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Mounting evidence demonstrates a close relationship between sleep disturbance and

mood disorders, including major depression disorder (MDD) and bipolar disorder (BD).

According to the classical two-process model of sleep regulation, circadian rhythms

driven by the light–dark cycle, and sleep homeostasis modulated by the sleep–wake

cycle are disrupted in mood disorders. However, the exact mechanism of interaction

between sleep and mood disorders remains unclear. Recent discovery of the glymphatic

system and its dynamic fluctuation with sleep provide a plausible explanation. The

diurnal variation of the glymphatic circulation is dependent on the astrocytic activity

and polarization of water channel protein aquaporin-4 (AQP4). Both animal and human

studies have reported suppressed glymphatic transport, abnormal astrocytes, and

depolarized AQP4 in mood disorders. In this study, the “glymphatic dysfunction”

hypothesis which suggests that the dysfunctional glymphatic pathway serves as a bridge

between sleep disturbance and mood disorders is proposed.
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INTRODUCTION

Mood disorders are a group of complex debilitating psychiatric diseases identified by symptoms
centered on markedly disrupted emotions, including major depressive disorder (MDD) and
bipolar disorder (BD) (1). Due to their high prevalence, the risk for recurrence and suicide, they
remain a serious health concern worldwide (2, 3). However, the exact neurobiological mechanisms
underlying mood disorders remain unclear, resulting in unsatisfactory treatment (2, 3).

Sleep disturbance is a common concomitant and prodromal symptom of mood disorders (1, 4,
5). Specifically, both the two processes of sleep regulation—circadian oscillator and sleep pressure—
are disrupted in mood disorders (4, 6). On one hand, circadian rhythms are approximately 24-h
patterns in physiology and behavior, which are regulated bymolecular clocks in the suprachiasmatic
nuclei (SCN) of the hypothalamus (7). Mounting evidence suggests that there are abnormalities
of the clock genes in mood disorders, such as single nucleotide polymorphisms (SNPs) (8–13),
gene expression (14, 15), and gene–gene interactions (8). Excitingly, antidepressants including
fluoxetine (16–18), ketamine (19, 20), and agomelatine (21) can reset the circadian clock along
with the amelioration of mood symptoms. On the other hand, sleep pressure fluctuates with the
sleep–wake cycle (6). Whereas, disturbance of the sleep–wake cycle has often been reported in
mood disorders (22–24). Disturbed sleep architecture, especially decreased percentage of stage 3
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non-rapid eye movement sleep (NREM III), represents decreased
homeostatic drive for sleep (6). Actually, NREM III serves
as a deep and recovery sleep, playing a vital role in the
operation of the glymphatic system, and clearance of metabolic
wastes (25, 26).

The glymphatic system is considered as an effective waste-
removal system in the brain, which facilitates the exchange
between the cerebrospinal fluid (CSF) and interstitial fluid
(ISF), along with the potentially neurotoxic proteins such
as amyloid-β (Aβ) (27), tau protein (28), and α-synuclein
(29). Therefore, glymphatic impairment caused by sleep
disturbance results in protein aggregation and increased
risk for neurological diseases, such as Alzheimer’s disease
(AD) (30), Parkinson’s disease (PD) (31), stroke (32, 33),
and idiopathic normal cranial pressure hydrocephalus
(iNPH) (34, 35). The water channel protein aquaporin-
4 (AQP-4) is highly expressed on astrocytic endfeet and
exerts significant influence in glymphatic transport (36).
At present, accumulating evidence suggests the presence of
abnormal astrocytes (37–43), depolarized AQP-4 (44–46), and
dysfunctional glymphatic system (47, 48) in mood disorders.
Therefore, we speculated that glymphatic dysfunction serves as
an imperative intermediary factor between sleep disturbance
and mood disorders.

In this study, we integrated available data from both
animal and human studies regarding sleep in mood disorders
and highlighted the core role of the glymphatic system.
Furthermore, we discussed the glymphatic system dysfunction
in mood disorders and identified the potential therapeutic
opportunities for mood disorders based on sleep regulation and
the glymphatic pathway.

SLEEP DISTURBANCE AND MOOD
DISORDERS

The Model of Sleep Regulation
The classical two-process model of sleep regulation was first
proposed by Borbély, and it consists of the process controlled
by the circadian oscillator (Process C) and the homeostatic drive
for the sleep–wake cycle (Process S). The two processes closely

Abbreviations: MDD, major depression disorder; BD, bipolar disorder; AQP4,
aquaporin-4; SCN, suprachiasmatic nuclei; SNP, single nucleotide polymorphisms;
NREM III, stage 3 non-rapid eye movement sleep; CSF, cerebrospinal fluid; ISF,
interstitial fluid; Aβ, amyloid-β; AD, Alzheimer’s disease; PD, Parkinson’s
disease; iNPH, idiopathic normal cranial pressure hydrocephalus; EEG,
electroencephalogram; DLMO, dim light melatonin onset; MDR, multifactor-
dimensionality reduction; REM, rapid eye movement sleep; MT, melatonin; SSRI,
selective serotonin reuptake inhibitor; LHb, lateral habenula; ROS, reactive oxygen
species; CNS, central nervous system; PET, positron emission tomography; RBD,
REM sleep behavior disorder; DTI, diffusion tensor imaging; ALPS, analysis
along the perivascular space; CUMS, chronic unpredictable mild stress; PUFA,
polyunsaturated fatty acid; GFAP, glial fibrillary acidic protein; TMS, transcranial
magnetic stimulation; BA, Brodmann area; ADC uh, the apparent diffusion
coefficient from ultra-high b-values; eDWI, enhanced diffusion-weighted imaging;
SCP, superior cerebellar peduncles; PVS, perivascular space; ALDH1L1, aldehyde
dehydrogenase 1 family member L1; qPCR, quantitative polymerase chain
reaction.

interact with each other but are also relatively independent (6)
(Figure 1).

Circadian rhythms (Process C) are approximately 24-h
rhythms in physiology and behavior, which are primarily driven
by a hierarchy of cellular pacemakers located in the SCN (7).
The most common measurements of the circadian rhythm
are core body temperature and endogenous melatonin, other
than the chronotype or morningness-eveningness (49). In fact,
circadian rhythms are generated by a molecular clock in a
network of positive and negative feedback loops. At the core
of SCN timekeeping, the heterodimeric transcription factors
CLOCK/BMAL1 translated from CLOCK and Brain and muscle
ARNT-like 1 (BMAL1) genes, activate the Period (PER1–3) and
Cryptochrome (CRY1–2) genes and initiate the circadian cycle.
In turn, the dimer complex protein PER/CRY inhibit the activity
of the CLOCK/BMAL1 proteins (50), exerting dominant effect
in the negative feedback. As a critical complementary loop, the
BMAL1 transcription is activated by the retinoic acid-related
orphan receptor (ROR) protein at night, and repressed by the
nuclear receptors REV-ERB α/β (encoded by NR1D1/2 genes)
at daytime (51), respectively. In addition, other clock genes
also participate in the regulation of circadian rhythms. The
neuronal PAS domain protein 2 (NPAS2) functions similarly
to CLOCK, while albumin gene D-site binding protein (DBP)
acts cooperatively with CLOCK/BMAL1 (52, 53). The casein
kinase I isoform δ/ε (CSNK1D/E) regulates levels of PER by
phosphorylation-mediated degradation, and thus inhibits the
activity of CLOCK/BMAL1 (54). The basic helix-loop-helix family
40/41 (BHLHE40/41, also known as DEC1/2) suppresses PER
gene transcription via competing with CLOCK-BMAL1 for e-box
element binding (55). The TIMELESS gene is also conceived
required for circadian rhythmicity, however, the exact role in
human clockwork is still unclear (56). These circadian genes
expression rise and fall in rhythm, contributing to the regulation
of 24-h physical and behavioral cycles (15).

Process S, also referred to as the sleep pressure gradually
accumulates during wakefulness and declines during sleep (6).
Especially, as deep sleep (NREM III) dominates in the early
phases of sleep and dwindles with decreasing sleep pressure in
the late phases. Conversely, sleep deficit such as sleep deprivation
results in a longer and deeper NREM III to achieve recovery
(57), implying greater sleep pressure. Therefore, NREM III
sleep is considered as a representation of sleep pressure (6).
Sleep electroencephalogram (EEG) and actigraphy are effective
assessments of sleep pressure to detect sleep architecture.

According to the two-process model, proper alignment of
Process C and S is essential for recovery sleep. Otherwise,
the daytime sleep fails to fulfill the homeostatic sleep
drive, manifesting as lighter and lacking of recovery sleep
(NREM III) (58). Moreover, the daytime sleep decreases sleep
pressure, causing a negative influence on the more effective
nighttime sleep.

Sleep Disturbance in Mood Disorders
Disturbed Circadian Rhythms in Mood Disorders
Disruptions of the circadian rhythms are common in people
exposed to jet-lag, social jet-lag, shift-work, as well as light
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FIGURE 1 | Diagram illustrating the two-process model of sleep regulation. (A) In normal circumstances, sleep regulation depends on the interaction between

process C and process S. Specifically, process C represents the circadian rhythm driven by light–dark cycles, and circadian genes deliver circadian information via

transcriptional–translational feedback loops and control physical and behavioral states. Process S means sleep pressure influenced by sleep–wake cycles, and

include sleep architecture and daytime wakefulness. (B) In mood disorders, circadian rhythms (process C) are misaligned with light–dark cycles due to events such as

jet-lag, social jet-lag, shift-work, light pollution, and so on; while sleep pressure (process S) is remarkably decreased due to longer sleep onset latency, a higher

percentage of REM sleep, daytime sleepiness, or reduced need for sleep.

pollution (light exposure at night) (59), and may lead to
mood alterations (60, 61). Recently, a large population cross-
sectional study (n = 91,105) using a wrist-worn accelerometer
reported that lower relative amplitude of the circadian rhythm
is associated with the lifetime prevalence of both MDD and
BD (4). Individuals with circadian misalignment have higher
depressive scores (62, 63). Moreover, a strong correlation
between depressive symptoms and advances in dim light
melatonin onset (DLMO) has been reported following an
adjunctive multimodal chronobiological intervention organically
combining psychoeducation, behavioral manipulation, and
agomelatine intake (64). Bipolar disorder patients show
delayed and decreased melatonin secretion during depressive
and euthymic episodes (24, 65), with impaired psychosocial
functioning and worse quality of life (24). In addition, manic and

mixed episodes present with sustained phase advances, as well
as a lower degree of rhythmicity corresponding to the severity
of manic symptoms (66, 67). Apart from the daily (solar) cycle
mentioned above, the lunar tidal cycles seem to entrain the
mood cycles. In patients with rapid cycling BD, the periodicities
in mood cycles have been observed to be synchronous with
multiples of bi-weekly lunar tidal cycles (68).

The relationship between circadian rhythms and mood
disorders is further supported by emerging genomic studies. In
depressive cases, genetic association analyses have found SNPs
in PER2 (10870), BMAL1 (rs2290035), NPAS2 (S471L), CRY2
(rs10838524), BHLHB2 (rs6442925), CLOCK (rs12504300),
CSNK1E (rs135745), and TIMELESS (rs4630333 and rs1082214)
(8, 9, 13). Single nucleotide polymorphisms in CSNK1E
(rs135745), TIMELESS rs4630333, CRY2 (rs10838524), PER3
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(rs707467 and rs10462020), RORB (rs1157358, rs7022435,
rs3750420, and rs3903529), REV-ERBA (rs2314339) are strongly
related to BD (8, 10–12, 69). In particular, CLOCK SNP
rs1801260 contribute to the recurrence of mood episodes,
while CRY2 SNP rs10838524 is significantly associated to rapid
cycling BD (10, 70). Moreover, the arrhythmic expression of
circadian genes including BMAL1, PER1–3, REV-ERBA,DBP, and
BHLHE40/41, has been observed in postmortem brain tissues of
MDD patients (15). Reduced amplitude of rhythmic expression
for BMAL1, REV-ERBα, and DBP has been reported in fibroblast
cultures of 12 BD patients (14). Recently, Park et al. have
explored gene–gene interactions of clock genes using the non-
parametric model-free multifactor-dimensionality reduction
(MDR) method, and revealed optimal SNP combination models
for predicting mood disorders (8). Specifically, the four-locus
model differs between MDD (TIMELESS rs4630333, CSNK1E
rs135745, BHLHB2 rs2137947, CSNK1E rs2075984) and BD
(TIMELESS rs4630333, CSNK1E rs135745, PER3 rs228669,
CLOCK rs12649507), supporting the clinical observation of
different circadian characteristics in two disorders.

The Unbalanced Homeostatic Drive of Sleep in Mood

Disorders
The sleep–wake cycle is significantly affected by mood disorders.
Firstly, a disturbed sleep–wake cycle is one of the most common
diagnostic criteria for mood disorders. Individuals suffering from
manic or hypomanic episodes often show a reduced demand
for the sleep, while depressive patients experience insomnia
or hypersomnia (1). Delayed sleep–wake phase and evening
chronotype is common in patients with mood disorders (24,
71, 72), and strongly associated with the severity of mood
symptoms (73). Sleep deficits predict a poor prognosis with a
higher risk of suicide (74). Furthermore, both polysomnography
and self-reported studies have revealed longer sleep onset
latency, a higher percentage of rapid eye movement (REM)
sleep, more fragmentation of the sleep/wake rhythm, and
daytime dysfunction in patients with mood disorders during the
remission state relative to healthy controls (22, 75, 76). More
importantly, sleep disturbance often serves as a prodrome of
manic or depressive episodes. Several retrospective studies have
revealed that sleep disturbance is the most robust early symptom
of manic episodes and the sixth most common prodromal
symptom of manic episodes (5, 23). Recently, a 10-year
prospective study among adolescents and young adults reported
that the sleep problem is a risk factor for the development of
BD (77). Sleep abnormalities have also been highly related to
subsequent depression (23, 78, 79). Moreover, sleep deprivation
is reported to trigger manic-like behavior in animal models
(80). Thus, some researchers speculate that a disturbed sleep–
wake cycle is probably a causal factor triggering mood episodes.
However, because of ethical reasons, sleep generally cannot be
manipulated in human research and this weakens the causal
evidence between the sleep–wake rhythm and mood disorders.

Chronotherapeutic Treatments in Mood Disorders
In response to the vital roles that Process C and S play in the onset
and course of mood disorders, chronotherapeutic interventions

have been successfully used. Sleep deprivation combined with
bright light therapy has been implicated in improving depressive
symptoms (72, 81–83), while virtual darkness therapy via blue-
light-blocking increases the regularity of sleep and a rapid decline
in manic symptoms (84). These treatments exert great influence
on mood recovery by resetting the circadian clock. Also, the
hormonemelatonin (MT) secreted by the pineal gland acts on the
circadian clock via MT1 receptors (85, 86), while the MT agonist
agomelatine shows important properties for phase shifts of the
clock and anti-depressive effects (21). Additionally, agomelatine
functions as an antagonist for 5-HT2c receptors and modulates
the master SCN clock via 5-HT innervations (87, 88). Similarly,
other antidepressants can regulate the expression of the clock
genes and thus affect the circadian rhythms (89). Fluoxetine, a
selective serotonin reuptake inhibitor (SSRI) can shift electrical
rhythms of the SCN and thus affect the behavior rhythm (16–
18). Ketamine results in a rapid increase in glutamate level in the
SCN and directly acts on NMDA receptors of the circadian clock
in the epi-thalamic lateral habenula (LHb) (19, 20), suggesting
that the rapid anti-depressive effects of ketamine might also be
through the resetting of the circadian system (90). However, the
mood stabilizer lithium is considered a clock-modifying drug in
that it delays the sleep–wake cycle in healthy human and increase
the length of the circadian period in non-human primates (91,
92). At the molecular level, lithium treatment can not only
regulate the rhythm period via increasing PER2 mRNA levels,
but also significantly augment the oscillation amplitude PER2
and CRY1 protein rhythms via inhibiting the phosphorylation
of glycogen synthase kinase 3β (GSK3B) (93, 94). Furthermore,
the lithium efficacy is influenced by two GSK3B SNPs (rs334558
and rs3755557) (95). Considering all the above evidence, more
pharmacological manipulations targeting the circadian rhythm
and sleep drive are increasingly becoming plausible in the
treatment of mood disorders.

Taken together, there seems to be a clear link between
sleep disturbance and mood disorders, even though the
underlying mechanisms remain unclear. The discovery of the
glymphatic system provides researchers with insights into sleep-
related diseases.

SLEEP AND THE GLYMPHATIC SYSTEM

Overview of the Glymphatic System
The lymphatic system accounts for the clearance of ISF and it
is also critical to both hydrostatic and homeostatic maintenance
(96). With regard to lymphatic system in central nervous system
(CNS), it consists of two interacting system, the glymphatic
(glia-lymphatic) system and the meningeal lymphatic vessels
(97). The glymphatic system is responsible for exchanging
between CSF and ISF, and clearing solutes and metabolites
from the brain parenchyma through a unique system of
perivascular tunnels. More specifically, CSF produced by the
choroid plexus and capillary influx is pumped deep into the brain
parenchyma via arterial pulsation (36, 98). In the perivascular
space (PVS), CSF exchanges with ISF, accompanied by clearance
of soluble metabolic waste like Aβ (36). Indeed, large and
eccentric PVS provides considerably less hydraulic resistance
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to CSF-ISF flow compared to concentric annular tunnel (99,
100). During the clearance of solutes, convection coexists with
diffusion in the glymphatic system (101–103). It is argued
that in the brain interstitium, small molecule transport is
best explained by diffusion while convection becomes more
predominant with increasing molecular size (104). However, the
exact contributions of the two processes are highly dynamic
and remain controversial, with one of the reasons being that
the glymphatic influx and efflux are influenced by arousal
state, pulse, respiration, body position, and more (98, 103, 105,
106). Moreover, CSF–ISF and solutes drain from the CNS via
meningeal and cervical lymphatic vessels, as well as the cranial
and spinal nerve roots (107, 108). Therefore, interference of the
lymphatic system, such as ultraviolet photoablation of meningeal
lymphatic vessels and ligation of cervical lymphatics, accounts for
the stagnation of glymphatic flow and aggregation of metabolic
wastes like Aβ (109, 110).

More importantly, the glymphatic system is supported by
the water channel AQP4 which is primarily expressed by the
astrocytic endfeet (36). Animals lacking AQP4 exhibit slower
CSF influx and less interstitial solute clearance (70% reduction)
(36, 111, 112). Deletion of the AQP4 in APP/PS1 transgenic
mice results in increased interstitial Aβ plaque accumulation,
cerebral amyloid angiopathy, as well as loss of synaptic protein
and brain-derived neurotrophic factor in the hippocampus and
cortex (113). However, it should be noted that the role of AQP4 in
glymphatic clearance function are debated (103, 106). Smith et al.
have found that AQP4 gene deletion mice exhibited a similar Aβ

distribution as wildtypemice, suggesting thatAQP4 gene deletion
did not impair clearance of Aβ (114).

Sleep-Dependent Glymphatic Cycling
Emerging evidence reveals that the function of the glymphatic
system fluctuates daily along with the sleep–wake cycle. A
two-photon imaging study reported a 60% increase in the
interstitial space and two-fold faster clearance of Aβ in natural
sleep or anesthesia mice compared with awake mice (27). A
coherent pattern of slow-wave activity and CSF influx has been
observed during NREM sleep in humans, supporting the exciting
possibility of sleep-regulated glymphatic function (25). However,
recent evidence using contrast-enhanced MRI has revealed that
the glymphatic system is controlled by the circadian rhythm
rather than by the sleep–wake cycle (115, 116). The parenchymal
redistribution of contrast agent is lowest during the light phase
and highest during the dark phase in fully awake rats, regardless
of normal or reversed light–dark cycles (115). The diurnal
variation of glymphatic cycling persists even under constant
light or anesthesia, suggesting the hypothesis that endogenous
circadian oscillations determine glymphatic function (116). The
discrepancy may be related to the extreme differences in the
circadian rhythm between humans and rodents (117). Rodents
are nocturnal animals with opposite circadian phase, and they
are also poly-phasic sleepers with relatively low sleep drive (118).
Presently, the exact contributions of the light–dark cycle, sleep–
wake cycle, and other physiological rhythms remain unknown
(116). Further studies are warranted to confirm the circadian
control of the glymphatic system in humans.

Surprisingly, the deletion of AQP4 effectively eliminates
the circadian rhythm in glymphatic fluid transport (116). A
recent genomic study reports that AQP4-haplotype influences
sleep homeostasis in NREM sleep and response to prolonged
wakefulness (119), providing supporting evidence for the sleep-
dependent glymphatic pathway. The high polarization of AQP4
in astrocytic endfeet is under the control of the circadian rhythm,
and thus, modulates bulk fluid movement, CSF–ISF exchange,
and solutes clearance (116). Conversely, there is also evidence
that astrocytes repress SCN neurons and regulate circadian
timekeeping via glutamate signaling (120). Thus, astrocytes and
AQP4 present a checkpoint for the functional glymphatic system
during deep sleep.

Considerable evidence suggests a causal relationship between
sleep and regulation of the glymphatic flow, thus modulating
protein clearance. Sleep disturbance (including shorter total
sleep time, sleep fragmentation, and lack of NREM III) causes
suppressed glymphatic function and a decline in the clearance
of metabolic waste, hence contributing to the development and
progression of various neurological diseases including AD (30),
PD (31), stroke (32, 33), and iNPH (34, 35).

Taken together, the glymphatic function is considered as a
brain fluid transport with astrocyte-regulated mechanisms, while
glymphatic dysfunction is intimately associated with neurological
diseases, especially neurodegenerative diseases with cognitive
decline (30, 31).

GLYMPHATIC DYSFUNCTION IN MOOD
DISORDERS

Abnormalities of Glymphatic Flow,
Astrocytes, and AQP4 in Depression
Individuals suffering from depressive episodes always show
diverse cognitive decline (1), including attention, memory,
response inhibition, decision speed, and so on. Depression has
been considered as a prodrome of dementia (121), with increased
Aβ deposition reported in an (18) F-florbetapir positron emission
tomography (PET) imaging study (122). These observations
raise the exciting possibility that wide-spread disruption of the
glymphatic system exists in depression. Recent animal studies
using chronic unpredictable mild stress (CUMS) model have
provided supporting evidence for the glymphatic dysfunction
in depression (47, 48) (Table 1). In the CUMS model, animals
were exposed to the various stressors randomly for several
weeks and injected with fluorescence tracers from cisterna
magna to estimate the glymphatic function (47, 48). The
CSF tracer penetration in the brain of CUMS-treated mice
was significantly decreased, and recovered to the control level
after fluoxetine administration or polyunsaturated fatty acid
(PUFA) supplementation (47, 48). In parallel with the impaired
glymphatic circulation, the increased deposition of Aβ has been
observed (47, 48). Amyloid-β accumulation along the blood
vessels, in turn, could impair glymphatic function by reducing
PVS and increasing hydraulic resistance, and thus result in a
more severe parenchymal build-up of Aβ and neuronal death
(134). Another plausible explanation of PVS closure induced
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by CUMS is the alteration of arterial pulsation and compliance
that triggered by neuroinflammation and restored by daily PUFA
supplementation (48) (Table 1).

During the neuroinflammatory response, reactive
astrocytosis, and AQP4 depolarization have been widely
reported in depression (48). Abundant evidence indicated
astrocytic abnormalities in patients with depression (Table 2).
Golgi-staining of postmortem tissues from depressed suicide
cases has revealed reactive astrocytosis within the cingulate
cortex (37). Additionally, glial fibrillary acidic protein
(GFAP), one of the astrocyte-specific biomarkers, is reduced
in depression-associated brain regions including the prefrontal
cortex, cingulate cortex (38, 39), hippocampus (40), amygdala
(41), locus coeruleus (44), cerebellum (146), thalamus, and
caudate nuclei (42). A lower density of S100β-immunopositive
astrocytes has been reported in the bilateral hippocampus
and locus coeruleus of depressive patients compared to that
of healthy controls (44, 135). Downregulated expression of
AQP4 has been found in postmortem locus coeruleus and
hippocampus in MDD patients (44, 136). More importantly,
the reduction in astrocyte density is passed on to offsprings of
depressive females via an epigenetic mechanism (123) (Table 1).
Nevertheless, there are several contradictory results (Table 2).
The density of astrocytes has been observed unchanged in
the cingulate cortex and hippocampus of MDD patients
(142, 144). A postmortem study using quantitative polymerase
chain reaction (qPCR) have observed upregulated expression
of GFAP and aldehyde dehydrogenase 1 family member L1
(ALDH1L1) in the basal ganglia of MDD patients (145).
Another postmortem study using microarray analysis and
qPCR has found upregulated expression of AQP4 in the
prefrontal cortex of MDD patients. Obviously, the variety of
studied methods involving Glogi-staining, Nissl-staining, qPCR,
western blotting, and immunohistochemistry, contributes to
the discrepancies.

However, emerging animal studies provide powerful evidence
implying the pathological alterations of astrocytes and AQP4
in depression. Decreased astrocytes and downregulated AQP4
expression have been reported in various animal models
of depression (47, 48, 123, 124, 130) (Table 1), supporting
dysfunctional glymphatic transport in depression. Effective
antidepressant therapy, such as fluoxetine (47, 124, 125),
escitalopram (48), mirtazapine (126), ketamine (127, 128), and
repetitive high-frequency transcranial magnetic stimulation
(TMS) (129) could benefit the functioning of both astrocytes
and AQP4, and hence alleviate depressive-like behaviors.
Additionally, the synergistic agents of antidepressant—
lithium—can attenuate the reduction of AQP4 and disruption
of the neurovascular unit in the hippocampus of CUMS
rats (130), resulting in a functioning glymphatic system.
These therapeutic effects can be suppressed by AQP4
knockout. More specifically, AQP4 deficiency abolishes
fluoxetine treatment-induced hippocampal neurogenesis
and behavioral improvement in depressive mice (133).
Recent studies indicate that the therapeutic option for
depression is via the restoration of astrocytes function,
AQP4, and glymphatic system (131, 132), which provide further

supporting evidence for the critical role of glymphatic flow
in depression.

Abnormalities of Astrocytes and AQP4 in
Bipolar Disorders
To date, the role of the glymphatic function in BD has not been
widely studied. However, astrocytic dysfunction has undoubtedly
been implicated in the development of BD (43). Different from
MDD, pictures from human postmortem studies in BD appear
to be highly heterogeneous (Table 2). The density of GFAP-
positive astrocytes is reported to be significantly increased in
Brodmann area (BA) 9 (137) and reduced in BA10 (138), BA24
(38), BA11, and BA 47 (139), while the level of S100β has
been reported to be increased in BA40 and reduced in BA9
(140). Other studies on human postmortem tissues from BD
exhibit an unchanged density of astrocytes in the frontal cortex
(141), cingulate cortex (142), amygdala (41, 143), hippocampus
(144), entorhinal cortex (143), basal ganglia (145), dorsal raphe
nucleus, and cerebellum (146). The considerable discrepancy is
on account of various confounding factors, including phenotype
(depressive episode, manic episode, or remission state) (150),
cause of death (depressive suicide or physical diseases) (141,
144), comorbidity (150, 151), the methodology used (137,
144), and the brain regions studied (139, 140). Therefore,
additional studies regarding diverse phenotypes of BD are
essential to investigate state-related abnormalities of astrocytes
(152). In patients with bipolar depression, a reduction in S100β-
immunopositive astrocytes has been observe, but with no change
in GFAP-immunopositive astrocytes (135, 147). As for manic
states, in vivo studies have revealed increased serum levels of
S100β, suggesting astrocytic activation (148).

Upregulated expression of AQP4 in the prefrontal cortex
has been revealed in BD (149). Evaluation of the qualitative
alterations of astrocytes (especially AQP4 function) is far much
valuable than quantitative alterations. The apparent diffusion
coefficient from ultra-high b-values (ADC uh), a parameter
of enhanced diffusion-weighted imaging (eDWI), can reflect
the function of AQP4 (45). In individuals suffering from
bipolar depression, increased ADC uh values in bilateral
superior cerebellar peduncles (SCP) and cerebellar hemisphere
is positively associated with depressive scores, implying that a
positive correlation exists between the upregulated expression of
AQP4 and severity of depression (46). A plausible explanation is
that increased and depolarized AQP4 impair water homeostasis
and glymphatic transport in BD (149). Lithium is a classical
mood-stabilizer, and its effect of regulating AQP4 function is
discussed above (130). Additionally, other mood-stabilizers such
as valproic acid, topiramate, and lamotrigine have been shown to
inhibit AQP4 (153), and hence regulate directed glymphatic flow.

Even though direct evidence for glymphatic impairment in
mood disorders is lacking, astrocytes and AQP4 abnormalities
provide support to the hypothesis that glymphatic dysfunction
functions as a bridge between sleep disturbance and mood
disorders. Additionally, treatments for mood improvement,
including medicines, light therapy, sleep invention, and TMS can
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TABLE 1 | Glymphatic flow, astrocytes, and AQP4 in animal studies.

References Studied cohort Method Main findings

Xia et al. (47) CUMS model mice Injection of tracers,

immunohistochemistry

Impaired glymphatic circulation and increased accumulation

of Aβ42, which can be reversed by fluoxetine treatment.

Downregulated AQP4 expression in cortex and

hippocampus, which can be reversed by

fluoxetine treatment.

Liu et al. (48) CUMS model mice Injection of tracers,

immunohistochemistry

Impaired glymphatic circulation and cerebrovascular

reactivity, which can be reversed by PUFA supplementation.

Decreased Aβ40 clearance, which can be reversed by PUFA

supplementation and escitalopram treatment.

Decreased astrocytes and AQP4 expression, which can be

reversed by PUFA supplementation and

escitalopram treatment.

Gong et al. (123) CMS model mice Immunohistochemistry Decreased hippocampal astrocyte is passed on to offsprings

via an epigenetic mechanism.

Czéh et al. (124) Chronic

psychosocial

stress mice

Immunohistochemistry Fluoxetine treatment prevented the stress-induced numerical

decrease of astrocytes.

Kinoshita et al.

(125)

VNUT-knockout

mice

Immunohistochemistry,

qPCR

Fluoxetine increased ATP exocytosis and BDNF

in astrocytes.

Hisaoka-

Nakashima et al.

(126)

Rat primary

astrocytes, C6

astroglia cells

qPCR, ELISA, western

blotting

Mirtazapine treatment increased mRNA expression of GDNF

and BDNF in astrocytes.

Wang et al. (127) Mice Western blotting Ketamine promotes the activation of astrocyte.

Lasič et al. (128) Rat primary

astrocytes

Structured illumination

microscopy and image

analysis

Ketamine induced cholesterol redistribution in the

plasmalemma of astrocytes.

Xue et al. (129) CUS model rats Immunohistochemistry,

qPCR

Repetitive TMS at 5Hz increased the expression of DAGLα

and CB1R in hippocampal astrocytes and neurons.

Taler et al. (130) CUMS model rats Immunohistochemistry,

western blotting,

ELISA

Lithium can attenuate the reduction of AQP4 and disruption

of the neurovascular unit in hippocampus.

Wang et al. (131) LPS-induced

depression model

mice

Immunohistochemistry,

qPCR

Inhibition of activated astrocytes ameliorates LPS-induced

depressive-like behavior.

Portal et al. (132) Cx43 KD male

mice

Immunohistochemistry,

western blotting

Inactivation of astroglial connexin 43 potentiated the

antidepressant-like effects of fluoxetine.

Kong et al. (133) CMS model mice Immunohistochemistry,

western blotting

AQP4 knockout disrupted fluoxetine-induced enhancement

of hippocampal neurogenesis, as well as

behavioral improvement.

Aβ, amyloid-β; AQP4, aquaporin-4; ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic factor; CB1R, cannabinoid type 1 receptor; CMS, chronic mild stress; CUMS,

chronic unpredictable mild stress; CUS, chronic unpredictable stress; Cx43 KD, connexin 43 knock-down; DAGLα, diacylglycerol lipase alpha; ELISA, enzyme-linked immunosorbent

assays; GDNF, glial cell line-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; LPS, lipopolysaccharide; mRNA, messenger RNA; PUFA, polyunsaturated fatty acid; qPCR,

quantitative polymerase chain reaction; TMS, transcranial magnetic stimulation; VNUT, vesicular nucleotide transporter.

regulate the function of astrocytes and AQP4. Therefore, AQP4-
dependent glymphatic system may serve as a new therapeutic
target in mood disorders.

CONCLUSION AND OUTLOOK

Mood symptoms often occur with the onset of sleep disturbance
and ameliorate with improved sleep disturbance. Moreover,
early-life sleep problems due to jet-lag, social jet-lag, shift-work,
or light pollution can significantly increase the lifetime risk of
mood disorders (60). In addition, sleep deprivation can directly
trigger mania-like symptoms (80). Based on considerable

evidence, a causal relationship between sleep disturbance
and mood disorders is hypothesized (154). Therefore, how
does disrupted sleep affect the development and phenotype
of mood disorders? An intriguing possibility has emerged
that glymphatic dysfunction serves as a bridge between sleep
disturbance and mood disorders. Adequate sleep, especially
deep sleep (NREM III), is a key factor in the functioning
of the glymphatic system which accounts for the clearance
of metabolic wastes. The effects of sleep on the glymphatic
system are mainly dependent on the dynamic alterations of
astrocytic function and AQP4 distribution (113, 119, 155).
Significantly, suppressed glymphatic circulation, astrocytic
abnormalities, and AQP4 depolarization are consistently
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TABLE 2 | Astrocytes and AQP4 in patients with mood disorder.

References Studied cohort Tested sample Method Main findings

Torres-Platas et al.

(37)

10 Depressed

suicides, 10HC

Postmortem tissue Golgi-staining Reactive astrocytosis within the cingulate cortex of

depressive patients.

Torres-Platas et al.

(42)

22 Depressed

suicides, 22HC

Postmortem tissue Immunohistochemistry,

qPCR

Downregulation of GFAP mRNA and protein in the

mediodorsal thalamus and caudate nucleus of

depressed suicides.

Webster et al. (38) 15MDD, 15BD,

15HC

Postmortem tissue In situ

hybridization

Decreased level of GFAP mRNA in the cingulate cortex of

BD patients.

Decreased level of GFAP mRNA in the cingulate cortex of

MDD patients (not significantly).

Gittins et al. (39) 5MDD, 2BD, 9HC Postmortem tissue Immunohistochemistry Decreased GFAP protein in the anterior cingulate cortex of

patients with mood disorders.

Cobb et al. (40) 17MDD, 17HC Postmortem tissue Immunohistochemistry Decreased GFAP-positive astrocytes in the left

hippocampus of depressive patients.

Altshuler et al. (41) 11MDD, 10BD,

14HC

Postmortem tissue Immunohistochemistry Decreased GFAP-positive astrocytes in the amygdala of

depressive patients.

Unchanged GFAP-positive astrocytes in the amygdala of

BD patients.

Bernard et al. (44) 12MDD, 6BD,

9HC

Postmortem tissue In situ

hybridization

Downregulated expression of GFAP, S100B and AQP4 in

locus coeruleus of MDD patients.

Gos et al. (135) 9MDD, 6BD,

13HC

Postmortem tissue Immunohistochemistry Decreased S100β-immunopositive astrocytes in the

bilateral hippocampus of depressive patients.

Medina et al. (136) 13MDD, 10HC Postmortem tissue Microarray

analysis, qPCR

Downregulated AQP4 mRNA expression in hippocampus of

MDD patients.

Feresten AH et al.

(137)

34BD, 35HC Postmortem tissue Western blotting Increased GFAP expression of in BA9 of BD patients.

Unchanged levels of vimentin and ALDH1L1 in BA9 of

BD patients.

Johnston-Wilson

et al. (138)

19MDD, 23BD,

23HC

Postmortem tissue Western blotting Decreased GFAP-positive astrocytes in BA10 of

BD patients.

Toro et al. (139) 15MDD, 15BD,

15HC

Postmortem tissue Immunohistochemistry Decreased GFAP-positive astrocytes in BA11/47 of

BD patients.

Dean et al. (140) 8BD, 20HC Postmortem tissue Western blotting,

qPCR

Increased S100β in BA40 of BD patients.

Decreased S100β in BA9 of BD patients.

Hercher et al. (141) 20BD, 20HC Postmortem tissue Immunohistochemistry Unchanged density of astrocytes in the frontal cortex of

BD patients.

Williams et al.

(142)

20MDD, 16BD,

20HC

Postmortem tissue Immunohistochemistry Unchanged density of astrocytes in the cingulate cortex of

patients with mood disorder.

Pantazopoulos

et al. (143)

11BD, 15HC Postmortem tissue Immunohistochemistry Unchanged density of astrocytes in the amygdala and

entorhinal cortex of BD patients.

Malchow et al.

(144)

8MDD, 8BD,

10HC

Postmortem tissue Nissl-staining Unchanged density of astrocytes in the hippocampus of

patients with mood disorder.

Barley et al. (145) 14MDD, 14BD,

15HC

Postmortem tissue qPCR Upregulated expression of GFAP and ALDH1L1 the basal

ganglia of MDD patients.

Upregulated expression of GFAP and ALDH1L1 the basal

ganglia of BD patients (not significantly).

Fatemi et al. (146) 15MDD, 15BD,

15HC

Postmortem tissue Western blotting Decreased GFAP in the cerebellum of patients with

mood disorders.

Steiner et al. (147) 9MDD, 5BD,

10HC

Postmortem tissue Immunohistochemistry No change in GFPA-immunopositive astrocytes of patients

with mood disorder.

da Rosa et al.

(148)

52 manic BD,

52HC

Serum meta-analysis Increased S100β levels in serum of patients with

manic episodes.

Zhao et al. (46) 50BD II, 43HC eDWI ADCuh Increased ADCuh values in bilateral SCP and cerebellar

hemisphere, which positively associated with

depressive scores.

Iwamoto et al.

(149)

11MDD, 11BD,

15HC

Postmortem tissue Microarray

analysis, qPCR

Upregulated expression of AQP4 in the prefrontal cortex of

patients with mood disorders.

AQP4, aquaporin-4; ADCuh, apparent diffusion coefficient from ultra-high b-values; ALDH1L1, aldehyde dehydrogenase 1L1; BA, Brodmann area; BD, bipolar disorder; eDWI,

enhanced diffusion-weighted imaging; GFAP, glial fibrillary acidic protein; HC, health control; mRNA, messenger RNA; qPCR, quantitative polymerase chain reaction; SCP, superior

cerebellar peduncles.
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reported in mood disorders, providing support for the
posited hypothesis.

However, several limitations exist in this study. First, much
of the existing evidence on the glymphatic system has been
conducted in rodents and only a few in humans. Although
sleep is an evolutionarily conserved physiological behavior,
the reversed circadian rhythms and polyphasic sleep which
reduces sleep pressure in rodents make it less representative.
Most of the current human studies use invasive methods such
as intrathecal injection of contrast agents, while the ADCuh
value obtained from the emerging eDWI fails to identify
the distribution of AQP4. Therefore, non-invasive methods to
explore the glymphatic system in humans are necessary for
future studies. Secondly, there is a lack of evidence of known
metabolic wastes that fail to be cleared by the glymphatic
system and trigger or exacerbate mood symptoms, such as
Aβ in AD and α-synuclein in PD. Exploring the excessive
metabolic wastes in mood disorders is warranted, and can
provide promising biomarkers for indicating the occurrence and
severity of mood disorders.
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