AUTHOR=Wang Fanglan , Hujjaree Khamlesh , Wang Xiaoping TITLE=Electroencephalographic Microstates in Schizophrenia and Bipolar Disorder JOURNAL=Frontiers in Psychiatry VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2021.638722 DOI=10.3389/fpsyt.2021.638722 ISSN=1664-0640 ABSTRACT=

Schizophrenia (SCH) and bipolar disorder (BD) are characterized by many types of symptoms, damaged cognitive function, and abnormal brain connections. The microstates are considered to be the cornerstones of the mental states shown in EEG data. In our study, we investigated the use of microstates as biomarkers to distinguish patients with bipolar disorder from those with schizophrenia by analyzing EEG data measured in an eyes-closed resting state. The purpose of this article is to provide an electron directional physiological explanation for the observed brain dysfunction of schizophrenia and bipolar disorder patients.

Methods: We used microstate resting EEG data to explore group differences in the duration, coverage, occurrence, and transition probability of 4 microstate maps among 20 SCH patients, 26 BD patients, and 35 healthy controls (HCs).

Results: Microstate analysis revealed 4 microstates (A–D) in global clustering across SCH patients, BD patients, and HCs. The samples were chosen to be matched. We found the greater presence of microstate B in BD patients, and the less presence of microstate class A and B, the greater presence of microstate class C, and less presence of D in SCH patients. Besides, a greater frequent switching between microstates A and B and between microstates B and A in BD patients than in SCH patients and HCs and less frequent switching between microstates C and D and between microstates D and C in BD patients compared with SCH patients.

Conclusion: We found abnormal features of microstate A, B in BD patients and abnormal features of microstate A, B, C, and D in SCH patients. These features may indicate the potential abnormalities of SCH patients and BD patients in distributing neural resources and influencing opportune transitions between different states of activity.