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Obstructive sleep apnea (OSA), a heterogeneous and multifactorial sleep related

breathing disorder with high prevalence, is a recognized risk factor for cardiovascular

morbidity and mortality. Autonomic dysfunction leads to adverse cardiovascular

outcomes in diverse pathways. Heart rate is a complex physiological process involving

neurovisceral networks and relative regulatory mechanisms such as thermoregulation,

renin-angiotensin-aldosterone mechanisms, and metabolic mechanisms. Heart rate

variability (HRV) is considered as a reliable and non-invasive measure of autonomic

modulation response and adaptation to endogenous and exogenous stimuli. HRV

measures may add a new dimension to help understand the interplay between cardiac

and nervous system involvement in OSA. The aim of this review is to introduce the various

applications of HRV in different aspects of OSA to examine the impaired neuro-cardiac

modulation. More specifically, the topics covered include: HRV time windows, sleep

staging, arousal, sleepiness, hypoxia, mental illness, and mortality and morbidity. All

of these aspects show pathways in the clinical implementation of HRV to screen,

diagnose, classify, and predict patients as a reasonable and more convenient alternative

to current measures.

Keywords: obstructive sleep apnea, heart rate variability, autonomic dysfunction, central autonomic networks,

time-window analysis, time-domain analysis, frequency-domain analysis, non-linear analysis

INTRODUCTION

Obstructive sleep apnea (OSA) is closely associated with neurocognitive, behavioral,
psychophysiological states, and cardiovascular outcomes (1–3). It is estimated that globally
∼1 billion adults have mild to severe sleep apnea. Some countries have a prevalence over
50% and it still is increasing. The consequent health and financial burden can be minimized
by effective diagnosis and treatment (4). To that effect, recently, the role of cardiovascular
autonomic dysfunction has received increasing attention as an independent risk factor for
clinical complications in OSA (5). Heart rate variability (HRV) has been generally accepted as a
non-invasive tool to quantify cardiovascular autonomic modulation under varying healthy and
pathogenic conditions (6, 7). HRV measures the variation between beat-to-beat intervals over a
time series (6). It is an integrated reflection of central-peripheral neural feedback mechanisms to
the heart via mediating sympathovagal inflow and outflow (8). Previous studies suggested that in
conjunction with brain imaging, HRV analysis has been used to investigate the connection between
autonomic cardiac modulation and sleeping brain activity (9).
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Currently, HRV analysis, including time-domain, frequency-
domain, and non-linear analysis, is used to explore the activities
of sympathetic and parasympathetic nervous systems (6, 10).
Time-domain analysis quantifies the magnitudes of variation.
The most relevant time-domain parameters are described in
Table 1. For example, the standard deviation of normal-to-
normal intervals (SDNN), a global HRV metric, is frequently
used as a prognostic indicator of cardiovascular risk in
different populations (11). Frequency-domain analysis is used for
partitioning the rhythms of electrocardiography (ECG) signals
into different frequencies (12, 13). This analysis helps gain a
better understanding of cardiac control as ECG frequencies
could be related to intrinsic elements modulated by the cardiac
autonomic system alone. Power spectral density (PSD) is the
standard method employed to estimate the distribution of the
HRV signal power over frequency. Table 2 shows the main
frequency-domain parameters typically computed from the PSD
of HRV (14). High frequency (HF) components mainly present
parasympathetic activity. However, there is a disagreement with
regards to the low frequency (LF) components. Some studies
suggested that LF, when expressed in normalized units, is a
quantitative marker of sympathetic modulation, but other studies
view LF as a reflection of both sympathetic and vagal activity
mainly mediated by the baroreflex. Thus, the LF/HF ratio is
considered a detection index for either sympathovagal balance
or sympathetic modulations (15). Apart from the conventional
PSD, other frequency-domain methods are also used to analyze
the frequency content of the HRV, such as high order spectral
analysis and wavelet analysis. Non-linear HRV captures dynamic
sequences of the heartbeat time series related to randomness
and self-similarity (10, 16). It is suggested that non-linear
fluctuations result from interactions of electrophysiological,
hemodynamic, and humoral variables, as well as by autonomic
and central nervous regulation (17). Pathologically monotonous
and erratic HRV patterns are associated with negative outcomes
in cardiac patients (18). OSA patients show a reduced dynamic
complexity (19, 20). The clinical relevance of non-linear HRV
in OSA still needs to be the established. Table 3 summarizes
the reported non-linear parameters and methods in current
studies on HRV (6, 14, 21). However, this not by any means an
exhaustive list.

Heart rate and blood pressure oscillations are characterized
by parasympathetic predominance and sympathetic inhibition in
normal subjects during non-rapid eye movement (NREM)
sleep (22). In contrast, sympathetic predominance and
parasympathetic withdrawals are found during similar rapid
eye movement (REM) sleep and wakefulness. As a result,
there is a reduction of heart rate and blood pressure during
NREM sleep and an increase during REM sleep. However,
patients with OSA manifest a heterogeneous pathophysiology
(e.g., upper airway anatomical collapsibility, loop gain, arousal
threshold, and upper airway gain) and characteristics (e.g.,
recurrent apnea and hypopnea, nocturnal hypoxemia, frequent
awakenings, and daytime sleepiness) (23). Consequently,
hypoxia and arousal in OSA are thought to potentially be
the main factors leading to certain hemodynamic instability,
causing fluctuations in heart rate that contribute to the

TABLE 1 | Selected time-domain HRV measures.

Variable Units Definition

Time-domain analysis

SDNN ms Standard deviation of normal to normal

(NN) interval time series

SDANNX (X = 1, 5) ms Standard deviation of BBI averages in

successive X-minute intervals

RMSSD ms Square root of the mean squared

differences of successive NN intervals

pNNX (X = 50, 100, 200) % NN>Xms counts divided by the total

number of all NN intervals.

pNNlX (X = 10, 20, 30) % NN<Xms counts divided by the total

number of all NN intervals.

Time-domain geometric measures

HRVi – HRV triangular index

TINN ms Baseline width of the minimum square

difference triangular interpolation of the NN

interval histogram

TABLE 2 | Selected frequency-domain HRV parameters.

Variable Units Definition

Frequency-domain analysis

TP ms2 Total power (0–0.4Hz)

ULF ms2 Ultra-low frequency (0–0.01Hz)

VLF ms2 Very low frequency (0.01–0.04Hz)

LF ms2 Low frequency (0.04–0.15Hz)

HF ms2 High frequency (0.15–0.4Hz)

LF/HF – Ratio of LF to HF

HF nu – Normalized high frequency power HF/(LF+HF)×100

LF nu – Normalized low frequency power LF/(LF+HF)×100

changes in HRV. Previous studies have shown the detrimental
effect of OSA on HRV either during wakefulness or sleep
(24–26), suggesting a relationship between OSA severity and
cardiovascular autonomic modulations using conventional
HRV analysis. Additionally, (27). suggested that prolonged
alterations in autonomic function existed even in snoring
subjects. Those findings highlighted the potential cumulative
impacts of OSA on HRV. On the other hand, Idiaquez et al.
(28) found independent pathophysiological mechanisms may
underlie the modulation of neurobehavioral changes and HRV
in OSA despite sharing common cerebral control regions and
mediated pathways. Although the HRV time window is more
related to mathematics, physics and statistics, its determination
in OSA-related events (e.g., sleep apnea, arousal, and periodic
limb movement) is crucial in reflecting the relationship
between autonomic changes and OSA-related physiological
changes. Furthermore, it allows for the discovery of how the
cardiovascular, respiratory, autonomic, and central nervous
systems interact with each other in OSA. The HRV time window
is also particularly important in coupling analysis such as
synchronization and ensemble symbolic coupling, potentially
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TABLE 3 | Selected non-linear HRV parameters and methods.

Variable Units Definition

Chaotic invariant analysis

D2 – Correlation dimension

LLE – Largest Lyapunov exponent

FD – Fractal dimension

H – Hurst exponent

Poincare plots

SD1 ms Standard deviation around the Y-axis of the

Poincaré plot

SD2 ms Standard deviation around the X-axis of the

Poincaré plot

Detrended fluctuation analysis (DFA)

α1 – Slope of the short-time scales of the DFA profile

α2 – Slope of the long-time scales of the DFA profile

Entropy analysis

ApEn – Approximate entropy

SampEn – Sample entropy

RenyiEn – Renyi entropy

ShanEn Shannon entropy

REEn – Renormalized entropy

Recurrence plots (RP)

MDL – Average length of diagonal lines in RP

TT – Average length of vertical lines in RP

DET – Rercentage of recurrent points forming

diagonal lines in a RP

LAM – Rercentage of recurrent points forming vertical

lines in a RP

ENTR – Shannon entropy of the distribution of diagonal

lines in a RP

Symbolic dynamics

Fwshannon – Shannon entropy of the probabilities of

occurrence of the words of the symbol

sequence

Forbword – Number of words of length 3 that never or only

seldom occur

Wsdavar – Standard deviation of the word sequence

Phvar5 – Portion of high-variability patterns in the NN

interval time series (>5ms)

Plvar20 – Portion of low-variability patterns in the NN

interval time series (<20ms)

WpsumXY (XY = 02, 13) – Percentage of words which contain the

symbols “X” and “Y”

revealing direction and strength of dynamic cardiovascular
transition (29, 30).

Taken together, HRV could provide a static and
a dynamic perspective to observe the changes in
connectivity between central and cardiac autonomic
modulation during sleep and its persistent influence
during daytime. This review focuses on neuro-cardiac
autonomic regulatory mechanisms and the multifaceted
applications of HRV in OSA as a potential additional clinical
diagnostic tool.

TIME-WINDOW ANALYSIS TECHNOLOGY
OF HRV

HRV is usually measured over a short-term (5–15min) or long-
term period (1–24 h). Long-term measurements are generally
used to assess mortality and adverse prognosis of patients, but
short-term measurements have been shown to be sufficiently
stable and applicable for screening. However, 5-min recordings
only had strong correlation with HF (31). Li et al. (32) assessed
short-term analysis to be suitable for estimation of autonomic
status and tracking dynamic changes but long-term changes
to be better as an autonomic function assessor and prognostic
indicator. The issue is that the cardiovascular system is in
constant flux and thus HRV parameters constantly fluctuate at
rest or during various conditions (33–35). The selection of the
time window is thus a crucial aspect in HRV analysis (36, 37).

Most studies use short-term time windows with their
analytic techniques; 2–5min with Fast Fourier Transform (FFT)
or autoregression, or 1–2min with multiple trigonometric
regressive spectral (MTRS) analysis (6, 38, 39). New techniques
such as short time Fourier transform or Wigner-Ville transforms
(WVT) are able to return instant power spectral profiles (40,
41). Short-term windows have the advantages of being easy to
perform, easy to control for confounding factors, require the
least data processing and describe dynamic HRV changes in short
time periods (32). However, the constant flux of HRV values
means that it may not be stable and that it cannot measure
long RRI fluctuations, especially the ultra-LF (6, 37). Ultra-short
term HRV has shown potential for diagnostic capability within a
short timespan immediately after an apneic event (e.g., arousals).
However, it is only able to measure time-domain parameters
and no frequency-domain parameters, severely limiting its
informational output and, like short-term HRV, the constant flux
may mean it is unstable (42).

Longer time windows are commonly analyzed with FFT or
autoregression, as they are commonly divided into 1–5-min
periods and averaged to provide a mean for the total time
segment (6, 36, 37). Alternatively, the entire time window is
used as a single data segment, which yields similar results
for LF and HF over 24 h (43). Its primary advantage is in
collecting stable and reflective ECG data over an extended period
of time. Any singular 5-min window can vary wildly from
another, and thus measuring HRV over a whole day allows for
better estimations of fluctuations (32). However, long-term HRV
analysis is financially expensive and labor intensive, on top of
requiringmore considerations about filtering and analysis (6, 37).

Li et al. (32) suggest three main uses of HRV analysis:
evaluating autonomic function in specific populations,
describing changes in autonomic function, and prognosis.
To evaluate autonomic function in specific conditions such
as myocardial infarction (MI), hypertension and Parkinson’s,
short-term analysis may be used (44–47). Long-term analysis can
be used for daytime or sleep analysis, or a full 24-h analysis and
is thus more suitable for assessing OSA autonomic status, in line
with what most studies use. Although HRV analyses of different
window lengths are closely correlated, they do not always align
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(48–50). Studies in this particular area are particularly lacking
and require further investigation. In describing change in
autonomic function, both short-term and long-term analysis can
be used over a period of hours or months, whereas short-term
can measure changes in minutes. In this regard, measuring
changes due to apneic episodes is a useful application of short-
term analysis. However, this type of short-term analysis likely
already falls under an overnight long-term analysis (32). Many
OSA studies use overnight HRV with 5-min time windows. Still,
more studies are needed directly comparing the two with respect
to OSA. Using HRV as a prognostic indicator is usually done via
long-term analysis. Many studies assessing mortality have used
overnight or 24-h HRV analyses to obtain a reliable prognosis
and use 5-min windows within these time periods to compare
HRV (49–55).

It is clear that the majority studies use long-termHRV analysis
for the assessment of OSA, mostly with time-frequency domains.
However, whether this is the best use of HRV is not clear as there
is a lack of studies reporting on this particular aspect. To further
this point, there is no agreement on a single method with which
to analyze HRV in sleep apnea as a wide variety of time windows
within an overnight sleep study are analyzed in the literature.
Studies aimed at short-term changes potentially analyze 2-min
epochs around apneas and hypopneas or arousal-free windows
or look at the first and last 10-min segments during SDB and
stable breathing during NREM, for example (56–58). Long-term
analysis aimed studies sometimes look at averaged consecutive
5-min windows in different sleep stages (stage 2 is commonly
used as a reflection of NREM sleep) or stable 5-min intervals
from each sleep stage or the first 5-min segment of each sleep
stage, to name a few (59). The standardization of time window
approach to provide a regulated and agreed upon methodology
of time window analysis that presents comparable and valuable
ECG changes in OSA during an overnight sleep study is an area
in pressing need of further study. Although time window analysis
is a potent area of research to solidify first, the current use of HRV
has shown promise and accuracy in many areas, from prognosis
to sleep stage detection.

TECHNICAL FEATURES OF HRV
MEASUREMENTS

There are some important technical features that affect HRV
analysis. In this respect, ECG sampling rate could be critical to the
accuracy and reliability of the HRV time series. Two hundred and
fifty hertz or higher are recommended, however, given the minor
relative errors among various ECG sampling rates, over 100Hz
are acceptable in time-domain, frequency-domain, and non-
linear HRV analysis (60–62). Concerning the extraction of RR
intervals, there is a big variety of algorithms aimed at detecting
the R peaks (63), being the Pan and Tompkins the most well-
known one (64). However, artifacts and ectopic beats are usually
present in ECG recordings, which can result in non-normal RR
intervals, thus affecting HRV analysis. This issue is addressed
by detecting and correcting non-normal beats. The detection of
non-normal beats can be performed using different automatic

methods: time and morphological approaches, methods based
on the morphological transformation, wavelet-based approaches,
empirical mode decomposition methods, and neural network
approaches (65). Conversely, deletion, interpolation (zero-
degree, linear interpolation, and cubic spline methods), and
adaptive approaches are used to correct non-normal beats (65).
However, these methods can also cause measurement errors in
the HRV signal, which demands more research efforts on the
development of correction methods.

INFLUENCE OF SLEEP STRUCTURE ON
HRV

According to the American Academy of SleepMedicine (AASM),
sleep is categorized into non-rapid eye movement (NREM)
stages N1, N2, N3, into stage rapid eye movement sleep (REM),
and into stage Wake by visual electroencephalogram (EEG),
electrooculogram (EOG), and chin electromyogram (EMG)
scoring (66). Collectively, studies have reported a general trend
in HRV during healthy sleep; LF and the LF/HF ratio are high
in Wake and decrease in NREM sleep, peaking once more
during REM sleep, while HF follows the opposite trend (67–71).
This corresponds to muscle sympathetic and parasympathetic
activity observed in sleep (72, 73). Opposingly, Ako et al. (74)
reported decreasing LF and LF/HF ratio during NREM and an
increase during REM but no differentiation of HF during the
NREM and REM stages in healthy sleep. However, Abdullah et al.
(75) reported a strong correlation between EEG delta, sigma,
and beta bands with HRV parameters (LF, HF, LF/HF ratio).
Jurysta et al. (76) and Köhler and Schönhofer (77) reported
negative correlations between cardiac vagal predominance and
delta sleep EEG and abnormalities in the respective power
bands. In contrast, Yang et al. (71) reported a negative relation
between cardiac sympathetic regulation and depth of sleep, but
not vagal regulation. The repeatability of the measurements in
HRV parameter patterns in relation to the sleep stages, however,
certifies the suggested physiological activity seen during sleep.

INFLUENCE OF SLEEP APNEA ON HRV
DURING DAYTIME

OSA seems to have long-term effect on HRV even during
wakefulness with the absence of sleep apnea. Limited data
regarding its underlying mechanisms during daytime or
ambulatory wake state is reported. It is assumed that autonomic
dysfunction plays a key role in persistent OSA related outcomes,
leading to a blunted diurnal HRV pattern. Using 10-min
ECG segments and muscle sympathetic nerve activity (MSNA)
recordings during daytime, Narkiewicz et al. found that the
magnitude of cardiovascular variability is associated with the
severity of OSA. There was reduced RR variance, increased
sympathetic tone and decreased parasympathetic tone in
moderate-to-severe OSA populations compared to matched
controls (25). Balachandran et al. (78) found significantly
different LF, HF, and LF/HF between mild OSA without any
symptoms and healthy controls in waking condition. Similarly,
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Hilton et al. (79) found that at daytime amount of HF power as
marker of vagal activity is negatively correlated with the apnea-
hypopnea index (AHI) and %HF and LF/HF were shown to
be different in OSA patients compared to controls. Respiratory
sinus arrhythmia (RSA) is a natural physiological phenomenon
reflecting cardiopulmonary coupling characterized by periodic
increases and decreases with heartbeat synchronized with
respiration, whereby heartbeat increases during inspiration and
decreases during expiration. Consequently, normal respiration
HRV is different than deep respiration HRV and apneic
respiration HRV due to the inspiration-expiration pattern (80).
Given the altering effect of respiration on HRV, Khoo et al. (81)
developed two modified spectral HRV measures (the modified
LF/HF and the average gain relating respiration to RR changes)
to show cardiac autonomic alternations in OSA and non-OSA
during in relaxed wakefulness and stage 2 sleep compared
to standard spectral metrics. They found that the modified
spectral HRV measures are more sensitive than the traditional
measures, suggesting a respiration–correlated component should
be considered in HRV analysis. In addition, Wang et al. (24)
suggested that autonomic dysfunction was related to OSA
severity. However, they mainly evaluated gender differences in
frequency-domain HRV measures, rather than with different
levels of severity of OSA, showing significantly higher LF in
male patients from wakefulness to sleep state. Park et al. (82)
examined the correlation between severity of OSA and overnight
HRV during wakefulness in moderate/severe OSA. They found
increased total power (TP), LF, LF/HF, and HRV triangular index
in the severe group compared to the moderate one. Comparably,
Qin et al. (83) found a significant relationship between 5-min
HRV measures during wakefulness prior to sleep onset and
OSA severity in a large international clinical cohort, suggesting
reduced time-domain and non-linear HRV measurements in
severe OSA compared to other AHI groups. Moreover, their
findings demonstrated that OSA seems to play a significant role
in obese patients, showing a shift to sympathetic predominance
only in obese patients with more severe OSA with increased LF
and higher LF/HF compared to obese patients without OSA.
There are also hints that OSA therapy normalizes autonomic
balance not only during sleep but also at daytime. Glos et al. (84)
found that both continuous positive airway pressure (CPAP) as
well as mandibular advancement therapy (MAD) therapy led to
increased vagal output to the heart, indicated by increased HRV
HF components calculated from 5-min short-time recordings
under conditions of controlled breathing at daytime.

INFLUENCE OF SLEEP APNEA ON HRV
DURING SLEEP

The normalizing effect of OSA therapy on HRV during sleep has
also been suggested. Earlier studies report higher sympathetic
activity during wake and sleep, but this has normalized, perhaps
because of CPAP (73, 85). This is supported by Noda et al.’s
(86) study reporting that managed OSA and better sleep quality
was associated with a decreased LF. Since then, Abdullah et al.
(75) reported an increase in LF and LF/HF in Stages 2 and 3 in
sleep apnea compared with healthy patients. This corresponds

with results from Dingli et al. (56) and Jurysta et al. (87),
which showed an increase in sympathetic and decrease in
parasympathetic activity during NREM apnea episodes. Bonnet
and Arand (67) reported EEG arousal during Stage 2 and
associated HRV changes. Palma et al. reported OSA with hypoxia
patients had increased LF and LF/HF during N1 and N2 and
REM compared to OSA without hypoxia patients and controls.
They also reported that OSA with and without hypoxia had
lower HF during NREM and REM in compared to controls
(88). In contrast, Jurysta et al. reported no changes in LF/HF
and RRI between healthy and OSA subjects. They did however
suggest that sympathetic and vagal surges during apneic episodes
may suppress the normal shifts between stages of sleep (76).
Trimer et al. reported higher LF and LF/HF in moderate OSA
subjects compared to normal subjects. Mild OSA subjects also
failed to show the linear HRV difference between sleep stages
present in non-OSA subjects (20). Kesek et al. studied the
relationship between OSA severity and HRV in 387 women
and found that high AHI was associated with low variation
of sympathetic activity between REM and NREM, suggesting
a depressed sympathetic drive and a disability increasing it
during REM. These results differ from others, but the study was
in healthy women only and gender differences in HRV have
been reported (89). Reynolds et al. found a positive correlation
between apnea severity and LF in wakefulness and REM sleep,
but LF was lower in those with a higher BMI during REM sleep
in 105 OSA patients. The suggestion is thus that there is possible
autonomic dysfunction in obese apnea patients (90). On the
contrary, Oh et al. (91) conducted a 27-participant study and
concluded that OSA during REM sleep is not a major contributor
of autonomic dysfunction. However, the study was conducted on
a small cohort and requires repeated testing to confirm results.
In addition, Lado et al. (92) found significant differences in
spectral HRV in all three types of intervals (normal breathing,
borderline episodes, and sleep apnea) among non-OSA control,
mild, and severe OSA subjects during sleep, suggesting that
patients with OSA have reduced HRV during sleep even without
the presence of sleep apnea (Figure 1). In addition, Szollosi
et al. (58) compared HRV patterns between OSA and central
sleep apnea (CSA), finding higher very low frequency (VLF)
percentage, lower LF percentage and HF percentage in CSA,
while no significant changes during normal breathings between
patients with OSA and CSA. Their results suggested that CSA
and OSA have different autonomic modulation, respectively.
Overall, the research presented shows increased sympathetic
activity during apneic sleep with episodic surges in comparison
to healthy sleep, reflected via increased LF and LF/HF parameters
in HRV.

In seeing the relation of parameters to apneic sleep, there
appears to be potential in using HRV as a cost-effective tool for
the detection of apnea. Some studies report that cardiac changes
visibly precede EEG changes with a range of 10 beats to 5min
in apneic episodes (67, 76). Penzel et al. (93) reported that it
was possible to classify apnea viaHRV with 100% accuracy when
comparing to normal subjects and 90% when comparing normal
and apneic minute intervals in 35 samples. Roche et al. (94)
reached sensitivities of 83 and 89.7% and specificities of 98.1
and 96.5% when using SDNN as a marker in the detection of
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FIGURE 1 | Depicts an example of the changes in beat-to-beat intervals (BBI) in an obstructive sleep apnea (OSA) subject with (upper) and without (middle) the

presence of apneic events and a healthy subject (bottom) during stage 3 sleep in the supine position.
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FIGURE 2 | Shows an exemplary illustration of the respiratory power index (RPI) and electrocardiograph-derived respiration (EDR) methods in an OSA patient.

Overnight electrocardiograph recordings are processed and cut into limited time segments. EDR signals are calculated via ECG respiration embeddings such as QRS

complex (A) or respiratory sinus arrhythmia (RSA) (C). Spectrograms of both embeddings are also generated (B,D). These spectrograms are normalized and

averaged to amplify the respiration-based component and mask non-respiration-related power (E). The power is calculated at each step with two selection events (F).

A respiratory flow shows corresponding events to the power spectrum (G). The number of detected apneic events is the RPI.

OSA in groups of 91 and 52 patients, respectively. Then using
wavelet decomposition parameters in 147 patients, Roche et al.
(95) reached a sensitivity of 92.4% and specificity of 90.1%.
Karasulu et al. (96) found a 90.4% sensitivity and 50% specificity
when using a VLF cut-off of 9.12, 80 and 76.2% when SDNN was
higher than 83 and 73.3 and 85.7% with an SDNN cut-off of 62
in 87 patients. Offering a variant to these results, Abdullah et al.
combined EEG and HRV at 64% correct classification accuracy,
HRV alone at 56% accuracy and EEG alone at 62% accuracy

(75). However, this study was conducted on a small population
and thus requires further study in order to improve upon the
application to classification. Gil et al. (97) used decreases in
amplitude fluctuations of photoplethysmography (PPG) with an
accuracy of 80%, sensitivity of 87.5% and specificity of 71.4%.
Babaeizadeh and Zhou (98) created a novel method of ECG-
derived respiration (EDR) combined with HRV for an accuracy
of 88% and correct classification of 71%. Similarly, Lyons et al.
(99) developed an ECG-derived respiratory power index (RPI) as
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an estimate for AHI to identify severe OSA in commercial drivers
(Figure 2).

There are thus a variety of tools and combinations that appear
to have potential in the detection and classification of apnea.

Collectively this body of studies points to the potential of
diagnosing OSA via HRV parameters reflecting sympathetic
hyperactivity during sleep, particularly during apneic episodes.
However, more research needs to be done in this area as there
are conflicting reports on the accuracy of using HRV alone,
as compared to coordination with other measurements such as
EEG, PPG, or EDR. Showing promise in the application of this
idea, Le et al. (100) have made wearable device sensor technology
predicting apneic episodes 1–5min before onset with accuracy
of 83.6, 80, 76.2, 66.9, and 61.1%, respectively, that could have
many applications.

HRV CHANGES DURING AROUSAL

Arousal interrupts sleep continuity to cause sleep fragmentation,
which may contribute to cognitive impairment, excessive
daytime sleepiness and adverse cardiovascular outcomes in
OSA (101–103). Quantification of arousal would improve
understanding of the underlying mechanism and relationship
between arousal and OSA related outcomes (e.g., daytime
sleepiness and functioning) (104, 105). Currently, EEG arousal
is defined as the abrupt increase in high-frequency EEG activities
lasting 3–15 s, following at least 10 s of sleep during NREM sleep.
Additionally, increased chin EMG activity is needed during REM
sleep according to the AASM criteria (106, 107). However, even
if the concept of arousal should be extended, there currently is no
agreement on the classification of arousal (108). Arousal could
be divided into several states on the basis of specific causes. Two
main types of arousal, physiologic (spontaneous or secondary
to various stimuli), and pathologic (induced by sleep hypopnea
and apnea, upper airway resistance syndrome or periodic limb
movement) are commonly accepted (108, 109). Some studies
tried to classify arousal manually based on whether an arousal
is associated with a physiological event such as cortical arousal,
respiratory arousal, cardiac arousal, movement arousal, snoring
arousal, or SpO2 arousal (110, 111). It is reported that autonomic
arousal does not have visual recognition in the way EEG arousal
does. It is plausible that some peripheral stimulations may not
be sufficient to lead to cortical visual EEG arousals but can cause
cardiovascular perturbation (e.g., heart rate and blood pressure
changes) (112–114).

In this case, autonomic arousal may be a new entity of
arousals in OSA during sleep, possibly undetectable by EEG
(115). Thirty percent of respiratory event termination causes
are still undetermined. Some research indicates that it might
be related to apnea-related autonomic arousal, which tends to
be ignored due to its non-visible nature compared with other
types of arousal in polysomnography (PSG) (116, 117). As a
result, PSG would underestimate arousal severity if only visible
EEG arousal counts. The occurrence of arousal induced by
different causes varies in NREM and REM sleep (116). The
underlying mechanisms between the central nervous system

(CNS) and autonomic nervous system (ANS) in arousal is poorly
understood. Arousal may be a contributor in cardiac alternations
such as heart rate changes and blood pressure fluctuation.
HRV changes accordingly since heart rate is accelerated and
decelerated immediately pre- and post-arousal. Animal studies
confirmed that transient arousal from NREM sleep is associated
with acute cardiac sympathetic activation and parasympathetic
withdrawal (118). The presence of arousal somehow immediately
leads to wakefulness that differs in autonomic changes from
rested wakefulness in other conditions (118).

Daytime cardiac vagal modulation improves due to the
reduction of the frequency of arousals, suggesting arousal
may trigger cardiac vagal inhibition. OSA is strongly related
to hypertension, which is mainly attributed to sympathetic
hyperactivity and/or vagal withdrawal causing a surge in heart
rate and blood pressure during apnea-arousal episodes (119,
120). Study of autonomic arousals may help understanding why
OSA patients with daytime sleepiness are associated with a higher
risk of developing adverse CV outcomes such as hypertension
and cardiac sudden death (121). It is reported that patients with
co-morbid OSA and insomnia have a significantly higher number
of arousals during sleep thanOSA alone (122). Bennett et al. (123)
found significant correlations between the autonomic arousal
index based on pulse transit time analysis and pretreatment
objective sleepiness (r = 0.49) and nCPAP responsive objective
sleepiness (r = 0.44), suggesting autonomic arousal detection
should be taken into account as a sleep fragmentation index
to quantify sleepiness. Bartels et al. tried to define autonomic
arousal. They found that lower blood pressure and high heart
rate in the 15-s window before short-term cortical arousal and
cardiovascular changes shift in the opposite direction after sleep
recovery (110).

HRV provides insight to the processing of arousal response
during sleep and improves the definition of arousal, criteria
of detection and scoring, although it is still controversial. It
should be included in the assessment of OSA for its useful
clinical value. EEG arousal generally does not cause behavioral
awakenings. However, arousal threshold measured by esophageal
pressure, a gold standard for upper airway resistance syndrome,
is invasive in clinical practice. On the other hand, cardiac arousal
may reflect a neural response to stimuli. Little is known about
the accumulation of persistent hyperarousal conditions in OSA.
HRV would be a sensitive physiological index of autonomic
arousal requiring more investigation. Further research is needed
to understand the connectivity and interaction between the heart,
its intrinsic nervous system, and the brain.

DAYTIME SLEEPINESS AND HRV

On the other end of arousal, daytime sleepiness, a multifactorial
psychophysiological state, is one of the predominant symptoms
in OSA (124, 125). Currently, the existing findings suggest
that daytime sleepiness depends on the quantity and quality of
prior sleep. Patients with OSA commonly suffer from reduced
sleep quality that is related to fragmented sleep (126). Sleep
disturbances caused by arousal are important contributors to
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sleepiness (123, 127, 128). Moreover, the frequency of arousal
has more impact on sleep recovery than the amount of sleep
(129). Subjective and objective sleepiness is often assessed by the
Epworth sleepiness scale (ESS) and multiple sleep latency test
(MSLT) (130, 131). ESS is a measure of a person’s general daytime
sleepiness, where a score ≥10 could be diagnosed as excessive
daytime sleepiness. As a gold standard, the cut-off point of MSLT
is still debatable based on the types of patients. According to
the AASM, a sleep latency during MSLT of <8min is defined as
sleepiness. However, it is also suggested thatmean sleep latency in
MSLT <5min is considered as pathological sleepiness, 5–10min
is suspected sleepiness, and 10–20min is normal (130).

The prevalence of excessive daytime sleepiness (EDS) in OSA
varies from 19 to 87.2% (132–134). However, 50% of individuals
with moderate to severe OSA do not report EDS. Lombardi et al.
(135) demonstrated that OSA patients with EDS had significantly
lower baroreflex sensitivity and significantly higher low-to-
high frequency power ratio of HRV during the different stages
of nocturnal sleep compared to those without. Furthermore,
subjects with EDS have a more blunted parasympathetic and
more enhanced sympathetic cardiac drive during all sleep stages
suggesting EDS is associated with cardiac autonomic imbalance.
Guaita et al. (136) tested whether spectral and non-linear HRV
help to differentiate sleep disordered breathing (SDB) patients
with and without objective sleepiness, as assessed by the first
3min of wakefulness duringMSLT before sleep onset. Non-linear
HRV (Correntropy) failed to detect sleepiness between groups.

However, some studies show that ESS increases with the
severity of OSA (2, 137). EDS is not always related to AHI as a
number of patients with moderate-to-severe OSA did not report
subjective EDS in this evaluation (124, 135, 138). It raised the
question of whether ESS is not adequately sensitive to detect
sleepiness or if there are other underlying physiopathological
mechanisms causing the development of sleepiness in OSA
patients. Montemurro et al. (139) found severe OSA without
EDS has higher very low frequency-HRV compared to those with
EDS, indicating higher sympathetic heart rate control in sleepy
patients. However, Sforza et al. (140) found that both diurnal
and nocturnal time domain and frequency domain HRV failed
to differ sleepy and non-sleepy elderly with unrecognized OSA
according to ESS. Time with SaO2 <90% and total autonomic
arousals were not significantly different between these two
groups. Similarly, Bisogni et al. (141) reported that there is
no correlation between EDS assessed by ESS and sympathetic
activation in patients with mild to moderate OSA.

HRV AS A RISK MARKER FOR
SLEEPINESS RELATED ACCIDENTS

There is little doubt that attentional deficits affect driving
capacity. Detection of drowsiness is importance in order to
prevent road accidents due to SDB related sleepiness (142). Chua
et al. (143) suggested that HRV has a strong association with
psychomotor performance measured by psychomotor vigilance
tests (PVT) to quantify vigilance performance in drivers.
It is in line with previous studies using HRV in machine

learning models to predict hypersomnolence in drivers with 90%
accuracy (144–146).

It has been shown that sleepy OSA patients have a
higher prevalence of adverse cardiovascular outcomes (e.g.,
hypertension) than non-sleepy OSA patients (147). Furthermore,
excessively sleepy OSA patients are at increased risk of
incident cardiovascular disease (CVD) compared to other OSA
symptom subtypes (Disturbed Sleep, Minimally Symptomatic,
and Moderately Sleepy) (121). However, ESS might not be
reliable to evaluate the relationship between sleepiness and
cardiovascular risk, a surrogate marker of sympathetic activity.
MSLT is too time-consuming and costly to be a screening
tool to score EDS. Given the association between sleepy OSA
and cardiovascular disease has not been established, improving
discrimination of sleepiness in OSA patients and the relationship
between the severity of daytime sleepiness and HRV in larger-
scale studies is required.

Previous studies have proven that CPAP could reduce
daytime sleepiness (148). Less benefit from CPAP was found
in OSA patients without symptoms than those with, suggesting
treatments should be tailored (149–151). There are still 13%
of patients with residual EDS after optimal CPAP treatment
(152). They also found that the prevalence of residual excessive
sleepiness was higher in moderate OSA than severe OSA,
suggesting there is an underlying determinant contributing
to EDS other than the severity of intermittent hypoxia and
AHI. One of the possible determinants could be autonomic
dysfunction during sleep. Abnormal autonomic regulation is also
known to have an association with higher cardiovascular events
in OSA. A possible relation between EDS and cardiovascular
events in patients with OSA should be investigated in future
studies (i.e., how autonomic dysfunction relates to the presence
of EDS and contributes to its relevant consequences in
these population).

HRV CHANGES DUE TO HYPOXIA

Exposure to hypoxia is a leading cause of oxidative stress,
inflammation, and sympathetic hyperactivity (153). Recurrent
oxygen desaturation induced by sleep apnea, one of the distinct
features of OSA differing from non-OSA, may be associated
with elevated sympathetic nervous activity and blood pressure
(153). Additionally, Watson et al. (154) found that the severity of
hypoxia is related to graded autonomic dysfunction. Both animal
and human experiments demonstrated that the failure to restore
cardiovascular adjustment capacity can be ascribed to impaired
nerves and blunt responses of the autonomic system as a result of
intermittent hypoxemia in OSA (155, 156). A systematic review
shows that either SpO2 or SaO2 used to assess arterial oxygen
saturation is correlated with time-frequencyHRVduring hypoxia
in normal people at rest (157). Botek et al. (158) found lower
arterial oxygen saturation (SpO2) in significantly reduced vagal
withdrawal (Ln HF) and increased sympathetic-vagal balance,
suggesting SpO2 level is related to the reaction of autonomic
control to hypoxia. Their aim was to investigate if HRV could
be used as a predictor of SpO2 response to hypoxic challenges

Frontiers in Psychiatry | www.frontiersin.org 9 July 2021 | Volume 12 | Article 642333

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Qin et al. Heart Rate Variability in OSA

in subjects normoxic at rest. Nevertheless, it is admitted that
changes in detailed HRV parameters are not consistently similar
due to the varying experimental protocols (e.g., the duration,
severity, and types of hypoxia).

OSA generally generates a decrease in HRV during
normobaric hypoxia in most reported investigations. However,
there are still underlying complex central-peripheral interactions
and modulation pathways in vulnerable populations. To address
those issues, a growing body of studies have attempted to
investigate the hypoxia burden in OSA (159–161). Time-
dependent static and dynamic desaturation give more insight to
the severity of hypoxia. Acute and chronic hypoxia may lead to
different autonomic modulation mechanisms. Hypoxia activated
chemoreflex leads to acutely increased short-term sympathetic
tone during the occurrence of sleep apnea (54). Furthermore,
hypoxia exerted long-lasting chronic effects during the daytime
and impaired baroreflex sensitivity (162). Meanwhile whether
or not sympathetic hyperactivity induces parasympathetic
inhibition is still controversial. The overall reduced HRV with
increased sympathetic tone resulted from chronic hypoxia,
while a rise in HRV with decreased vagal withdrawal occurred
due to the subsequent adaptation and improved tolerance to
short-term exposure to repeated hypoxic stress (163). Geovanini
et al. demonstrated a vicious circle between hypoxia-induced
inflammation and cardiac autonomic abnormality with elevated
sympathetic or reduced parasympathetic tone. They also found
the values of SDNN, LF, and HF are closely linked to OSA
severity while only mean heart rate significantly correlated with
augments in neutrophils (164). In an OSA children study, Walter
et al. (165) found that OSA may have negative influence on
cerebral blood flow due to the attenuated central autonomic
control by mediating HRV. Therefore, it is reasonable to
believe that different cardiac autonomic modulation responses
occur either due to reduced vagal modulation, sympathetic
predominance, or even a combination of these responses.

The possibility of an increasing risk in the mortality and
morbidity in hypoxic OSA patients with autonomic dysfunction
requires further evidence. In addition, both hypoxia and arousal
have confounding effects on respiratory-cardiac coupling. Which
one is the determinant of cardiac autonomic dysfunction
in OSA is controversial in animal and human studies (5).
It seems that in prospective animal studies, OSA-induced
hypoxia has a persistent impact on daytime hypertension
compared to acoustic arousal-induced control models, which
exerted nocturnal elevations in blood pressure. However, in
humans, the answer to that question is uncertain. Norman
et al. suggested that CPAP therapy, which reduced both the
intermittent hypoxia and arousals, plays a more important role in
improving cardiovascular autonomic function than elimination
of nighttime intermittent hypoxia by comparing the results of
24-h ambulatory blood pressure in moderate-to-severe OSA
patients who received either CPAP therapy or sham-CPAP with
supplemental oxygen (166).

Some studies indicated that certain damages of autonomic
function are reversible after eliminating physiological influences
(e.g., arousal, hypoxia, and respiratory events) in OSA population
with CPAP treatment (81, 167, 168). Thus, HRV maybe become

a potential early indicator of the adverse effects of hypoxia
on OSA and identifying treatment responses. To date, the
effect of nocturnal hypoxia on HRV patterns is unknown and
correlation studies of HRV and hypoxia in HRV are limited.
Those results may contribute to monitoring the progress of
chronic sustained normobaric hypoxia on the cardiovascular and
autonomic systems.

HRV IN PEDIATRIC OSA

OSA affects 0.1–13% of children, particularly occurred in pre-
school age (169). Pediatric OSA characterize by prolonged
partial OSA, which usually occurred in REM sleep, preserved
sleep architecture, uncommon OSA-related cortical arousals and
recurrent hypoxia (170). Enlarged tonsils and adenoids are the
leading causes of OSA in children. Unlike adult OSA manifested
with excessive daytime sleepiness and cognitive dysfunction,
pediatric OSA is more likely to have negative impact on the
development of the central nervous system and cardiovascular
system, potentially leading to neurobehavioral deficits (e.g.,
growth impairment, behavioral, and learning problems) (171).
Overt cardiovascular disease is not common in pediatric
OSA compared to adults (172), but early evidence shows
that pediatric OSA is related to left ventricular hypertrophy
(173, 174), abnormal blood pressure fluctuation (175, 176),
and reduced systolic and diastolic function (177, 178). HRV
analysis is increasingly explored in assessment for cardiovascular
autonomic control, the screening and diagnosis of sleep apnea
and efficacy of treatments in pediatric OSA during daytime
and nighttime due to its feasibility (179, 180). Current findings
suggested that altered HRV patterns during daytime and sleep
are also found in childhood OSA (181). Not surprising, there are
more discrepancies in the results of frequency domain analysis
than in time domain analysis due to diverse subject samples
and the different methodologies (182, 183). Chaicharn et al.
(179) tried to quantify daytime autonomic function in non-
OSA and OSA children with spectral HRV analysis, showing
OSA children have significant elevated sympathetic tone but
normal parasympathetic control, with less reactive response to
autonomic tests compared to controls. Liao et al. (182) found
autonomic imbalance with increased LF/HF during sleep among
groups with different levels of AHI. Similarly, Baharav et al. (183)
were able to show sympathetic augmentation with increased
LF both during wake before sleep onset and during sleep. By
contrast, Kwok et al. (180) demonstrated no changes in most
of the important time-domain and HRV measures between
non-OSA and OSA children using 1-h ECG data. Impaired
baroreflex adaptation is also found in OSA as it is associated
with a decrease in nighttime baroreflex gain (184). Autonomic
activity may play a key role in pharyngeal compliance of
childhood OSA (185). Another application of HRV in childhood
OSA is to evaluate treatment response. Muzumdar et al. (186)
reported that HRV improved with decreased sympathetic and
increased vagal tones after adenotonsillectomy in children with
OSA, while no changes showed in HRV in moderate-severe
pediatric OSA with 1-year non-invasive ventilation (187). The
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results of long-term effect of OSA on HRV are debated.
Vlahandonis et al. (188) failed to show significant differences in
autonomic regulation determined by using HRV analysis among
children with habitual snoring, and those with and without
OSA regardless of intervention during 4-year follow-up visits.
However, Walter et al. (189) found improved HRV in preschool-
aged children with resolved OSA, showing decreased LF and HF,
while increased HF in those with unresolved OSA during 3-year
period. It is noteworthy that age, obesity, sleep stage, and AHI
severity are independently correlated with HRV measurements
in children (190, 191). Explanations on these results need to be
cautious with those confounding factors. Whether or not HRV
measures could be the reliable maker of disease severity and
risk stratification in children with OSA is still unproven. The
clinical implication of cardiac autonomic alternation in pediatric
OSA and how it disrupts the maturation of autonomic control
and affects the nervous and cardiovascular functioning need
further investigation.

EFFECT OF AGE, ETHNICITY AND SEX ON
HRV

Previous studies have demonstrated age-, ethnicity-, and sex-
specific differences in HRV in the healthy general population
and under certain conditions. It is generally accepted there is an
inverse association between age and HRV. However, it is unclear
whether the effects of OSA on cardiac autonomic modulation in
elderly subjects (>60 yr) are different from those in other age
groups (young and mid-aged adults). Trimer et al. compared the
differences in HRV among the elderly and the young population
with and without OSA. They found the elderly with OSA have
significantly lower LF/HF ratio only during wakefulness at night
than the young with OSA but not during other sleep stages (192).
Sforza et al. (140, 193) suggested age may have more devastating
effect on HRV in the elderly, which possibly undermines the
application of HRV in those population.

Findings on sex and ethnic differences in HRV are less
consistent (194). Nonetheless, reduced HRV is related to higher
cardiovascular morbidity and mortality, where decreased cardiac
vagal control is considered an important contributor. Currently,
a majority of studies report females are characterized by higher
vagal control assessed by HF-HRV and lower sympathetic control
assessed by LF-HRV (194). Furthermore, women exhibit more
complex heart rate dynamics (195). Several studies found no
difference between men and women in HF-HRV or that men
have a higher HRV (196–200). These results contradict previous
findings that women are less likely to develop progressively
cardiovascular diseases compared to men (201, 202).

In terms of interaction associations between HRV and age,
sex, and ethnicity, Liao et al. (203) found changes in autonomic
function have close associations with age, ethnicity, and gender
in a community-based cohort by spectral analysis of HRV.
They found that the sympathetic and parasympathetic tone
decrease with increasing age in a general population. White
populations have a higher LF, HF, and lower HF/LF than black
populations, suggesting that white populations show sympathetic

predominance in cardiac regulation. Men have a higher LF, and
a lower HF/LF ratio than women. Those results demonstrate
white and male populations have higher sympathetic activity,
which is considered as a major contributor to cardiovascular
diseases (e.g., hypertension). In contrast, Sloan et al. (200)
reported that there is a higher standard deviation of RR intervals
in white subjects compared to black subjects, and in men
compared to women with age between 33 and 47 years old.
No ethnicity- and sex- special differences were found in HF-
HRV. Comparatively, Choi et al. found significant ethnically
related differences and age-related differences (in Caucasian
Americans but not in African Americans) in short-term daytime
spectral HRV. Young African Americans showed a similar
HRV profile to older Caucasian Americans, leading Choi et al.
(204) to suggest the presence premature autonomic nervous
system aging in young African Americans. A few studies related
to those correlates on HRV during sleep are available. Hall
et al. suggested that ethnicity is associated with HRV during
sleep. They found white women have decreased parasympathetic
tone and elevated sympathetic tone during NREM stage 2 and
REM sleep compared to their African American and Chinese
counterparts after controlling for confounding factors such as
recording length and respiratory rate (205). Huang et al. (206)
have shown heart rate profiles in a larger cohort of adults
without sleep apnea in order to develop heart rate phenotypes
regarding sleep physiology. They implied that heart rate dipping
and spectral HRV metrics could contribute to sleep phenotyping
due to their significant correlations to sleep measures (e.g.,
sleep stage, total sleep time and sleep quality). Interpreting the
clinical relevance between ethnicity, sex, and HRV should be
approached with caution due to the plethora of confounding
factors, such as physiological, psychological, behavioral, and
sociodemographic factors. To date, there is limited data reporting
on the influence of age, ethnicity, and sex on HRV in the OSA
population. It is unclear which OSA phenotypes are most likely
to develop cardiovascular diseases and thus, which patients are
most likely to benefit from CPAP or other forms of therapy
for OSA (207). Those findings in cardiac heterogeneity might
lead to a better understanding of the underlying cardiovascular
pathophysiology and cardiovascular risk stratification in patients
with OSA. Additionally, it would facilitate the development
of effective strategies for treatment decision of OSA according
to cardiac phenotypic characterization in order to improve
treatment efficacy and predict treatment outcomes.

HRV AND OSA COMORBIDITY WITH
PSYCHIATRY DISEASES

Psychophysiological disturbances have significant impacts on
the autonomic nervous system (ANS) (3, 208–211). Depression
and anxiety are considered as psychosocial risk factors for
cardiovascular comorbidity (212). HRV analysis has been used
to quantify autonomic dysregulation in insomnia, depression,
anxiety, and schizophrenia (208, 211). Epidemiological data
has shown that 39–58% of patients with insomnia and 5–63%
of patients with depression had accompanying OSA diagnoses
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(213–215). Additionally, it was found that co-morbid OSA
and insomnia patients are at a higher risk of developing
psychiatric disorders such as anxiety and depression than OSA
patients without insomnia (122, 216). Interestingly, OSA and
insomnia are more likely to show opposing clinical symptoms
related to sleepiness and alertness (215). Nevertheless, increased
sympathetic activity and depressed parasympathetic activity were
exhibited both in OSA and insomnia (25, 217). It is reported that
untreated OSA aggravate insomnia in the disturbed sleep cluster
due to hyperarousal (218). Augmentation in heart rate and
sympathetic tone, which is thought to be essential to the alertness
and motivation, may play a key role in the pathophysiology of
insomnia (215). However, interaction mechanisms between OSA
and insomnia of autonomic control evaluated by HRV measures
remain unclear.

Reduced global HRV is consistently reported in depression
and anxiety disorders. Specifically, depression is characterized
by increased cardiac rhythmicity and reduced heart rate
variability during both sleep and wakefulness (219). Moreover,
changes in HRV parameters are associated with alternations in
symptom severity of depression (220). Saad et al. (219) showed
that a sleep heart rate profiling algorithm detecting whether
individuals with sleep complaints experience depression has an
identification accuracy of 79.9%. Similarly, anxiety disorders
displayed significantly lower HRV (221). Recently, two reviews
highlighted the wide applications of HRV in mental health
and psychiatric disorders (221). Likewise in populations under
18 years old, there was evidence implied that a resting state
measure of HF-HRV is associated with depressive symptoms in
children and adolescents with depression (222). In combination
with functional brain imaging, HRV mediated by the prefrontal
cortex may provide evidence of heart-brain network response to
stressors and stimuli to maintain homeostasis (9). Unfortunately,
co-morbid psychiatric symptoms and disorders in OSA are often
ignored or misdiagnosed. Only a paucity of studies has been
reported to investigate ANS dysregulation in OSA populations
concomitant with psychiatric conditions viaHRV analysis.

Evidence of autonomic dysfunction in OSA with
various psychiatric and psychological disorders deepens the
understanding of their psychopathology and physiopathology
associated with negative cardiovascular outcomes. Correlation
studies of OSA and neuropsychiatric diseases in ANS function
assessed by HRV are lacking. Furthermore, it would be
challenging to diagnose and treat co-morbid psychiatry
disorders and OSA. It is known that the administration of
drugs for psychiatric treatment aggravates OSA as it potentially
reduces upper airway muscle tone to impair airway stability,
decreases ventilatory response to hypoxia, increases arousal
threshold leading to prolongation of respiratory events and
deteriorates oxygen saturation. It seems that HRV analysis could
be highly applicable in the exploration of the cardiovascular
and psychopathological implications in psychiatric disorders.
Investigations in the overlapping conditions in physiological
and psychological aspects in OSA patients who have worse
clinical outcomes and treatment response are warranted.
Quintana et al. (223) provide guidelines and recommendations
to advance heart rate variability research in psychiatry. We

expect more perspectives and possible application of HRV in
OSA in neuropsychiatric alternations could be discussed in
future studies.

HRV AND CARDIOVASCULAR MORTALITY
AND MORBIDITY

Due to HRV being a marker of autonomic innervation of the
heart, it has been suggested that increased sympathetic activity
during sleep due to OSA may be a link to cardiovascular disease
(54). Sympathetic dominance during sleep has been shown in
those with ischemic heart disease (53), coronary artery disease
(CAD) (55) and post-MI (224). Consequently, HRV parameters
are markers for adverse CVD prognoses (49, 51, 52).

Several cardiovascular disease studies have reported an
increased risk of mortality in relation to altered HRV parameters.
Kleiger et al. found that a 24-h SDNN of <50ms carried a
relative risk of mortality 5.3 times higher than an SDNN of over
100ms. They suggested that increased sympathetic or decreased
vagal tone may predispose to VF (51). Zemaityte et al. (53)
found that increased LF and decreased HF was related to the
degree of deterioration of IHD functional state in overnight
HRV analysis. Post-MI there is a lack of NREM vagal activity
that is more likely to lead to lethal arrhythmic events and
sudden death (224). Kearney et al. (49) reported that those with
chronic HF and 10% lower SDNN had a hazard ratio of 1.06.
Rich et al. found that EF and decreased HRV were the best
predictors of 12-month mortality post-coronary angiography
without recent MI. The HRV contribution to mortality was
found to be independent of other disease-related variables, and
the 12-month mortality was 18 times higher in those with
an HRV <50ms (52). To further this, Mäkikallio et al. (225)
found that random elderly patients with altered HRV parameters
predicted a 2.5 relative risk of cardiac death and 4.1 for sudden
cardiac death. Algra et al. (226) found that low SDNN was
correlated with a 2.6-fold risk of sudden death, also adding that
low parasympathetic activity is a risk factor for sudden death.
The correlation between altered HRV parameters reflective of
dysfunctional sympathovagal balance and increased mortality
risk is thus well-established in CVD.

Additionally, CVD and OSA have been shown to be linked
(227–234). The Sleep AHEAD study found a greater prevalence
of stroke at greater AHI but no association between CHD and
OSA (235). However, there were very few patients with CHD and
thus the concluded relationship is not a representative analysis of
an OSA association with coronary heart disease (CHD). Gottlieb
et al. (233) found that OSA was a predictor of incident heart
failure with an adjusted hazard ratio of 1.13 per 10 unit increase
in AHI. In a meta-analysis of 25,760 subjects, Wang et al. (236).
found that severe OSA significantly increases CVD risk, stroke
and all-cause mortality with relative risks of 1.79, 2.15, and 1.92,
respectively. A positive association was found between moderate
OSA and CVD but not with mild OSA. A 10 unit increase in
AHI was associated with 17% greater risk of CVD. No correlation
was found between CHD and OSA, but again the number of
prospective studies relating CHD and OSA were limited and
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lacked power for definitive conclusion (236). Yaggi et al. (232)
found that OSA independently increases risk of stroke and all-
cause mortality with a hazard ratio of 1.97 post-adjustment. In a
systematic review, Lavie (234) also concluded that sleep apnea is
a mortality risk that can be reduced via CPAP, which is especially
crucial in younger patients, as they carry a higher mortality risk.

In the linking of OSA and CVD, HRV, and OSA mortality and
mortality, the exact physiological pathway through which these
are connected is not well-understood. In animalmodels, Iturriaga
(237) proposed that intermittent hypoxia induces carotid body
potentiation, and that current evidence indicated that this alters
the sympathetic, vascular, and ventilatory response to hypoxia.
Whether this is the exact mechanism and whether it increases
CVD risk is not definitively known. However, repetitive oxygen
desaturation episodes are associated with HRV parameters
suggestive of cardiac sympathetic predominance. In a group of
CAD patients, those with LVEF >50% had a higher LF:HF ratio
than those with LVEF ≤35% during cyclic oxygen desaturation
episodes but not during control episodes (55). This suggests
that hypoxia worsens pre-existing cardiovascular conditions. A
few results of the secondary analyses using ECG data from the
Sleep Heart Health Study (SHHS) or the Wisconsin Sleep Cohort
Study are reported. Bradicich et al. (238) and Wang et al. (24)
demonstrated associations between HRV and characteristics of
polysomnographic parameters, however, they did not attempt
to use HRV as a CVD risk predictor in this part of the SHHS
dataset. Sankari et al. (239) suggested beat-to-beat intervals index
(RRDI) during sleep is closely correlated to new-diagnosis CVD
(hazard ratio of 1.21 per 10-unit increment in RRDI) in OSA
patients from theWisconsin Sleep Cohort, but they did not utilize
other linear and non-linear HRV measures to show the further
relationship between CV risk and OSA.

However, despite the clear association between OSA and
mortality and CVD, more studies need to be done to determine
the exact physiological mechanisms by which this occurs, and
if OSA is an independent causal factor of increased mortality
and CVD risk as suggested. From the current data, altered HRV
features such as SDNN are good predictors of cardiovascular
mortality. There appears to be a correlation of higher mortality
risk and lower SDNN, but the cut-off point varies depending
on the populations and the length of ECG segments. Therefore,
determination of a clear cut-off value of SDNN requires further
investigation (240).

CONCLUSION

With more sophisticated analytical approaches and techniques
developing, HRV measures could provide additional
electrophysiological information on impaired cardiovascular
alternation, which might be related to subclinical cardiovascular
outcomes in patients with OSA. It is already known that the
determination of time window (ECG segment length and SDB-
related events) is critical to HRV analysis, but a standardized
analytical approach is lacking. HRV is proving to be accurate
in sleep staging and particularly screening and diagnosing
OSA. However, a combinatorial method of HRV and EDR

provides hidden information on cardiopulmonary coupling,
which transfers from heart rate to respiration and improves the
accuracy of sleep apnea detection compared to either method
alone. The cognitive consequences and the daytime outcomes of
ANS alternation during sleep in patients with OSA are unclear.
The use of HRV in the prognosis of OSA independent of CVD
is also unclear. However, HRV has shown a close association
to mortality and co-morbidities. Additionally, overlapping
conditions increase progressively in OSA, requiring reliable tools
to manage those conditions at an early stage. Further studies
are required to explore the implications of integrated cardiac
physiology in regulatory networks between the central brain and
heart. In particular, following this investigation, several research
topics have been found to be of value:

• Prospective studies using HRV to accurately predict
cardiovascular outcomes in OSA should be as a priority
for clinical application of HRV research

• Studies investigating cardiac OSA phenotypes on the basis of
HRV profiles to facilitate the definition of OSA subtypes and
implement tailored treatment approaches in clinical practice

• New sophisticated methods of HRV analysis to analyze the
inevitable instationarities of OSA’s transitional nature that
prove challenging for current algorithms and models

• Context-dependent analyses of HRV (i.e., age, BMI, gender,
sleep stages) to better understand the association between
anthropometric and sleep characteristics and autonomic
function in OSA

• Investigation and standardization of the time window
segments analyzed to provide comparable and valuable ECG
data in OSA during an overnight sleep study

HRV is showing promise in clinical application and due to the
already large and increasing prevalence of OSA, these further
studies are imperative to the advancement of diagnostic and
treatment approaches needed to minimize the existing and future
health and financial burden.
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