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Inspired by modeling approaches from the ecosystems literature, in this paper, we

expand the network approach to psychopathology with risk and protective factors to

arrive at an integrated analysis of resilience. We take a complexity approach to investigate

the multifactorial nature of resilience and present a system in which a network of

interacting psychiatric symptoms is targeted by risk and protective factors. These risk

and protective factors influence symptom development patterns and thereby increase or

decrease the probability that the symptom network is pulled toward a healthy or disorder

state. In this way, risk and protective factors influence the resilience of the network. We

take a step forward in formalizing the proposed system by implementing it in a statistical

model and translating different influences from risk and protective factors to specific

targets on the node and edge parameters of the symptom network. To analyze the

behavior of the system under different targets, we present two novel network resilience

metrics: Expected Symptom Activity (ESA, which indicates how many symptoms are

active or inactive) and Symptom Activity Stability (SAS, which indicates how stable the

symptom activity patterns are). These metrics follow standard practices in the resilience

literature, combined with ideas from ecology and physics, and characterize resilience in

terms of the stability of the system’s healthy state. By discussing the advantages and

limitations of our proposed system and metrics, we provide concrete suggestions for

the further development of a comprehensive modeling approach to study the complex

relationship between risk and protective factors and resilience.

Keywords: dynamical systems, psychopathology, resilience, complexity, biopsychosocial

INTRODUCTION

Understanding the causal background of psychiatric problems has been a central theme for
psychiatry from its beginning as a medical discipline (1–4). For the vast majority of mental
disorders, no conclusive single root causes have been found (5, 6), suggesting that psychiatric
conditions may result from the interaction between many distinct factors (7). As alternatives to
monocausal biological and psychogenic approaches, holistic (e.g., biopsychosocial) theories have
emphasized the ontological complexity of psychiatric disorders: in this view, a psychiatric disease
has been conceptualized as the outcome of a dynamic interaction between biological, psychological
and social variables (8–11).
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Despite their attractiveness, however, holistic ideas and
concepts have often been stated in general and vague terms.
Critics of holistic-dynamic approaches have, therefore, stressed
the gap between recognizing the complexity of psychiatric
disorders on the one hand and scientific rigor on the other
[e.g., (12)]. However, there is no principled reason why holistic
approaches could not be thoroughly scientific. To move toward
more formalized holistic models of mental health, it has become
increasingly popular to look at mental health systems using
the lens of ecology (13, 14). Ecosystem research studies the
interactions between organisms and their environment, and is
holistic in the sense that it conceptualizes these interactions as
constitutive of a single integrated system (15–17). For example,
according to the ecosystem approach to human development,
humans are embedded within different ecological levels (18, 19).
Interactions between individuals take place within a specific
environmental context and are embedded within a broader
cultural and sociological level.

A variety of risk and protective factors (henceforth: RP factors)
exist in each of these ecological levels. Risk factors hinder optimal
coping mechanisms, increasing the probability of negative
outcomes when individuals are faced with adversity, while
protective factors help individuals navigate adverse life events
with less damage (20). RP factors are therefore closely related
to the development of resilience, which is defined as the ability
to maintain or quickly bounce back to a healthy state despite
facing adversity (21, 22). Researchers have successfully identified
a host of RP factors related to resilience across various domains
such as (neuro)biology, personality, socio-economic factors,
and family structures [e.g., (23–25)]. For example, a frequently
replicated risk factor for the development of posttraumatic stress
disorder (PTSD) is childhood trauma (26, 27). On the other
hand, social support is an established protective factor against
the development of depression in high-risk environments (28).
Various brain structures and pathways have been found to be
related to resilience (29). Furthermore, severe depression has
consistently been associated with dysfunctions in biological stress
responses, such as irregularities in the feedback-loop of the
hypothalamic–pituitary–adrenal axis [HPA axis; (30, 31)].

However, in typical schematic representations of RP factors
affecting mental health and resilience, it is easy to draw causal
arrows between domains, such as neurobiological variables
affecting psychological variables that, in turn, affect social
variables. It is, however, more difficult to specify the exact
nature of those causal arrows or to analyze how the system as
a whole behaves as a function of these relations. Due to the
multifactorial and complex nature of mental health, few would
argue that the ecosystem analogy has to be correct in some
way. However, current approaches are a) insufficiently precise,
as suggestive visual representations of complex systems have not
yet been translated into formal models, b) not operationalized, as
there exist no widely accessible tools for modeling psychological
resilience, and c) silent on crucial conceptual issues, such as
how psychological, biological, and social factors interact or how
different time scales are related.

In the current paper, we address these issues by extending
the network theory of psychopathology (32, 33) with RP

factors and propose an approach to analyze the resilience
of the resulting system. A recent theory by Kalisch et al.
(34) proposes that resilience factors target parameters of
psychopathology networks. By doing so, these resilience
factors influence symptom development patterns and improve
resilience. We expand this idea to include both risk and
protective factors and take a step forward in formalizing
the system by representing it with a statistical model. We
translate various effects RP factors can have on resilience
to specific targets on network parameters. To analyze the
resilience of this system, we introduce two novel resilience
metrics for symptom networks: Expected Symptom Activity
(ESA) and Symptom Activity Stability (SAS). These metrics are
developed by combining standard practices in the resilience
literature with ideas from the field of ecology and physics,
where resilience is defined as a healthy state that is robust
in stability. In the section Theoretical Framework: RP Factors
Target the Architecture of Symptom Networks, we outline the
theoretical framework of the proposed system, after which we
will present three studies that serve as illustrations of our
system and resilience metrics (see sections Study I: Analyzing
Global Effects From RP Factors on the Symptom Network, Study
II: Manipulating the Target Points of the RP Factors on the
Symptom Network, and Study III: Empirical Illustration of a
System Including Symptoms and RP Factors). Lastly, we will
discuss the limitations of our proposed system and metrics and
provide concrete suggestions for future research (see the section
General Discussion).

THEORETICAL FRAMEWORK: RP
FACTORS TARGET THE ARCHITECTURE
OF SYMPTOM NETWORKS

The main idea behind the network approach to
psychopathology is that mental disorders act as a complex
system, where psychopathology emerges from causally
interacting symptoms connected in a network (35).
Symptoms are typically conceptualized as being present
(possibly with some degree of severity) or absent, and
accordingly modeled using an Ising model (36) or an
extension thereof.

In these models, it is useful to specify two types of parameters.
First, an activation parameter for every node (i.e., the network
variables, in this case, symptoms), called the threshold parameter,
which indicates the node’s internal preference to be activated
(36) or, alternatively, how much pressure is required to activate
the node. For example, a node such as “suicidal ideation” will
have a stronger negative threshold, meaning it is more likely to
be deactivated and will require more pressure to activate, than
a node such as “insomnia” which is more easily activated (33).
Second, a connectivity parameter for every estimated edge (i.e.,
the connection between variables), which indicates the weight,
type, and directionality of every edge between two nodes. Edges
can be strong or weak, positive or negative, and unidirectional
or bidirectional (37). The set of node and edge parameters of the
network model forms the network architecture, which describes,
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for example, if there are few or many edges between symptoms
and if symptoms are more or less likely to activate.

Psychological networks are dynamic models, where
network architecture governs symptom activation patterns
(32). Activation of one symptom can lead to activation of a
strongly connected neighboring symptom. If two symptoms,
e.g., “fatigue” and “depressed mood,” are connected, the
theory states that activation of “fatigue” increases the
probability of activating “depressed mood.” The stronger
the association between two symptoms (denoted in the
connectivity parameter), the higher the probability that
activation of one symptom leads to activation of the other
symptom (38).

If external stressors (e.g., losing one’s job), are sufficient
to trigger symptom activation and symptoms are strongly
connected, the activation of one symptom could lead to a full
activation spread where the network falls into a pattern of
persisting symptom activation (38). In contrast, if symptoms
are not easily activated and/or weakly connected, an external
stressor might lead to the activation of one or two symptoms
but will not result in a full-blown depressive episode. In this
way, network architecture determines the most likely symptom
activation pattern (32).

Following this line of reasoning, if (1) psychopathology
develops according to the network theory of mental disorders,
and (2) network architecture is of paramount importance for
symptom development, the next question is how this network
architecture arises. Which factors contribute to the development
of a “healthy” or “unhealthy” network architecture, increasing
or decreasing the probability that a stressful event will trigger a
whole symptom activation spread?

Until now, the network theory of mental disorders has
mostly focused on psychopathology and symptom networks
(39). However, network theory also allows one to formalize
biopsychosocial ecosystem models of mental health and
resilience. Recently, an answer to how network architecture
might arise has been proposed by extending symptom networks
with resilience factors, which are called hybrid symptom-and-
resilience-factor (HSR) networks (34). These resilience factors
are represented as external, protective variables influencing
symptom network architecture. In this way, resilience factors
affect symptom development patterns and account for individual
differences in resilience (34).

HSR networks need not be restricted to positive resilience
factors. RP factors could both be present in these HSR
networks (see Figure 1 for a representation of the theoretical

FIGURE 1 | The theoretical ecosystem model of mental health. The psychopathology symptom network model, denoted with symptoms, S1 to S9, lays in the center

(in black for illustrative purposes). Around the symptom network model forms a web of networks with variables from other domains, such as personality (P), biological

(B), and social variables (D). Specific variables from other domains function as risk (red arrows) or protective (green arrows) factors, targeting node parameters or edge

parameters. These risk and protective factors affect the symptom network model’s architecture, thereby shaping the most likely symptom development pattern.
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model, including RP factors). For example, a protective factor
such as “positive affect” could lower the strength of the
connection between the symptoms “depressed mood” and
“excessive worrying,” making it less likely that the activation
of depressed mood will lead to the activation of excessive
worrying. Contrary, vicious cognitive thought patterns (“I am
worthless,” “I will never be good enough”) might affect threshold
parameters of specific symptoms, making it more likely that,
for example, the Generalized Anxiety Disorder (GAD) symptom
“excessive worrying” will be activated. Biological factors might
also influence liability for developing psychiatric disorders, and
possible biological pathways have been investigated by adding
genetic risk scores to psychiatric symptom networks of psychosis
(40). Also, weak but differential relations have been found
by adding biomarkers (estriol, cortisol, corticotropin-releasing
hormone, and tumor necrosis factor alpha) to a symptom
network of post-natal depression, suggesting possible symptom-
specific biological pathways (41). Lastly, another example comes
from the social domain, where social support has frequently been
found to be a protective factor for developing Major Depressive
Disorder [MDD; (42)]. The social domain variable “social
support” might function as a moderator between “Depressed
Mood” and “Worthlessness.” In other words, social support
could lower connectivity strength between two MDD symptoms,
thereby dampening the effect activation of depressed mood has
on the development of feelings of worthlessness.

The theory that RP factors affect the architecture of the
symptom network and, thereby, resilience (34) is a promising
approach to formally study the relationship between mental
health and environmental RP factors from a complex systems
perspective. However, the theory has not yet been formalized
or translated to a statistical model, nor has it been used to
analyze empirical data. We present three studies; the first two
are simulation studies, which differ in that Study I analyses
the resilience of networks as a function of global effects from
hypothetical RP factors (i.e., the whole network architecture
is systematically altered), and Study II analyzes the resilience
of networks under specific targets of hypothetical RP factors
(i.e., parameters belonging to nodes with different roles in
the maintenance and development of symptom activation are
altered). Study III is an empirical study, in which we give an
empirical illustration of the full system.

STUDY I: ANALYZING GLOBAL EFFECTS
FROM RP FACTORS ON THE SYMPTOM
NETWORK

In this study, we investigate how the resilience of a symptom
network changes under global effects of RP factors – that is, RP
factors have an effect on the whole network architecture. The
model in this study is illustrated in Figure 2: hypothetical RP
factors (i.e., the peripheral networks containing variables Y1–Y4,
Z1–Z4, and V1–V4) affect the thresholds as well as the edges
of a hypothetical, fully connected psychopathology network of
symptoms (i.e., the center network containing variables X1–
X9 with a density of 1). Risk factors deteriorate resilience (red

arrows), protective factors increase resilience (green arrows). We
systematically alter the strength of the effect of RP factors and
the density of the symptom network. To analyze the resilience
of the symptom network model, we present two novel resilience
metrics: ESA, which indicates how many symptoms are active
or inactive, and SAS, which indicates how stable the symptom
activity patterns are.

Simulation Study
The Symptom Network Model
The symptom network model is represented by the Ising model
(43). This model originates in the field of thermodynamics and
ferromagnetism but has frequently been applied to represent
psychological and psychiatric dynamical systems [see, for
example, (36, 38, 44, 45)], due to its relative simplicity in
number and type of parameters and, nonetheless, its capacity
to accommodate complex phenomena. For example, in some
parameter settings, the Ising model can show alternative stable
states that the system converges toward, while in others, it
can show linear, gradual changes (38). Other characteristics of
the Ising model are that relationships are undirected (e.g., the
undirected arrow between S1 and S2 implies that the relationship
from S1 to S2 is equal to the relationship from S2 to S1; see
Figure 2) and that all nodes of the Ising model are binary (i.e.,
symptoms can be inactive; denoted by a 0, or active; denoted by
a 1).

A substantial advantage of the Ising model is that it is
analytically solvable up to around 10 nodes (46), meaning that
the full probability distribution over all states is known and that
all model dynamics can be calculated from themodel parameters.
This allows for a complete overview of the model’s behavior as
a function of its architecture. For our study, this means that we
know precisely how many active symptoms to expect for every
parameter combination of the network, allowing us to study how
the symptom network model behaves under different influences
from hypothetical RP factors. We chose a network model with
nine symptoms, mimicking theMDD symptoms proposed by the
Diagnostic and Statistical Manual of Mental Disorders [DSM-
5; (47)]. All threshold parameters have a value of −2, and all
connectivity parameters have a value of 0.5.

Effects of RP Factors on the Symptom Network
In the proposed system, RP factors affect the resilience
symptom networks by targeting edges (connectivity parameters)
or nodes (threshold parameters). In our simulation, targets
are operationalized by multiplying specific parameters of the
symptom network with certain constants. RP factors that affect
edges act as causalmoderators (34). Such riskmoderators increase
connectivity parameters (i.e., multiply the edge weights with a
constant >1), making it more likely that a symptom will activate
its neighboring symptom. In contrast, protective moderators
decrease connectivity parameters (i.e., multiply the edge weights
with a constant <1).

RP factors that affect nodes act as causalmain effects, affecting
threshold parameters. Risk main effects increase a symptom’s
disposition for activation. Since symptom threshold parameters
are generally negative, risk factors make the thresholds less
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FIGURE 2 | Design of study 1. The network in the center represents the symptom network (containing variables S1–S9). The three remaining networks (containing

variables Y1–Y4, Z1–Z4, and V1–V4) represent hypothetical RP factors. Since no empirical data is used, all variables are denoted in statistical interpretation, without

substantive labels. RP factors are assumed to cause changes in symptom network architecture, but no data on RP factors are used in the study. All RP factors are

assumed to affect the symptom network architecture equally.

negative (i.e., multiply thresholds with a constant <1). Contrary,
protective main effects decrease a symptom’s internal disposition
for activation by increasing the negative value of threshold
parameters (i.e., multiply thresholds with a constant >1).

For symmetry, the constants <1 range from 0.5 to 1 with
a stepwise increase of 0.1, and constants >1 are given by the
inverse of the resulting numbers. Consequently, baseline network
parameters are multiplied by 11 constants: 0.50, 0.60, 0.70,
0.80, 0.90, 1, 1.11, 1.25, 1.43, 1.67, and 2. A constant of 1
represents the baseline network with no influences of risk or
protective factors.

Network Density
Symptom activity patterns will not only depend on the strength
and type of targets from RP factors on the symptom network, but
also, on the density structure of the symptom network [i.e., the
proportion of present edges relative to all possible edges; (48)].
Density influences network dynamics; the denser the network,
the stronger symptoms interact and symptom activation is spread
over the network (49). Therefore, we use networks with three
different densities (i.e., 1, 0.5, and 0.3) in our simulations (see
Figure 3).

Metrics to Assess Resilience
To assess the resilience of our hypothetical symptom network,
we introduce two novel resilience metrics. The ESA represents
the mean sum score of active symptoms as a function of the
network’s underlying probability distribution. This informs us
whether a network is likely to be in a healthy state (i.e., a low
ESA due to weak symptom activity) or an unhealthy state (i.e.,
a high ESA due to strong symptom activity). Symptom levels
are often used to assess the validity of resilience questionnaires
by relating resilience scores to the severity of mental disorders
(50, 51). The rationale behind this is that individuals who score
high on protective factors and/or score low on risk factors are
more likely to develop fewer symptoms when faced with stressful
life events than those who score low on protective factors and/or
high on risk factors.

Resilience, however, is defined as the ability to maintain a
healthy state (i.e., a low sum score) and quickly bounce back to
a healthy state after facing adversity. In other words, a resilient
system is characterized by a low ESA and stable symptom activity.
To capture the latter characteristic, we introduce our second
resilience metric, SAS, which involves the variability of the
symptom activity pattern. Variability of symptom activity is an
important aspect of resilience since the mean sum score can
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FIGURE 3 | Three Ising models with varying densities. (A) Shows an Ising model with density = 1, (B) Shows an Ising model with density = 0.5, and (C) Shows an

Ising model with density = 0.3.

result from different activation patterns. For example, in a system
with nine symptoms, a mean score of 3 could be the result
of consistently moderate or highly unstable symptom activity
patterns. This means that a symptom network is resilient if ESA
has a low value and SAS has a high value: in that case, the
dominant state of the network is one in which symptoms are
stably absent1.

SAS is related to a model’s entropy, which has been used as
an indicator of stability in dynamic systems theory. Entropy is a
measure of the probability of each possible state of the system,
based on the parameters of the system (44, 52). If entropy is high,
many states are equally likely, which indicates that the system’s
dynamics will be unstable, switching between many possible
states. Contrarily, if entropy is low, only a few states have a high
probability of occurring, meaning the system’s behavior will be
more organized and stable.

Symptom activation patterns follow from the probability
distribution of the Ising model. The Ising model for two nodes
(X1, X2) is given by formula (1), which extends for models with
n nodes (53):

P (X1, X2) =
1

Z
exp{τ1X1 + τ2X2 +W12X1X2} (1)

In this formula, X1 and X2 are elements of {0,1}, P (X1, X2) is
the probability of the event (X1, X2), τ1 denotes the threshold
parameter of the node X1, and W12 denotes the edge weight
parameter of the neighboring nodesX1 andX2. Z is a normalizing
constant denoting the sum of the potentials of all possible states.
The probability distribution for n = 9 can be calculated by a
generalization of formula (1).

1Note that SAS can be low when ESA is low or when ESA is high. Although the

symptom network is stable in both cases, it is not resilient in its healthy state for

the latter case. Also note in many cases there will be a strong relation between

ESA and SAS, in the sense that SAS will be lowest if ESA hovers around n/2 and

will increase as ESA approaches its limits at 0 or n. However, one can also set up

parameter settings for the network in which ESA equals n/2 and SAS is high (this

will occur, for instance, if half of the symptoms has a very strong threshold and the

other has a very weak threshold); hence, even though ESA and SAS will often be

related, this is not necessarily so.

ESA is calculated by taking the expected value E(.) of the
probability distribution:

E (Y) = µ =

n
∑

i=0

P (Yi)Yi (2)

Where Y represents the number of active symptoms in the
network (i.e., Y ranges over all possible sum scores; in our
case from 0 to 9), Yi represents a possible sum score i, and
P (Yi) represents the corresponding probability of Yi given a
specific network architecture. This probability distribution is
implemented in the IsingSampler package in the R-programming
environment (46).

SAS is calculated by taking the inverse of the standard
deviation σ of the expected value E(Y):

σ =

√

√

√

√

n
∑

i=0

(Yi − µ)2 P (Yi) (3)

The standard deviation is a scaled variability metric. We take
its inverse to align the magnitude of SAS with its interpretation:
low SAS indicates weak stability, and high SAS indicates robust
stability. Taking a standard deviation of 1 as a reference, SAS
– the inverse of the standard deviation – is also 1. When the
standard deviation is larger than 1, SAS will be <1, indicating
that the stability is lower. When the standard deviation is smaller
than 1, SAS will be >1, indicating that the stability is higher.
We calculate P (Yi) for every change of the network architecture
using IsingSampler (46).

ESA and SAS will be calculated for all 11 network
architectures, for all three networks with different densities.

Results
Results for all alterations (i.e., strength of effect of RP factors and
density) on the architectures of the networks are displayed in
Figure 4. Table 1 shows the results for the extremes of RP factor
influences, namely when the multiplier is equal to 0.5 or 2.
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FIGURE 4 | Risk and protective factors affecting Ising symptom network dynamics. The behavior of an Ising model under the influences of hypothetical RP factors for

three different network densities. The left panel shows a network with density = 1, the middle panel a network with density = 0.5, and the right panel a network with

density = 0.3. The x-axis denotes the value of the constant with which network architecture is multiplied. The y-axis denotes ESA. Line type represents which

parameters are multiplied; threshold parameters, connectivity parameters, or both. The color of circles represents the type of hypothetical RP factor which influences

network parameters: red circles represent risk factors, green circles, protective factors, and black circles represent both factors. The size of the circles represents SAS.

For the model with density = 1, RP main effects and
moderators strongly affect the resilience of the symptom
network. In the absence of RP effects (i.e., multiplier = 1) ESA
is moderate, and SAS is low, meaning that symptom activity
is moderate but unstable. Protective factors decrease ESA and
increase SAS, meaning that they push the network toward a
resilient state. Contrary, risk factors strongly increase ESA and
SAS, meaning that they push the network toward a stable state
of high symptom activation. This means that as RP factors affect
network parameters, symptom activity increases or decreases,
and symptom development patterns become more stable. When
RP factors simultaneously alter both connectivity and threshold
parameters, ESA remains around its baseline value, with low ESA,
indicating unstable activity patterns.

Dynamics change for the model with a density of 0.5. In
the absence of RP factor effects (i.e., multiplier = 1) ESA is
low, and SAS is moderate, meaning symptom activity patterns
are low and relatively stable. However, risk moderators affecting
edges increase ESA to moderate symptom activity and decrease
SAS, meaning that risk moderators push the system toward
an unhealthy and unstable state. Since there are fewer present
edges that can be targeted by moderators, their effect on ESA is

smaller compared to the fully connected network. This means
that the network gets pushed into moderate symptom activity
with corresponding instability. Main effects targeting thresholds
have a more substantial effect on resilience, as they still target all
threshold parameters. Protective main effects push the system in
the same resilient state as the former model with density= 1.

The model with density = 0.3 follows similar dynamics as the
former model with density = 0.5; however, ESA changes within
a more restricted range, meaning effects from risk and protective
factors on ESA are smaller.

Discussion
In Study I, we investigated the resilience of symptom networks
with varying densities and different degrees of the effect of RP
moderators and main effects by inspecting ESA and SAS. Results
from this simulation study show that the resilience of the network
changes as a result of RP effects. However, network density also
strongly affects how resilience changes. When density is 1 (i.e.,
a fully connected network) and risk factors target the network,
ESA and SAS increase. This means that the model is in a disorder
state with full symptom activity and is unlikely to recover from
this. Contrary, when protective factors target the network, ESA
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TABLE 1 | Network resilience for different densities and influences from risk and

protective factors.

Factor type Density = 1 Density = 0.5 Density = 0.3 Multiplier

ESA SAS ESA SAS ESA SAS

Baseline 4.5 0.34 1.53 0.74 1.29 0.86 1

Moderator

Risk 8.98 6.47 5.02 0.39 1.99 0.60 2

Protective 1.46 0.77 1.22 0.91 1.15 0.96 0.5

Main Effect

Risk 8.40 1.08 4.64 0.51 3.43 0.59 0.5

Protective 0.18 2.26 0.17 2.39 0.17 2.44 2

Both 4.5 0.49 3.12 0.62 2.80 0.67 0.5

4.5 0.23 0.19 2.16 0.18 2.32 2

ESA stands for Expected Symptom Activity, which describes the level of symptom activity.

ESA ranges between 0 and the total number of symptoms, in this case, 9. Low ESAmeans

a low level of activity, indicating a healthy state. SAS stands for Symptom Activity Stability,

which describes the stability of symptom activation patterns. SAS is computed as the

inverse standard deviation, meaning an SAS of 1 indicates a standard deviation of 1. SAS

<1 indicates decreasing stability (increasing standard deviation), and SAS >1 indicates

increasing stability (decreasing standard deviation). A system is resilient when ESA is low

and SAS is high, as this indicates a low level of symptom activation with robust stability.

decreases, and SAS increases. This means that the network shows
strong resilience, as symptom activity is low, but stability is high.

However, as density decreases, the network’s ESA also
decreases, meaning that it never shows full activity in our
simulations. Risk factors, especially moderators (i.e., affecting
edge parameters), increase ESA and decrease SAS, implying that
stability decreases as risk factors gain more influence. When both
RP factors are present, the main factors affecting thresholds have
a more substantial influence on ESA than moderators affecting
connectivity parameters. This is due to the fact that there are
fewer present edges moderators can influence, and therefore,
their effect on symptom activation patterns is smaller.

STUDY II: MANIPULATING THE TARGET
POINTS OF THE RP FACTORS ON THE
SYMPTOM NETWORK

A fundamental principle of network theory is that nodes differ
in how important they are in maintaining and developing
symptom activity (32, 54). In this study, we investigate how the
resilience of a symptom network changes when target points
of RP factors affect parameters belonging to nodes that have
a strong or weak role in symptom activity spread. The model
in this study is illustrated in Figure 5: hypothetical RP factors
(i.e., the networks containing variables Y1–Y4, Z1–Z4, and
V1–V4) affect specific threshold and edge parameters of the

psychopathology symptom network (i.e., the center network
containing variables S1 − S9). The symptom model is estimated
from empirical data to obtain plausible network parameters
that differ per node and edge (i.e., the symptoms vary in their
importance on symptom activity spread). We systematically alter
parameters belonging to nodes with a weak or strong role in the
symptom network.

Simulation Study
Data
Psychiatric symptoms are measured with the 27-item Symptom
Checklist [SCL-27; (55)]. The SCL-27 is a multidimensional
screening instrument, functioning as a validated abbreviation of
the 90-Symptom Checklist (56). It consists of 27 items measuring
symptoms on six dimensions: (I) depressive symptoms,
(II) dysthymic symptoms, (III) vegetative symptoms, (IV)
agoraphobic symptoms, (V) symptoms of social phobia, and
(VI) symptoms of mistrust. Symptom descriptions can be found
in Appendix 1 in the Supplementary Material. Symptoms are
measured on an ordinal scale with five levels. Participants were
part of an Argentinian study on mental health and were recruited
via probability sampling (57). Number of participants is 1,469
(female = 875, male = 579, other = 15). The questionnaire was
administered online.

The Symptom Network Model
An Ising model is used to estimate the network model (see
Figure 6). In order to estimate the Ising model, the data need
to be binarized. The following rule is used: responses indicating
no or modest symptom presence are recoded with a 0, responses
indicating moderate or high symptom presence are recoded with
a 1. Thus, {0, 1, 2} 99K 0, {3, 4} 99K 1. Themodel is estimated using
the IsingFit package in the R-programming environment (58).

Calculate ESA and SAS From Simulated Ising Model

Dynamics
Since the estimated Ising model consists of 27 nodes, the
underlying probability distribution cannot be calculated
analytically. Instead, we need to simulate data points using
a sampling method. The IsingSampler package in the R-
programming environment includes three sampling methods to
simulate states from an Ising model. We will use the Metropolis-
Hastings algorithm (59). The chain starts with random values for
every node, consisting of a 0 or a 1 (indicating presence/absence
of the symptom). Then, for every iteration, a node is set to
its opposite response option, and the probability of that node
being in the opposite option given all other node values and
parameters is calculated. In this way, the chain converges to the
most probable state of the model based on its parameters. We
use 1,000 iterations for every chain.

ESA is calculated by taking the mean sum score and SAS
by taking the inverse standard deviation of the 1,000 simulated
data points.

Strong Nodes and Weak Nodes Condition
Some nodes could be more involved than others in the spread of
symptom activity when they are more central than others (33, 60)

Frontiers in Psychiatry | www.frontiersin.org 8 March 2021 | Volume 12 | Article 640658

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Lunansky et al. The Mental Health Ecosystem

FIGURE 5 | Design of study 2. The center network represents the symptom network (variables S1 to S9). The symptom network is estimated from empirical data.

Therefore, edge and node parameters differ, leading to different roles symptoms have in the spread of symptom activity. The three remaining networks (containing

variables Y1–Y4, Z1–Z4, and V1–V4) represent hypothetical RP factors. RP factors are assumed to change symptom network architecture, by systematically targeting

symptom network parameters. We study how different target points from RP factors on symptom network architecture affect resilience, by multiplying specific

symptom network parameters with constants.

FIGURE 6 | Empirically estimated SCL-27 symptom network. Empirically estimated Ising model using SCL-27 symptom data. Blue edges represent positive

associations between nodes (36). The width of edges and color intensity represents the strength of edges, showing the connectivity parameters in this estimated

model differ for every pair of nodes. Threshold parameters differ per node. Symptom descriptions can be found in Table 3 of Appendix 1 in the

Supplementary Material.

Centrality indices describe how strong nodes are connected
with other nodes and/or how many connections they have with
neighboring nodes (61). Nodes withmany strong associations are

hypothesized to have a more substantial influence on symptom
development patterns. Different centrality indices exist, but,
currently, node strength is the most stable one (61). Therefore, we
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FIGURE 7 | Centrality plot showing node strength of SCL-27 symptoms. The x-axis shows node strength on standardized z-scores; the y-axis shows all SCL-27

variables. The variables are ranked from highest to lowest node strength.

use node strength to determine which nodes are targeted by RP
factors. Node strength centrality is calculated by taking the sum
of all absolute edge weights a node is directly connected to (62).

Figure 7 shows the node strength indicator for every node,
ordered from high node strength to low node strength. The five
nodes with the highest node strength are SCL-2, SCL-4, SCL-8,
SCL-9, and SCL-21, which will be called strong nodes. The weak
nodes are the five nodes with the lowest node strength: SCL-3,
SCL-7, SCL-14, SCL-19, and SCL-20.

We create two conditions, the strong node condition,
and weak node condition. In both conditions, threshold and
connectivity parameters are systematically altered using the same
11 multiplying constants from Study I. In the strong nodes
condition, parameters belonging to strong nodes are altered,
and in the weak nodes condition, parameters belonging to
weak nodes are altered (see Figure 8; yellow edges and nodes
represent connectivity parameters and threshold parameters
that are altered for every condition). For every alteration,
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FIGURE 8 | Targeting parameters of strong and weak nodes. Yellow nodes and edges represent targets in the simulation. Targets are based on nodes with highest

(left panel) and lowest (right panel) node strength. Symptom descriptions can be found in Table 3 in Appendix 1 in the Supplementary Material.

symptom activation is simulated using the IsingSampler package
(46), and ESA and SAS are calculated from these simulated
symptom dynamics.

Results
Here we will discuss the general results from the simulation
study. Figure 9 shows the complete results, including all
alterations on the network architectures, and Table 2 shows the
results for the extreme values influences from RP factors, i.e.,
when the constant used as multiplier is equal to 0.5 or 2.

Baseline ESA (i.e., when the constant used as multiplier =

1) for the model is low, meaning that the sample is healthy.
However, baseline SAS is also low, meaning that this healthy
state is unstable. In the strong nodes condition, risk factors
strongly increase ESA and maintain SAS, meaning that they
push the network toward a state of higher symptom activity,
however, maintaining its instability. Protective factors decrease
ESA and increase SAS, meaning they push the system toward a
resilient state. When RP factors target connectivity and threshold
parameters simultaneously, dynamics fluctuate within a wider
range of ESA and SAS, nonetheless, maintaining a relative healthy
and stable state.

In the weak nodes condition, RP factors have a smaller effect
on resilience. Risk factors increase ESA; however, they have a
weaker effect compared to the strong nodes condition. SAS is
further decreased, meaning that the system is pushed toward an
unstable state of moderate symptom activity. Protective factors
decrease ESA but have a more moderate effect on lowering
ESA compared to the strong nodes condition. When both RP
factors target connectivity parameters and threshold parameters
simultaneously, they maintain SAS on its baseline level, while

ESA fluctuates within a smaller range compared to the strong
nodes condition.

Discussion
We conclude that it matters which parameters are targeted by RP
factors. RP factors altering parameters belonging to strong nodes
have a more substantial effect on resilience than weak nodes.
The range of ESA is wider in the strong nodes condition than
in the weak nodes condition. Our study shows that risk factors
in the strong nodes condition have a larger effect on ESA and
SAS than risk parameters in the weak nodes group. However, this
group difference does not hold for protective factors. This could
be related to the health of the used sample, where baseline ESA
is low.

Specific relations between RP factors and symptoms need to
be estimated on the individual symptom level to understand
how RP factors affect resilience. Therefore, in the next study,
the effect of RP factors on resilience will be calculated by
estimating a model from empirical data on RP factors and
symptoms. This means that the associations between RP
factors and specific symptoms will be empirically estimated. In
this way, the effect of RP factors on specific symptoms can
be studied.

STUDY III: EMPIRICAL ILLUSTRATION OF
A SYSTEM INCLUDING SYMPTOMS AND
RP FACTORS

In this section, we present an empirical illustration of how
the proposed system can be implemented in a model that is
estimated from data, including measurements on RP factors
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FIGURE 9 | Risk and protective factors affecting parameters of strong and weak nodes. The behavior of an estimated Ising model under influences of hypothetical RP

factors, when parameters belonging to nodes with high and weak node strength are targeted. The left panel shows the network behavior in the strong node condition;

the right panel shows its behavior in the weak node condition. The x-axis denotes the value of the multiplier constant. The y-axis denotes ESA. Line type represents

which parameters are multiplied; threshold parameters, connectivity parameters, or both. The color of circles represents the hypothetical RP factor that influences

network parameters: red circles represent risk factors, green circles, protective factors, and black circles represent both factors. The size of the circles represents SAS.

and psychiatric symptoms. We investigate which specific RP
factors are associated with specific symptoms, and how symptom
activity levels change when they are targeted by associated
RP factors.

Contrary to the former two simulation studies, no data
will be generated, nor will network architecture be altered on
hypothetical target points. Instead, we estimate a network that
includes both symptoms and the RP factors which allows us to
study possible symptom-specific pathways with RP factors and
the system as a whole.

Study Design
Data
We use the same dataset as the former study and include
the measurements on RP factors from the same participants.
RP factors are determined a priori; meaning factors are
labeled as “risk” or “protective” before data are collected. Risk
factors include measurements on tobacco use, alcohol use, and
illicit drug use. Protective factors include measurements on

physical activity, religious practice, sexual life satisfaction, and
volunteer work.

Variables in this dataset are measured on different scales.
The variables physical activity, tobacco use, alcohol use, and
illicit drug use are measured on a binary scale, religious
practice and volunteer work are measured on an ordinal
scale (five levels), and sexual life satisfaction is measured
on an ordinal scale (six levels). All variables are recoded
such that “0” indicates no presence of the variable and
“1” or higher indicates (increasing) presence. SCL-27 items
representing symptoms (56) are measured on an ordinal scale
(five levels).

Due to high correlations between the three risk factors,
tobacco use, alcohol use, and illicit drug use, these factors have
been collapsed into one risk factor, “substance use.” This was
done by summing over all three factors, which originally were
measured on a binary scale, where 0 indicated no usage and 1
indicated usage. The novel “substance use” variable ranges from
0 to 3.
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TABLE 2 | Risk and protective factors influencing strong or weak nodes.

Factor type Strong nodes Weak nodes Multiplier

ESA SAS ESA SAS

Baseline 5.32 0.27 5.34 0.27 1

Moderator

Risk 15.03 0.31 11.26 0.18 2

Protective 3.97 0.39 4.46 0.32 .5

Main Effect

Risk 11.60 0.26 8.14 0.22 .5

Protective 2.72 0.53 3.41 0.38 2

Both 7.50 0.27 6.22 0.27 .5

2.92 0.46 4.68 0.26 2

ESA stands for Expected Symptom Activity, which describes the symptom activity levels.

ESA ranges between 0 and number of symptoms, in this case, 27. Low ESA indicates low

activity levels, meaning the system is in a healthy state. SAS stands for Symptom Activity

Stability, which describes the stability of symptom activity levels. SAS is computed by

taking the inverse standard deviation. An SAS of 1 indicates a standard deviation of 1, SAS

<1 indicates decreasing stability (increasing standard deviation), and SAS >1 indicates

increasing stability (decreasing standard deviation). Low SAS indicates unstable symptom

activity patterns. A system is resilient when ESA is low and SAS is high, meaning that the

system has a stable and low level of symptom activity.

Model
In order to account for the different measurement scales
used in the data, a Mixed Graphical Model (MGM; 62) is
estimated. This network model includes both categorical and
continuous variables. Here we choose to model ordinal variables
as continuous variables.

The model uses nodewise regression to calculate associations
between nodes (63). For every variable, its intercept, and
the beta-coefficients of all other variables are computed.
This intercept represents the threshold of the node, and
the beta-coefficients represent connectivity parameters
with neighboring nodes. Regularization is applied to select
the sparsest model, meaning that most edges with small
values are pushed toward zero to control for false-positive
edges (37).

The MGM estimates which variables are positively or
negatively associated with each other. These associations
represent main effects: if, for example, the variables “alcohol
use” and “SCL-2: feeling blue” are positively connected, this
means that if “alcohol use” increases, “SCL-2: feeling blue”
increases as well. Keep in mind that this relationship could
also be the other way around, which we will discuss further
in the section General Discussion. The MGM is estimated
using the bootnet package in R with the mgm default,
using 10-fold cross-validation to select the regularization
parameter (61).

Moderation analysis is used to study which RP factors could
influence connectivity parameters of the symptom network. This
analysis checks for every relationship between RP factors and
symptoms if another variable moderates this relationship. This
is done by estimating aModerated Network Model [MNM; (64)],
using themgm package in R (63).

Assessing Resilience
In this study, we investigate how symptom activity levels change
due to the presence or absence of RP factors. To study how RP
factors affect symptom activity levels and stability, we condition
on different values of these RP factors. Lowest values of RP factors
indicate absence, highest values indicate their presence. The
means of symptoms and possibly also the interactions between
symptoms can be functions of the RP factors. If we condition on
the RP factors we fix them to specific values, which affects the
means and possibly interactions between symptoms. The effect
of RP factors’ presence or absence is calculated by conditioning
on these RP factor values2. For example, conditioning on the
presence of the protective factor “volunteer work,” is done by
conditioning on its highest value, which is 5. The rest of the RP
factors maintain their mean value. Based on the model, the novel
symptommeans are computed for the situation where “volunteer
work” has a value of 5.

We investigate two situations by conditioning on the RP
factors. In the first situation, we condition on the presence of
protective factors, meaning item scores on protective factors are
≥ 1, and absence of risk factors, meaning item scores on risk
factors are 0. Second, we study the opposite situation, namely,
the presence of risk factors and the absence of protective factors.
In both situations, novel symptom means for all SCL-27 items
are computed. Note that it is not necessary that all symptoms will
change in their means, since mean changes depend on whether a
symptom mean is a function of the RP factors. In other words,
if a symptom such as “SCL-6: your mind going blank” is not
associated with any RP factors, and neither are its neighboring
symptoms, the SCL-6 symptom mean will not change despite
conditioning on any RP factor.

To compare symptom activity levels from the baseline model
with the two conditioned situations representing the presence
and absence of specific RP factors, ESA is computed in the
baseline model and two conditioned models. Baseline symptom
activity can be calculated from the data by calculating the
individual symptom means of all the SCL-27 items. The novel,
conditioned symptom means are computed after conditioning
on the presence/absence of the RP factors. ESA is calculated by
summing over all (conditioned) symptom means.

SAS will not be computed since, in the current analysis,
ESA variance does not relate to symptom activity stability.
Conditioning on RP factors does not change the variance patterns
in symptoms. To compute SAS, the probability distribution of
the whole model needs to be known, which is problematic in

2Mathematically, in the regression formula used for calculating symptom means,

the beta-coefficient (representing the connectivity parameter) of the corresponding

RP factor is multiplied by a specific value of this RP factor instead of on the

RP factor’s mean. The effect of RP factors’ presence or absence is calculated by

conditioning on these RP factor values. However, when estimating the MGM,

variables are standardized. This means model parameter estimates need to be

transformed in order to be unbiased for computing ESA on the data scale (65).

Take β to be the unbiased beta-coefficients where: β = (β1,β2 , . . . βp) and β̂the

biased beta-coefficients. The unbiased beta-coefficients can be calculated with: β =

β̂ ∗ σy
σx , where σy and σx are the original data standard deviations. The unbiased

intercept can be calculated with: β̂0 = y −
∑p

j=1 xjβ̂j, where y and {xj}
p
1 are the

original data means.
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its current set-up because data are measured on a larger scale
compared to the Ising model’s binary case. A possible solution
for future research is to gather longitudinal data, as will be further
discussed in the section General Discussion.

To interpret current analyses outcomes using results
from the former theoretical simulations, network density
and node strength centrality of the symptom nodes will be
computed. Density will only be computed for edges between
symptom nodes.

Results
Figure 10 shows the estimated network model. The risk factor
“substance use” is negatively associated with the protective factor
“religious practice”, and positively associated with “volunteer
work”. Surprisingly, there are also some negative edges between
the risk factor and symptoms, such as the SCL-5 symptom
“thoughts of death or dying.”

Protective factors are mostly positively associated with each
other and negatively associated with symptoms. For example,
the protective factor “religious practice” is negatively associated
with the SCL-15 symptom “Feeling hopeless about the future,”
the protective factor “sports/physical activity” is negatively
associated with the SCL-9 symptom “Feeling low in energy or
slowed down,” and the protective factor “sexual life satisfaction”
is negatively associated with the SCL-2 symptom “feeling blue.”

No moderators between symptoms and RP factors have
been found.

The network density of edges between symptom nodes is 0.55.
Nodes with the highest node strength are SCL-2, SCL-24, SCL-4,
SCL-1, SCL-21. See Appendix 2 of the Supplementary Material

for the centrality plot. All strongest symptoms are connected to
at least two RP factors, although they have small edges.

The ESA of the baseline model is 36.21. Highest possible ESA
is 4 ∗ 27= 108. When conditioning on the presence of protective
factors and the absence of the risk factor, ESA decreases to 35.45.
The difference with baseline ESA is – 0.75. When conditioning
on the presence of the risk factor and the absence of protective
factors, ESA is 36.70, meaning an increase of 0.49 compared with
baseline ESA.

Discussion
We studied symptom-specific associations with RP factors, and
the effect of the presence or absence of RP factors on symptom
levels. Overall, protective factors were positively associated
amongst each other and negatively associated with specific
symptoms. The risk factor “substance use” was mostly positively
associated with specific symptoms, however, there were also some
negative associations with specific symptoms. No moderators
were found.

When conditioning on the presence of the risk factor and the
absence of protective factors, ESA slightly increased. Contrary,
when conditioning on the presence of protective factors and the
absence of the risk factor, ESA slightly decreased. This means that
there is a small effect from the RP factors on symptom activity
levels, where risk factors slightly decrease and protective factors
slightly increase symptom activity.

Note, however, that estimated edges are bidirectional. To
investigate causal effects, longitudinal data are needed to estimate
a dynamic model. Longitudinal data are furthermore needed to
calculate SAS.

A possible explanation for the small effect from the RP
factors on ESA is that floor effects might be present since
baseline symptom activity levels are low. The sample contains
many healthy participants, meaning not enough participants are

FIGURE 10 | Mixed graphical model including symptoms and risk and protective factors. Gray nodes represent SCL-27 symptoms. Green nodes represent protective

factors; red nodes represent risk factors. Blue edges represent positive associations, and red edges represent negative associations. The width of edges and color

intensity represents edge strength.
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present showing high symptom activity and strong effects with
risk factors. Including clinical patients in the sample might show
a wider variety of response patterns and stronger effects when
conditioning on RP factors. Furthermore, the symptom network
consisted of 27 items, while the RP factors consisted of merely
five variables. Important RP factors which have a strong influence
on the symptom network might be missing. Future studies could
repeat the proposed analyses on a dataset with more RP factors
to investigate if stronger effects are found.

The symptom network density is 0.5, meaning the range in
which ESA could change is smaller, and the strongest nodes
are connected to at least two, but not all, RP factors. Estimated
edges have a much smaller value than the theoretical simulations’
multipliers, explaining why this empirical illustration shows
almost no effect.

GENERAL DISCUSSION

In this paper, we presented a formal system where RP
factors from biopsychosocial domains influence resilience by
altering the architecture of psychopathology symptom networks.
Furthermore, we presented two novel metrics to analyze the
resilience of symptom networks. Here, we will discuss these
contributions and their clinical implications, together with their
limitations, and provide concrete suggestions for future research.

Our presented system builds on the theory by Kalisch
et al. (34), who propose that resilience factors could affect
the architecture of symptom networks. By doing so, resilience
factors change the network’s symptom activity patterns and
resilience. In this paper, we extended that idea to include
both risk and protective factors and took a step forward
into formalizing the system. We translated possible ways in
which RP factors can affect resilience to specific target points
on the symptom network parameters, where we made a
distinction between main effects targeting threshold parameters
and moderators targeting connectivity parameters. Targets from
RP factors are operationalized by multiplying these threshold
and connectivity parameters with certain constants, which, based
on their magnitude, act as risk or protective factors, thereby
deteriorating or improving resilience. As a first formalization,
we implemented the system using the Ising model as a statistical
model representing the symptom network (36). Furthermore, we
provided an empirical illustration of how the system could be
implemented in a Mixed Graphical Model (63), which analyzes
both categorical and continuous data.

A second contribution of the current paper is that we
presented two novel metrics for assessing the resilience of
symptom networks: Expected Symptom Activity (ESA) and
Symptom Activity Stability (SAS). Computing ESA is based on
the common practice in the resilience literature to relate the
presence and/or absence of RP factors to symptom severity levels
(50, 51). Furthermore, it is consistent with the psychological
network literature to compute the number of active symptoms
as an indicator of the state of the symptom network (32, 38).
However, symptom levels do not indicate how resilient a system
is, as a resilient system shouldmaintain or quickly bounce back to

its healthy state despite facing adversity (21, 22). Thus, resilience
entails a low level of symptom activity and robust stability of
this low level. Stability measures have been developed in the field
of ecology [e.g., see (66, 67)] and physics [e.g., calculating the
Gibbs entropy; (52)] and are crucial for studying the resilience
of dynamical systems such as ecosystems. In this paper, we
linked concepts from stability theory with existing measures in
the resilience literature and psychopathology network theory by
proposing to compute the variance of symptom activity patterns
as a metric for the stability of symptom levels.

Symptom network models including RP factors can have
important clinical implications for the analysis of symptom-
specific pathways. Symptom network models focus on unique
associations between symptoms, which may suggest pathways for
which symptom-level intervention strategies can be developed
(68). This is especially important formultifactorial disorders such
as depression, since scales or sub-scales of these disorders are
unstable over time (e.g., they are not measurement invariant),
and do not measure one, underlying component (i.e., they are
not unidimensional) (60). Therefore, symptom network analysis
offers a promising, novel technique to compare the symptom-
specific efficacy of treatment interventions for depression, such
as antidepressant medication vs. Cognitive Behavioral Therapy
[CBT; (69)]. Including RP factors into symptom networks could
yield new insights into symptom-specific pathways involving
biopsychosocial factors, which aid the development of novel and
more effective intervention strategies.

Apart from analyzing symptom-specific pathways in
experimental data, a recent call for “precision psychiatry” urges
the development of computational models that integrate data
units across scales, such as biomarkers, self-report symptom
inventories, and clinicians’ observations (70–72). The collection
of experimental data is costly, which is why an exploratory
analysis with observational data gives a first indication of
possible symptom-specific pathways between specific symptoms
and RP factors, such as biomarkers. In this paper, we showed
a simulation-based, exploratory method for observational data,
which aims to investigate which symptom-specific pathways
might exist with relevant RP factors.

The presented method has some limitations, of which we
will discuss the most pressing ones. Using the Ising model as a
statistical model to incorporate the theory by Kalisch et al. (34)
has limitations, as the model does not hold for more complex
elements of the proposed theory. The first and major one is that
the dynamical aspect of the theory by Kalisch et al. (34) cannot
be investigated with the Ising model. The theory states that the
presence of a protective factor could, over time, increasingly
increment a symptom’s threshold, as the protective factor and
symptom get entangled in a positive feedback loop. For example,
having a job with regular working hours might lead to better
sleep and a smaller chance (i.e., stronger negative threshold) to
develop the psychiatric symptom insomnia. As sleep improves,
one’s job performance might also improve, creating a positive
feedback loop between the protective factor (stable job) and
stronger symptom threshold (insomnia). To investigate this
dynamical aspect, an invariant model such as the Ising model is
not suitable.
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A second limitation is that the Ising model does not consider
different time scales on which the various variables operate. It is
plausible to assume that a protective factor such as social support
evolves on a slower time scale than a psychiatric symptom such
as depressed mood. Future research could expand the proposed
system in line with the Personality-Resilience-Psychopathology
model by Lunansky et al. (73), where personality variables that
operate on a slower time scales affect specific network parameters
of fast-evolving symptom networks. A third limitation is that
the Ising model can only analyze binary data, while measures
on symptoms and RP factors will usually be on an ordinal
or continuous scale. To address this limitation, our study
also provided an empirical illustration of the proposed system
using an MGM (63). However, this is not an optimal solution
since the MGM also does not account for the dynamical
aspect of the theory. Lastly, a limitation of using the Ising
model is that specific aspects of its dynamics are restricted
within its domain (53). Some results from our simulation
studies are, therefore, only valid within this specific domain.
For example, when using a different binary notation for the
state of the variables (the {−1,1} domain instead of the {0,1}
domain), increasing the density of the network does not increase
symptom activation but only its variance. Dynamics of the {0,1}
domain or {−1,1} domain can be translated to each other by
transforming the network’s parameters as described by Haslbeck
et al. (53).

We have several concrete suggestions for future research. First,
the further development of time-varying models to study holistic
models of resilience. Time-varying models allow for dynamic
relations between variables over time (74). Differential equations
describe how variables change as a function of themselves and
other related variables, which is why computational models
often use these equations to simulate behavioral patterns over
time. For example, the computational model for Panic Disorder
by Robinaugh et al. (75) explains how panic attacks can
instantiate, reach their peak, and end, by using a mathematical
model of differential equations. These equations represent
dynamic relationships between relevant variables, such as arousal
and perceived threat, and are constructed based on reported
relationships in the literature. Second, using latent change
models such as the Random Intercept Cross-Lagged Panel
Model (76). This model estimates dynamic relations between
different variables over time, and could be used to model the
effects from RP factors from various domains on psychiatric
symptoms. Therefore, future research should focus on collecting
longitudinal data, including measures on psychiatric symptoms
and various RP factors, and developing and estimating time-
varying models.

Second, there are multiple ways in which the proposed
metrics, especially SAS, could be improved. As general and
straightforward as computing the variance is, it is also not the
most exact way of predicting how a system will react in the face of
adversity. Furthermore, high variability of a system’s behavioral
patterns might also be an indicator of strong adaptability (77).

Therefore, computing SAS as a resilience indicator could be
further extended by computing a symptom network’s sensitivity
to perturbations (78). This would give a more dynamic indicator
of the stability and adaptability of symptom activity patterns
when faced with perturbations. Alternatively, when developing
a more advanced model for the proposed system in this paper
using differential equations, the system’s potential landscape can
be computed [e.g., (79)], giving an exact overview of the system’s
stable states. This paper outlined the main reasons for computing
ESA and SAS as resilience metrics of symptom networks, while
their optimal computation will hopefully be further developed in
future research.

Holistic, ecosystem models, including variables from
multiple domains such as biopsychosocial models, are an
interesting candidate for studying the complex nature of mental
health and its relationship with various risk and protective
factors. By combining ideas and models from the network
perspective of psychopathology (32, 36, 38, 63) with the
theory on resilience factors targeting network parameters
(34), we took one step forward toward the formalization of
these models.
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