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In vivo 1H magnetic resonance spectroscopy studies have found elevated brain

glutamate or glutamate + glutamine levels in bipolar disorder with surprisingly high

reproducibility. We propose that the elevated glutamate levels in bipolar disorder

can be explained by increased pyruvate carboxylase-mediated anaplerosis in brain.

Multiple independent lines of evidence supporting increased pyruvate carboxylase-

mediated anaplerosis as a common mechanism underlying glutamatergic hyperactivity

in bipolar disorder and the positive association between bipolar disorder and obesity are

also described.
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INTRODUCTION

The etiologic and disease mechanisms of bipolar disorder remain poorly understood. A growing
body of evidence indicates a central role of mitochondrial dysfunction in the pathophysiology
of bipolar disorder. Post-mortem brain studies have revealed abnormal size, structure and
distribution of mitochondria as well as a pronounced and extensive decrease in nuclear gene
expression governing oxidative phosphorylation in bipolar disorder (1–3). These post-mortem
results are consistent with in vivo findings of elevated cerebrospinal fluid pyruvate and lactate
levels (4, 5), decreased adenosine triphosphate production and a significant shift from oxidative
phosphorylation to glycolysis in brain in bipolar disorder accompanied by elevated brain lactate
levels and lowered intracellular pH as reported by in vivo 31P and 1H magnetic resonance
spectroscopy (MRS) studies (6–10). Paradoxically, despite the impaired mitochondrial function
and oxidative metabolism in bipolar disorder in vivo 1H MRS studies have also reported a highly
reproducible pattern of elevated total glutamate or glutamate+ glutamine levels (11) (glutamate+
glutamine is dominated by glutamate in MRS spectra).

Pyruvate carboxylase is a mitochondrial enzyme. It catalyzes the thermodynamically irreversible
carboxylation of pyruvate to oxaloacetate which is a tricarboxylic acid (TCA) cycle intermediate
used for various biosynthetic pathways depending on the tissues. The biotin-dependent pyruvate
carboxylase employs pyruvate and the polar molecule bicarbonate instead of CO2 as its substrates:

pyruvate +HCO−

3 + adenosine triphosphate → oxaloacetate + adenosine diphosphate

+inorganic phosphate

Pyruvate carboxylase-mediated anaplerosis is at the metabolic crossroad of carbohydrate and
lipid metabolism, playing a key role in gluconeogenesis, lipogenesis, and glutamate homeostasis
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(see Figure 1). In brain, released neurotransmitter glutamate is
replenished by the glutamate-glutamine neurotransmitter cycle
and de novo glutamate synthesis via pyruvate carboxylase-
mediated anaplerosis in astrocytes (12–21). In this work we
propose that the elevated brain glutamate levels in bipolar
disorder observed by 1H MRS with very high consistency
can be explained by an increase in pyruvate carboxylase-
mediated anaplerosis. Evidence supporting increased pyruvate
carboxylase-mediated anaplerosis as a common mechanism
underlying glutamatergic hyperactivity in bipolar disorder
and the positive association between bipolar disorder and
obesity is also discussed. The pyruvate carboxylase-mediated
anaplerotic pathway may represent future therapeutic targets for
bipolar disorder.

BRAIN PYRUVATE CARBOXYLATION IN
BIPOLAR DISORDER

Pyruvate Carboxylase-Mediated
Anaplerosis Is Essential for Maintaining
Glutamate Homeostasis
Presynaptic release of neurotransmitter glutamate is
accompanied by its rapid uptake into astrocytes to maintain
an extremely low extracellular glutamate level. The released
neuronal glutamate is replenished predominantly by astrocytic
glutamine supplied by the glutamate-glutamine neurotransmitter
cycle and de novo glutamate synthesis (22–24). Abundant
evidence shows that neurons lack the anaplerotic enzyme
pyruvate carboxylase required for de novo synthesis of
TCA cycle intermediates (19, 21, 25). Through pyruvate
carboxylase-mediated anaplerosis in astrocytes pyruvate and
bicarbonate enter the TCA cycle to replenish carbon skeletons
lost via glutamine efflux. The subsequently formed TCA cycle
intermediate α-ketoglutarate is converted to glutamate by
transamination via aspartate aminotransferase or reductive
amination via glutamate dehydrogenase. Glutamate can be
subsequently converted to glutamine by glutamine synthetase
(15), an enzyme exclusively expressed in astrocytes (26).
Numerous in vivo 13C MRS studies have established that the
glutamate-glutamine neurotransmitter cycle between astrocytes
and neurons is a major metabolic flux in brain (12, 13, 16, 20, 23).
In the meanwhile, glutamine efflux from the brain is highly
significant (27). Many studies have demonstrated that de novo
synthesis of glutamate is a significant metabolic pathway essential
for maintaining glutamate/glutamine homeostasis in the central
nervous system (16, 18).

Glutamate and Glutamatergic
Hyperactivity in Bipolar Disorder
Glutamate is the major excitatory neurotransmitter in the
central nervous system. Although the pathophysiology of
bipolar disorder is still poorly understood, growing evidence
suggests that glutamatergic abnormalities play a key role
in the pathogenesis and treatment of bipolar disorder. For
example, many rodent studies have demonstrated that mood
stabilizers modulate glutamatergic receptors while manipulation

of glutamatergic receptors causes significant changes in
mood-associated behaviors (28, 29). Post-mortem studies of
bipolar disorder have also produced evidence of excitotoxicity in
the frontal cortex (30), altered glutamatergic function on both
presynaptic and post-synaptic sides, and abnormal excitatory
synaptic connections (31, 32). In keeping with the preclinical and
post-mortem findings of glutamatergic hyperactivity in bipolar
disorder an in vivo transcranial magnetic stimulation study has
reported impaired cortical inhibition in bipolar disorder (33).

High glutamate + glutamine levels were shown to correlate
with cognitive impairment in many brain disorders associated
with glutamatergic abnormalities (34). The increased glutamate
availability suggests activity-dependent vesicular glutamate
release of larger quantal size because vesicle glutamate filling
levels are dependent on the concentration of cytoplasmic
glutamate to be packaged into synaptic vesicles (35). As excessive
glutamate activates ionotropic receptors in extra-synaptic sites
and causes neurotoxicity by calcium influx and generation of
free radicals including nitric oxide, the sustained elevation of
glutamate levels therefore may be a significant part of the
pathogenesis of the widespread glutamatergic abnormalities in
bipolar disorder (36).

Elevated Glutamate Levels in Bipolar
Disorder Can Be Explained by Increased
Pyruvate Carboxylase-Mediated
Anaplerosis in Brain
Despite the highly reproducible evidence of elevated brain
glutamate levels in bipolar disorder from numerous in vivo
MRS studies, to the best of our knowledge, a connection
between the MRS results and pyruvate carboxylase-mediated
anaplerosis has not been made in the literature. However, several
drugs used in the treatment of bipolar disorder have important
links to pyruvate carboxylase. For example, carbamazepine has
long been a therapeutic option for bipolar disorder. It has
been used in the treatment of bipolar disorder in both acute
mania andmaintenance therapy. In rats chronically administered
dietary carbamazepine the abundance and activity of biotinylated
pyruvate carboxylase were significantly reduced in both liver and
brain (37, 38). The potential connection between the efficacy of
carbamazepine in bipolar disorder treatment and its effect on
pyruvate carboxylase has yet to be investigated.

The important role of the mitochondrial enzyme pyruvate
carboxylase in brain function is also well-recognized clinically.
Pyruvate carboxylase deficiency, a rare autosomal recessive
inborn error of metabolism, is characterized by impairment
of lactate metabolism and gluconeogenesis, producing severe
lactic acidosis accompanied by compromised psychomotor
development and intellectual disability (39). Certain drugs
used in the treatment of bipolar disorder improve cerebral
metabolism. For example, lithium was demonstrated to enhance
oxidative phosphorylation in post-mortem human brain tissue
(40) and quetiapine reduced lactate in rapid cycling manic
bipolar patients (41).

Despite numerous variations across the studies (e.g., patient
selection, disease state, medication history, and 1H MRS
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FIGURE 1 | Pyruvate carboxylase (PC)-mediated anaplerosis in bipolar disorder and comorbid obesity. Glucose first undergoes glycolysis with pyruvate as the end

product. Pyruvate is in rapid exchange with lactate catalyzed by lactate hydrogenase (LDH). Brain pyruvate and lactate levels were found to be elevated in bipolar

disorder. Pyruvate enters mitochondria either for oxidation to acetyl-CoA catalyzed by pyruvate dehydrogenase (PDH) or carboxylation to oxaloacetate catalyzed by

PC. PC uses bicarbonate as its substrate instead of CO2. Carbonic anhydrase (CA) inhibition limits bicarbonate supply to PC. For de novo glutamate synthesis in

astrocytes, oxaloacetate formed by pyruvate carboxylation condenses with acetyl-CoA and is converted to citrate and subsequently to α-ketoglutarate as part of the

tricarboxylic acid (TCA) cycle. α-ketoglutarate can be further converted into glutamate, which was found to be elevated bipolar disorder. Formation of oxaloacetate

from pyruvate via PC represents the first committed step of gluconeogenesis which primarily takes place in liver and, to a lesser extent, the cortex of kidneys. For

lipogenesis, citrate synthesized via pyruvate carboxylation and subsequent condensation with acetyl-CoA in mitochondria is exported to the cytosol to supply

acetyl-CoA for de novo fatty acid synthesis. Both fatty acid and triglyceride synthesis take place mainly in liver and adipose tissue.

methodologies) in vivo 1H MRS studies of bipolar disorder
have found elevated glutamate or glutamate + glutamine with
surprisingly high consistency (8, 11, 36, 42–45). Consistent,
mood phase-independent elevation in glutamate levels in the
frontal brain areas was measured in adult bipolar disorder
patients by many 1HMRS studies (43) while treatment of bipolar
disorder patients by lithium and valproate resulted in glutamate
+ glutamine reduction (45). A meta-analysis (11) of the 1H
MRS measurement of glutamate + glutamine found elevated
glutamate+ glutamine levels in bipolar patients when compared
with healthy controls with an effect size of 0.72 and a 95%
confidence interval of 0.17–1.27 (p= 0.01) for the pooled studies
that reported glutamate + glutamine in all area of the brain
(nine studies with 162 bipolar disorder patients and 165 healthy
controls). Analyses of medicated and non-medicated bipolar
disorder patients found that the effect size for glutamate level
increase in non-medicated patients was much higher (1.91; p =

0.03) than in medicated patients (0.31; p= 0.03), consistent with
that medications decreased brain glutamate. Increased serum α-
ketoglutarate and glutamate and increased glutamate in post-
mortem brain tissue samples obtained from bipolar disorder
individuals have also been reported (46–49). For instance, plasma
glutamate levels in patients with bipolar mania (n = 20) were
significantly higher in both mania phase (46 ± 19µM, p = 0.03)
and remission (57 ± 27µM, p = 0.04) than matched controls
(36 ± 9µM, n = 20) (46). After correcting for post-mortem
changes the level of glutamate at the time of death measured
from post-mortem frontal cortex samples (Brodmann area 6) of
bipolar disorder patients (15.33 ± 5.72 nmol/mg tissue, n = 15)
was found to be significantly higher than in the normal control

samples (10.68± 2.59 nmol/mg tissue, n= 15, p= 0.013) (47). In
contrast, only a few studies have reported no change in glutamate
+ glutamine or reduced glutamate + glutamine in brain areas
studied (36).

It is well-known in the neurochemical literature that brain
relies on pyruvate carboxylase-mediated anaplerosis for de novo
glutamate synthesis (15–21). Because of the unique role of
pyruvate carboxylase in brain glutamate formation the highly
consistent findings of elevated glutamate or glutamate +

glutamine levels in bipolar disorder observed by in vivo 1H
MRS, serum and post-mortem studies can be readily explained
by increased pyruvate carboxylase-mediated anaplerosis in
brain of patients with bipolar disorders. This explanation is
also supported by the significant comorbidity between bipolar
disorder and obesity as described in section Glutamate, Bipolar
Disorder, and Comorbid Obesity.

Elevated Glutamate Levels in Bipolar
Disorder Is Consistent With a Chronic
Mismatch Between Glucose Utilization and
Oxidative Metabolism
A large body of evidence has consistently demonstrated
that there is a significant mismatch or uncoupling between
glucose utilization and oxidative metabolism in stimulated
brain accompanying increased glutamatergic activities (50).
Similar mismatches have also been observed in brain after
vigorous physical exercise (51). Many functional 1H MRS
studies have reported transient elevation of glutamate or
glutamate + glutamine levels in activated brain tissue in
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response to stimuli or tasks (52). In preclinical studies, increased
glutamatergic activities were found to cause an increase in
pyruvate carboxylation, resulting in enlarged glutamate and
glutamine pools (17). These results suggest that enhanced
glutamatergic activity increases de novo synthesis of glutamate
from glucose (17). It should be noted that literature evidence
for a transient increase in glutamate levels following a functional
task or stimulus is not conclusive (52). Recent in vivo 13C MRS
studies of anesthetized rodents found that acute stimulation did
not increase pyruvate carboxylase-mediated anaplerotic flux rate
in brain (53, 54).

The molar ratio of the arterio-venous difference of oxygen
to glucose + ½ lactate is commonly referred to as the oxygen-
to-carbohydrate index. The oxygen-to-carbohydrate index is
reduced when more glucose and lactate are taken up into the
brain than are oxidized to CO2. As lactate accumulation can
only account for a portion of the large decrease in oxygen-
to-carbohydrate index accompanying the mismatch between
stimulation of glucose utilization and oxidative metabolism, it
has been proposed that increased de novo glutamate synthesis
via pyruvate carboxylase-mediated anaplerosis contributes to the
large decrease in oxygen-to-carbohydrate index when glucose
utilization outpaces oxidative metabolism during stimulation of
brain activity (17, 51).

31P and 1H MRS studies have found reduced oxidative
phosphorylation and elevated lactate and glutamate+ glutamine
levels in brain in bipolar disorder, indicating impaired oxidative
metabolism (7–10, 36, 42, 43). In contrast, positron emission
tomography (PET) studies using [18F]fluorodeoxyglucose have
reported small or no differences between healthy controls and
bipolar disorder patients in glucose utilization rate in the
prefrontal cortex or brain as a whole (55–58). There is no
consensus in the directionality of the reported differences by
the PET studies (55–58). Considering the variations across
the PET studies, the lack of consensus in the direction of
the changes suggests that the overall abnormalities in cerebral
glucose utilization in bipolar disorder are likely very small. The
31P and 1H MRS and PET results, taken together, indicate that
there is a considerable mismatch between oxidative metabolism
and glucose utilization in brain in bipolar disorder. Therefore,
the elevated glutamate + glutamine levels are consistent
with mitochondrial dysfunction and a chronic mismatch
between glucose utilization and oxidative metabolism in bipolar
disorder accompanied by incomplete carbohydrate oxidation and
increased pyruvate carboxylase-mediated anaplerosis.

GLUTAMATE, BIPOLAR DISORDER, AND
COMORBID OBESITY

Glutamate Levels and Body Mass Index in
Bipolar Disorder
Bipolar disorder and obesity are positively associated (59–62)
with cardiovascular disease as the most common cause of death
in bipolar disorder patients (63). Bipolar disorder patients are
two-thirds more likely to be obese than the age-, race-, and
sex-adjusted general population (60). A study of the association
between body weight and bipolar illness in drug-naïve patients

reported that ∼41% of untreated patients with bipolar disorder
were overweight or obese (59). Obese bipolar disorder patients
also have a more severe mood illness than normal weight
patients (61). The underlying causes of the effects of obesity
on bipolar disorder are still being investigated (61, 64). Recent
neuroimaging studies reported that structural and neurochemical
abnormalities in brain characteristic of bipolar disorder were
more prominent with higher body mass index (65, 66). In
particular, the increase in bilateral hippocampal glutamate +

glutamine in patients with first-episode mania measured by 1H
MRS was found to be more pronounced with higher body mass
index (67). In comparison, the correlation between glutamate
+ glutamine and body mass index in healthy individuals was
insignificant (67).

Obesity Is Associated With Increased
Pyruvate Carboxylase-Mediated
Anaplerosis
Pyruvate carboxylase plays a crucial role in lipogenesis and
gluconeogenesis in mammals. It converts pyruvate and
bicarbonate into oxaloacetate for further conversion into
citrate which is then exported from mitochondria and
cleaved in cytosol to supply precursors for de novo fatty
acid synthesis [(68); Figure 1]. The activity of pyruvate
carboxylase is dramatically increased during adipocyte
differentiation. Over expression of pyruvate carboxylase is
associated with obesity and type 2 diabetes (69). Of the four
gluconeogenic enzymes (phosphoenolpyruvate carboxykinase,
fructose-1,6-bisphosphatase, glucose-6-phosphatase, and
pyruvate carboxylase) pyruvate carboxylase reaction is the first
committed step and likely rate-limiting in gluconeogenesis
(70). The pyruvate carboxylase reaction provides oxaloacetate
for subsequent conversion into phosphoenolpyruvate by
phosphoenolpyruvate carboxykinase and regulates hepatic
glucose production. In humans, increased hepatic pyruvate
carboxylase expression was closely correlated with plasma
glycemia, indicating that hepatic pyruvate carboxylase is a key
determinant of gluconeogenesis in liver (71). Animal studies
have demonstrated that increased pyruvate carboxylase flux
is an important pathway responsible for increased hepatic
glucose production in diabetes development (72). Furthermore,
selective inhibition of pyruvate carboxylase expression in liver
and adipose tissue significantly reduced adiposity, plasma lipid
levels and hepatic steatosis (71). A recent in vivo 1H and 13C
MRS study of a mouse model of high-fat diet consumption
has also found significantly elevated glutamate and glutamate
+ glutamine levels as well as increased pyruvate carboxylase-
mediated anaplerotic flux rate in the hypothalamus of treated
animals (73). Taken together, the above evidence demonstrates
that increased pyruvate carboxylase-mediated anaplerosis is a
metabolic hallmark of obesity.

Carbonic Anhydrase Inhibition in Bipolar
Disorder and Obesity
Catalysis by carbonic anhydrase is necessary to speed up
the reversible hydration of CO2 for a variety of biological
processes. In the central nervous system carbonic anhydrase

Frontiers in Psychiatry | www.frontiersin.org 4 February 2021 | Volume 12 | Article 640977

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Shen and Tomar Glutamate in Bipolar Disorder

inhibition enhances inhibitory neurotransmission. Many
anticonvulsants are strong carbonic anhydrase inhibitors.
Adjunctive acetazolamide, a sulfonamide carbonic anhydrase
inhibitor, improved prophylactic efficacy in 44% of the
treatment-resistant bipolar disorder patients (74). One of
the common adverse effects of acetazolamide is weight loss.
Adjunctive topiramate and zonisamide have been used in the
treatment of bipolar disorder. They are also strong carbonic
anhydrase inhibitors and caused persistent weight loss in obese
patients (75–79). Of the three anticonvulsants, the efficacy
of topiramate in the treatment of bipolar disorder has been
demonstrated by many studies (77). Topiramate also caused
substantial weight loss in patients with bipolar disorders in those
studies (77).

Inhibition of carbonic anhydrase limits the access of CO2-
fixing enzymes pyruvate carboxylase and acetyl-CoA carboxylase
to bicarbonate and decreases pyruvate carboxylase-mediated
anaplerosis in peripheral tissues (Figure 1). It has been
demonstrated that carbonic anhydrase activity is required for
optimal activity of hepatic pyruvate carboxylase in de novo
synthesis of both fatty acids and non-saponifiable lipids (80).
Carbonic anhydrase inhibitors are known to inhibit de novo
lipogenesis and gluconeogenesis in liver (81, 82). In cultured
adipocytes inhibition of carbonic anhydrase by sulfonamides also
significantly decreased lipogenesis (83).

Carbonic anhydrase in brain is predominantly expressed
in glial and choroid cells (84–88). The much lesser carbonic
anhydrase expression in neurons facilitates rapid removal of
CO2, which is generated by the highly active neuronal oxidative
metabolism, from neurons by free diffusion. This distinct
distribution of intracellular carbonic anhydrase in brain leads to
the conversion of CO2 into bicarbonate primarily in astrocytes,
rendering astrocytes as sinks of CO2 (89). In cultured astrocytes
inhibition of carbonic anhydrase caused a large reduction in
pyruvate carboxylase-mediated CO2 fixation by limiting the
supply of bicarbonate to pyruvate carboxylase, resulting in
reduced TCA cycle intermediate levels and reduced glutamate
production (90). Since in the central nervous system astrocytes
are the predominant site for both CO2 hydration catalyzed
by carbonic anhydrase and pyruvate carboxylation catalyzed
by pyruvate carboxylase (Figure 1), limitation of de novo
synthesis of glutamate by carbonic anhydrase inhibition may
play a significant role in the antiepileptic properties and mood
stabilization effects of anticonvulsants that are also carbonic
anhydrase inhibitors. Therefore, both mechanistic and clinical
studies of carbonic anhydrase inhibition support the proposed
connections among bipolar disorder, obesity and pyruvate
carboxylase-mediated anaplerosis.

Pyruvate Carboxylase-Mediated
Anaplerosis Is a Potential Therapeutic
Target for Bipolar Disorder and Comorbid
Obesity
A single pyruvate carboxylase isoform is expressed in humans
and found in mitochondria only (91). Pyruvate carboxylase

expression is regulated by complex mechanisms and many
exogenous and endogenous modulators (80, 91). Many
modulators of pyruvate carboxylase pass the blood brain barrier
(80) therefore may affect pyruvate carboxylase activities in
both peripheral tissues and the brain. Obesity and diabetes
are associated with increased pyruvate carboxylase expression
in liver and adipose tissue (69). In contrast, insulin inhibits
pyruvate carboxylase expression in liver (80). In the central
nervous system increased pyruvate supply was found to augment
pyruvate carboxylase-mediated anaplerotic flux and glutamate
production in astrocytes (15).

Previous studies have shown that pharmacological inhibition
of pyruvate carboxylase by phenylacetic acid markedly reduced
hepatic gluconeogenesis in rats (92). The effects of pyruvate
carboxylase on glucose and lipid metabolism in several rodent
models were measured using a specific antisense oligonucleotide
to selectively decrease pyruvate carboxylase expression in liver
and adipose tissue (71). The specific antisense oligonucleotide
approach significantly reduced plasma glucose concentrations
and endogenous glucose production. In a high-fat-diet rat
model, pyruvate carboxylase antisense oligonucleotide reduced
adiposity, plasma lipid levels, and hepatic steatosis (71). It
has been suggested that pyruvate carboxylase is a potential
therapeutic target for several diseases associated with obesity
(71, 92). As the experimental findings discussed here indicate
that elevated pyruvate carboxylation may be a significant
part of the pathogenesis of glutamatergic hyperactivity and
comorbid obesity in bipolar disorder, designing inhibitors of
pyruvate carboxylase to pharmacologically modulate pyruvate
carboxylase-mediated anaplerosis may be a useful new treatment
strategy for bipolar disorder and comorbid obesity.

CONCLUSIONS

Increased pyruvate carboxylase-mediated anaplerosis can readily
explain the elevated glutamate or glutamate+ glutamine levels in
brain in bipolar disorder observed by in vivo 1H MRS. Multiple
independent lines of evidence suggest that increased pyruvate
carboxylase-mediated anaplerosis is a common mechanism
underlying glutamatergic hyperactivity and the significant
positive association between bipolar disorder and obesity. As
the increased prevalence of obesity in bipolar disorder is
associated with illness severity and poor treatment outcomes
development of preventive and treatment strategies targeting
pyruvate carboxylase-mediated anaplerosis may be warranted.
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