA (182,
183). Alteration in the GABAergic neurotransmission with
defective GABAA receptor subunits (94, 95, 184) and GAD67
(90, 93) have been reported in depressed subjects. Moreover,
modulation of GABAergic activity in mice using genetic and
optogenetic approaches leads to anhedonia and neophobia,
which are characteristics of depressive disorder (185, 186).
The reduced regulatory inhibition on principal neurons may
lead to the excessive release of excitatory neurotransmitters
in the synapse. The elevated glutamate level in the synaptic
cleft stimulates prolonged and excessive activation of NMDA
receptors (187). This increased neural activity ultimately leads
to atrophy of glutamatergic neurons by excitotoxicity. A
homeostatic reduction in glutamate receptors and functional
impairment of glutamatergic synapses in the hippocampus and
medial prefrontal cortex have been reported in γ2-subunit of

GABAA receptor knockout mice, which exhibit a modest defect
in GABAergic transmission (188).

1H-MRS measures combined intracellular and extracellular
glutamate and GABA pool in neurons and glia. The
intracellular neurotransmitter pool dominates excessively
with the extracellular (2,000–5,000:1) (189). Therefore, 1H-
MRS measured changes in the levels of glutamate and GABA
may not reflect the abnormalities in synaptic concentration
and vice versa. Hence, the findings of 1H-MRS studies
should be interpreted with great caution. 1H- and 13C-
NMR measurements have revealed several vital information
about depression. Limited measurements based on 13C-NMR
spectroscopy together with administration of 13C precursor
have suggested a reduced rate of glucose oxidation, neuronal
and astroglial metabolic activity, and altered neurotransmitter
trafficking in the prefrontal cortex in depression. However,
there are some inconsistencies in the literature, which may be
attributed to differences in the disease severity, age, gender,
comorbidity, the investigated brain regions, the status and
duration of medications in subjects. Hence, there is a further
need for comprehensive large-scale collaborative analysis
about neurotransmitter homeostasis and their energetics
to better understand the etiology of depression similar to
that proposed by the ENIGMA consortium for genetic and
neuroimaging data.
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