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While depression is one of the most common mental disorders affecting more than 300

million people across the world, it is often left undiagnosed. This paper investigated

the association between depression and gait characteristics with the aim to assist

in diagnosing depression. Our dataset consisted of 121 healthy people and 126

patients with depression who diagnosed by psychiatrists according to the Diagnostic

and Statistical Manual of Mental Disorders. Spatiotemporal, temporal-domain, and

frequency-domain features were extracted based on the walking data of 247 participants

recorded by Microsoft Kinect (Version 2). Multiple logistic regression was used to analyze

the variance of spatiotemporal (12.55%), time-domain (58.36%), and frequency-domain

features (60.71%) on recognizing depression based on Nagelkerke’s R2 measure,

respectively. The contributions of the different types of features were further explored

by building machine learning models by using support vector machine algorithm. All

the combinations of the three types of gait features were used as training data of

machine learning models, respectively. The results showed that the model trained using

only time- and frequency-domain features demonstrated the same best performance

compared to themodel trained using all the features (sensitivity= 0.94, specificity= 0.91,

and AUC= 0.93). These results indicated that depression could be effectively recognized

through gait analysis. This approach is a step forward toward developing low-cost,

non-intrusive solutions for real-time depression recognition.

Keywords: depression, gait analysis, machine learning, diagnosis, skeletal joints

INTRODUCTION

Depression is one of the most common mental disorders affecting more than 300 million people
across the world (1). It is associated with decreased life satisfaction, impaired psychosocial
functioning, and high disability and suicide rates (2–4). Early treatment can reduce healthcare costs,
as well as morbidity and mortality rates associated with depression (5, 6). However, more than half
of depressed patients actually have not received treatment for various reasons such as the difficulty
in diagnosing (7, 8). One reason mentioned a lot is that primary care physicians generally initiate
guideline-concordant care for depressed patients requesting help (9, 10), but they often fail to
recognize patients with depressive symptoms (11, 12). Another long-standing reason is traditional
questionnaire-based approaches for depression which may increase the risk of misdiagnosing and
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thus mistreating depression in primary care settings (13–15).
Therefore, more efficient methods for detecting depression are
required to improve the delivery of services to those in need.

Motor symptoms (e.g., gait) have been shown to be an
essential manifestation of depression (16–18). In particular, gait
and postural control modulated by a complex neural network
(19), which is also implicated with the pathophysiology of
major depression (20). Till now, many studies investigated
the association between depression and gait characteristics by
using instrumental assessments. For example, Sloman et al. (21)
analyzed photograms of a single stride during a natural walk and
found that depressed patients’ walks were more slowly with a
lifting motion of the leg. In contrast, healthy participants propel
themselves forward with increased foot push-off. Another study
used a combination of electronic walkways and photogrammetry
to show that depressed patients have shorter strides and slower
gait velocity than healthy controls (22). Michalak et al. (23)
demonstrated that depressed individuals exhibit reduced vertical
head movements, more slumped posture, and lower gait velocity
than controls by using three-dimensional (3D) motion capture.

While many studies have demonstrated significant differences
in gait patterns between depressed and healthy individuals, gait is
relatively neglected in clinical practice as a tool for diagnosing
depression (24). For instance, basic clinical gait assessments
are mainly observational or based on gait speed to functional
assessment (25–27). Nevertheless, judgments formulated by
clinicians on the basis of observed behavior are subjective.
Methodologies of gait speed tests vary widely from study to study,
making it difficult to obtain a general description of patients’
gait patterns with depression (28). Furthermore, until recently,
automated gait analysis has been requiring expensive equipment
and auxiliary operations often unavailable in clinical settings (29).
However, modern cost-effective intelligent devices provide new
perspectives for gait-based depression recognition. For example,
Microsoft Kinect, designed for Xbox, has been used to monitor
body movement patterns continuously (30), and its effectiveness
in estimating body posture and movement has been proven (29,
31, 32). Using fast Fourier transforms, Zhao et al. (33) extracted
frequency domain features from gait data captured by Kinect
from 179 graduate students. They then trained machine learning
models to predict depression levels of the participants estimated
through a questionnaire; the correlation coefficient between the
prediction score of models and questionnaire scores reached
0.51. A random forest classifier built based on 12 spatiotemporal
features (e.g., walking speed, stride length, arm swing, and body
sway) for detecting depression among postgraduate students
achieved an accuracy rate 91.58% (34). Wang et al. (35)
first extracted time- and frequency-domain features through
power spectral density analysis, and spatial geometric features
through covariance matrices and the symmetric Stein divergence
from gait data captured by Kinect. A framework for detecting
depression based on fused features was proposed with a
classification accuracy of 93.75%. Therefore, features extracted
from Kinect-captured gait data using mathematical methods are
effective in model-based depression recognition.

Previous studies showed thatmachine learningmodels trained
with gait-related features can predict depression accurately,

and Kinect provided objective and easily accessible data.
However, few of these studies quantified the contribution of
each type of gait feature (e.g., spatiotemporal, time-domain, and
frequency-domain features) on depression recognition. More
importantly, depression severity in these studies was assessed
based on depression symptoms scales. While the effectiveness
of questionnaire-based scales in accessing depression severity
has been well-validated (36), questionnaire scores themselves
cannot be used as a diagnosis. Furthermore, research results
obtained based on one scale may not replicate to other scales
since symptoms on different depression scales do not overlap
completely (24).

Instead of considering depressive symptoms in the general
population, this study considers the relationship between gait
characteristics and depressive symptoms of clinical cases. The
aims of the study include (1) evaluating the effect of different
types of gait features in recognizing depression and (2) building
machine learning models consisting of gait features for detecting
depression. Once the contribution and effectiveness of different
types of gait features in recognizing depression have been
quantified, future research can confidently explore deeper
insights into gait patterns of depressed patients and more
robust classification models for diagnosing depression in the
clinical setting.

MATERIALS AND METHODS

Participants
In this study, depressive patients were recruited from Beijing
Anding Hospitals of Capital Medical University. Psychiatrists
diagnosed these patients according to the Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV) criteria.
Inclusion criteria for the case group included: (a) diagnosed as
major depressive disorder, (b) no psychotropic medicines are
taken within past 2 weeks, (c) without a current or historical
DSM-IV diagnosis of any other mental diseases, (d) without
current or historical DSM-IV diagnosis of alcohol or drug
abuse, and (e) without disability or injury that affected their
walking ability.

For the control group, healthy people were recruited via
local advertisements. Inclusion criteria for the control group
included: (a) both mentally and physically healthy, (b) without
long-term use of analgesics, sedatives, sleep drugs, cortisol drugs,
anti-epileptic drugs, and treatment of high blood pressure, (c)
without positive family history of mental disorders in three
generations, and (d) without disability or injury that affected their
walking ability.

Finally, 126 depressive patients and 121 healthy people
completed the study. Table 1 shows the demographic
characteristics of depressed people and healthy people.

Experimental Settings
We used a Kinect (Version 2) to record the gait data of
participants. All the participants were asked to walk naturally
back and forth for 2min on a 6 × 1m footpath (Figure 1).
With Kinect continuously shooting, the 3-dimensional position
changes of participants’ 25 main body joints during walking were
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recorded by 30Hz sampling rate (Figure 2). The study was a part
of a clinical research project about the potential biological and
behavioral indicators of major depressive disorder, approved by
the Institutional Review Board of the Institute of Psychology,
Chinese Academy of Sciences (approved number: H15010).

Data Preprocessing
Coordinate System Transformation
By default, Kinect takes its position as the origin of the 3D
Cartesian coordinate system, in which the X-axis grows to
the Kinect’s left, Y-axis grows up, and Z-axis grows out in
the direction Kinect is facing (Figure 1). Given that different
participants may have different positions relative to the Kinect
during their walk, which means that the default coordinate
system may introduce significant errors in gait pattern analysis.
Therefore, we need the coordinate system transformation, in
which we take the position of the spine joint (joint 9) as the origin
of the coordinate system. Taking a segment of one participant’s
left-foot (joint 24) data on the Y-axis when walking toward Kinect
as an example, we demonstrate the effect of the coordinate system
transformation (Figure 3).

Data Segmentation
Since gait is a cyclic physical activity, large amounts of repetitive
data may lead to data redundancy and low computational

TABLE 1 | Demographic characteristics of participants.

Characteristic Depressed group Control group

Gender, n (%)

Male 57 (45.2) 61 (50.4)

Female 69 (54.8) 60 (49.6)

Height, M ± SD 167.4 ± 7.9 166.4 ± 8.2

Weight, M ± SD 63.3 ± 11.5 66.4 ± 13.3

Age, M ± SD 31.0 ± 9.8 34.7 ± 11.5

efficiency. Since each participant’s gait data contained back and
forth walking, we need to do data segmentation. To do so, we first
divided these data into face-toward and back-toward segments
based onwhether the participant was facing the Kinect or not.We
only retained the face-toward segments due to the better accuracy
of Kinect in estimating body posture and movement. In order to
reduce the influence of participants’ unnatural movements at the
beginning/end of this experiment, we then selected the middle
segment from all the face-toward segments for further analysis.
Finally, we identified the beginning of a gait cycle as the lift (toe-
off) of left-foot, and chose gait records of two cycles in the middle
face-toward segment as the final data segment according to the
change of the left-foot (joint 24) on the Y-axis. The length of these
segments ranged from 1.73 to 3.43 s (mean= 2.37, SD= 0.26).

Low-Pass Filtering
As unexpected body wobble or the systematic errors of Kinect
may introduce high-frequency components and noise into the
collected data, the original gait record needs to be filtered before
data analysis. Gaussian filter is a non-uniform low-pass filter
with a kernel whose coefficients decrease with the increase of
distance from the kernel’s center. It can be used to attenuate
noises and high-frequency components in signal data (37),
and its effectiveness in filtering Kinect-captured gait data has
been proved in several studies (33, 38). Specifically, we set the
Gaussian filter’s kernel coefficient to g = 1

16 [1, 4, 6, 4, 1], and then
calculated the convolution of each joint’ records in 3 dimensions
and the Gaussian filter. The procedure of filtering is defined as:

y (n) =
∑∞

t=−∞
x (t) g(n− t) = x (n) ∗ g(n) (1)

x is the records of each joint in 3 dimensions, n refers to the frame
number, g refers to the Gaussian filter, and ∗ refers to convolution
operation. We take a segment of one participant’s left-foot (joint
24) data on Y-axis when walking toward Kinect as an example.
After low-pass filtering, many little burrs and fluctuations in
the original records are removed compared to the filtered data
(Figure 4).

FIGURE 1 | The schematic of the experiment environment.
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FIGURE 2 | The 25 joints captured by a Kinect.

FIGURE 3 | A segment of one participant’s left-foot (joint 24) data on Y-axis when walking toward Kinect before (left) and after (right) coordinate

system transformation.

Frontiers in Psychiatry | www.frontiersin.org 4 May 2021 | Volume 12 | Article 661213

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Wang et al. Detecting Depression Through Gait Data

FIGURE 4 | A segment of one participant’s left-foot (joint 24) data on Y-axis when walking toward Kinect before (left) and after (right) low-pass filtering.

Feature Extraction
Spatiotemporal Features Extraction
Previous research found that gait patterns associated with
depression were characterized by increased body swaying,
shortened strides, reduced walking speed and arm swing, etc.
(23, 39, 40). Therefore, we extracted spatiotemporal features from
Kinect-captured gait data that might potentially differentiate gait
patterns between the case and control groups. Specifically, we
extracted the following spatiotemporal features:

1) Body swaying: Body swaying is measured by the maximum
difference in position of the left-shoulder (joint 4) and the
right-shoulder (joint 5) on the X-axis during a gait cycle.

2) Left-arm/Right-arm swing: It was defined as the maximum
difference of the left/right wrist (joint 10/14) moving along
the Z-axis during a gait cycle.

3) Vertical head movement: We measured the vertical head
movement as the maximum vertical amplitude of head (joint
1) along the Y-axis during a gait cycle.

4) Head posture: We quantified the head posture during a gait
cycle by averaging the angle between the vertical direction
and the connection line between the neck (joint 2) and the
clavicle (joint 3) in the plane which consisted of the Y-axis
and the Z-axis.

5) Left/Right stride length: It measured the maximum change
in the horizontal direction of the left/right foot (joint 22/23)
during a gait cycle.

6) Left/Right toe clearance: It measured the maximum change
in vertical height of the left/right foot (joint 22/23) during a
gait cycle.

7) Walking speed: We measured participants’ walking speed
according to their spine (joint 9) movement along Z-axis.

At last, the mean values of these features in each
participant’s two gait cycles were calculated as the final
spatiotemporal features. Finally, we obtained a total of 10
spatiotemporal features.

Time-Domain Features Extraction
Previous studies have confirmed the effectiveness of time-domain
features in gait analysis not only in clinical settings but also in
laboratory settings (41, 42). Time-domain information related
to the statistical value of data on the 25 joints was used
to characterize individuals’ movement patterns. In this study,
we calculated the mean, standard deviation, skewness, and
kurtosis of the original data. Specifically, mean is a measure of
the central tendency of the random variable characterized by
that distribution. Standard deviation measures the amount of
dispersion of a dataset. To examine the asymmetry that deviates
from the symmetrical bell curve of a dataset, we estimated
skewness. Kurtosis measures outliers present in the probability
distribution. For the data on the three axes of the 25 joints, we
calculated the above four statistical features respectively. Finally,
we obtained a total of 3× 25× 4= 300 time-domain features.

Frequency-Domain Features Extraction
In addition to using statistical methods to extract time-domain
features, we conducted discrete Fourier transform to convert
time-domain signals to frequency-domain features (43). The
formula is defined as

Fk =
∑n−1

j=0
xtje

−i2πk
j
n , k = 0, 1, . . . , n− 1 (2)

in which, i denotes the imaginary number, xtj stands for data

on the t axis (t ∈ {X,Y ,Z}), n refers to the width of a
segment. For the data on the three axes of the 25 joints, we
first obtain the amplitudes and phases of the data through the
discrete Fourier transform. Then we calculated the direct current
component, zero frequency component, which is the average
value of the signal, as well as the mean, variance, standard
deviation, skewness, and kurtosis of amplitudes and phases,
respectively. Finally, we obtained a total of 3 × 25 × (1 + 5 ×

2)= 825 frequency-domain features.
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Data Analysis
Binary Logistic Regression
The multiple logistic regression analysis was used to investigate
the contributing effect of different types of gait characteristics
in recognizing depression. In this analysis, the variable selection
was performed using stepwise forward selection, subsequently
including one by one the variables that were not statistically
significant (α = 0.05). Specifically, the dependent variable
was composed of dichotomous depressive state (case group
vs. control group), and different types of gait features were
analyzed as independent variables via multiple logistic regression
analysis separately.

Compared with spatiotemporal features, the number of
time- and frequency-domain features may be too much, which
brings much redundancy and should be filtered out. To avoid
the multicollinearity problem and reduce data dimension,
principal component analysis (PCA) was initially conducted
on the time- and frequency-domain features separately. The
principal components (PCs) are the linear combinations of
the original features that account for the variance of the data.
Then spatiotemporal features, PCs containing 95% cumulative
contribution rate of time-domain features, and PCs containing
95% cumulative contribution rate of frequency-domain features
entered the logistic regression model.

To measure the contribution effect of variables to depression,
we calculated both the odds ratio (OR) (44) and Nagelkerke’s
R2 (45). OR is a measure of association between an outcome
and exposures. It represents the odds that an outcome will
occur given a particular exposure, compared to the odds of the
outcome occurring in the absence of that exposure. Nagelkerke’s
R2, the adjusted R2 in linear regression, can provide the
amount of variance of the dependent variable explained by the
explanatory variables.

Classification Modeling
In this stage, we tested the actual classification efficacy of different
types of gait features on depression using supervised learning
methods, and tried to find the optimal combination of features
that makes the depression recognition models have the best
performance. Specifically, the output of models was composed
of dichotomous depressive state (case group vs. control group).
All the combinations of the three types of gait features were used
as training data to build machine learning models, respectively.
To obtain the optimal performance of machine learning models,
we conducted Sequential backward selection (SBS) to remove
useless features from training data before building recognition
models. SBS is a greedy search algorithm to find the best subset
of features, which can minimize the performance loss of machine
learning models while reducing the feature dimension (46). It
starts from the whole feature set and sequentially discards the
feature so as to improve (or minimally worsen) the evaluation
measure. The algorithm stops when all remaining features are
useful for the model, and removing one of them could lead to
a decline in accuracy.

In this study, we trained classification models to detect
depression using the support vector machine (SVM) (47) with
linear kernel function. SVM is one of the most state-of-the-art

TABLE 2 | Differences of spatiotemporal features between depressed group and

control group.

Spatiotemporal

features

Depressed group Control group t

statistic

P-value

Mean SD Mean SD

Body swaying (m) 0.36 0.04 0.36 0.04 −0.58 0.562

Left-arm swing (m) 0.27 0.11 0.31 0.12 −2.45 0.015*

Right-arm swing (m) 0.23 0.09 0.27 0.10 −2.97 0.003**

Vertical head

movement (m)

0.06 0.05 0.06 0.04 0.42 0.672

Head posture (degree) 1.23 0.10 1.27 0.06 −3.97 <0.001***

Left stride length (m) 0.62 0.07 0.62 0.07 −0.27 0.789

Right stride length (m) 0.59 0.08 0.61 0.07 −1.46 0.146

Left toe clearance (m) −0.69 0.06 −0.71 0.06 1.92 0.056

Right toe clearance

(m)

−0.70 0.06 −0.71 0.07 1.54 0.126

Walking speed (m) 0.99 0.18 1.01 0.17 −0.97 0.332

These spatiotemporal features were calculated in the coordinate system with the spine

joint (joint 9) as the origin. *P < 0.05, **P < 0.01, ***P < 0.001.

classification algorithms, which first maps feature vectors to a
higher-dimensional feature space using kernel tricks and then
makes predictions based only on support vectors. To evaluate the
predictive performance of the models, we considered sensitivity,
specificity, and the area under the ROC Curve (AUC) (48).
We applied 10-fold cross validation and averaged performance
measures across all folds within a single prediction model.

RESULTS

Binary Logistic Regression
Results showed that depressed patients walk more slowly
(walking speed) and with fewer movements (e.g., left-arm swing,
right-arm swing, head posture, right stride length, left toe
clearance, right toe clearance) than participants of the control
group (Table 2). And the independent sample t-test indicated
that depressed group had significantly less left-arm swing, right-
arm swing, and head posture [t(245) = −2.45, P = 0.015; t(245)
= −2.97, P = 0.003; t(245) = −3.97, P < 0.001] than the
control group.

We examined how many different types of gait features
contributed to depression recognition, using Nagelkerke’s R2

statistic, and estimated the effect of each variable using ORs.
The results showed that with all the spatiotemporal features in
the logistic model, it accounted for 12.55% (Nagelkerke’s R2)
of the variance in the dependent variable depression. ORs for
each spatiotemporal feature retained in this model after stepwise
forward selection and their significance are shown in Table 3;
left-arm swing (OR = 0.017, P = 0.010), and head posture (OR
= 0.001, P < 0.001) significantly predicted depression.

The results indicated that when all the time-domain PCs
entered the logistic model, it accounted for 58.36% (Nagelkerke’s
R2) of the variance in the dependent variable depression. ORs
for each PC retained in this model after stepwise forward
selection and their significance are shown in Table 4; PC2
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TABLE 3 | Binary logistic regression model of spatiotemporal features.

β SE Wald Odds ratio Corrected P-value

Left-arm swing −4.047 1.458 7.708 0.017 0.010*

Head posture −7.031 1.981 12.593 0.001 <0.001***

The P-value is corrected by Bonferroni correction. *P < 0.05, ***P < 0.001.

TABLE 4 | Binary logistic regression model of time-domain principal components.

β SE Wald Odds ratio Corrected P-value

PC2 −0.301 0.058 27.001 0.740 <0.001***

PC5 0.304 0.064 22.833 1.355 <0.001***

PC8 0.410 0.077 28.234 1.507 <0.001***

PC9 −0.187 0.74 6.362 0.829 0.198

PC11 0.225 0.073 9.404 1.253 0.037*

PC19 0.231 0.103 5.049 1.260 0.159

PC24 −0.280 0.108 6.752 0.756 0.128

PC26 0.299 0.108 7.631 1.349 0.098

PC28 0.326 0.118 7.580 1.385 0.100

PC29 0.255 0.118 4.658 1.290 0.525

PC31 0.413 0.129 10.257 1.512 0.023*

PC35 0.655 0.156 17.715 1.926 <0.001***

PC39 0.310 0.146 4.502 1.364 0.575

PC41 0.341 0.148 5.291 1.406 0.364

PC46 0.471 0.165 8.200 1.602 0.071

PC70 −0.685 0.248 7.590 0.504 0.100

PC77 −0.709 0.264 7.196 0.492 0.124

The P-value is corrected by Bonferroni correction. *P < 0.05, ***P < 0.001.

(OR = 0.740, P < 0.001), PC5 (OR = 1.355, P < 0.001),
PC8 (OR = 1.507, P < 0.001), PC11 (OR = 1.253, P =

0.037), PC31 (OR = 1.512, P = 0.023), and PC35 (OR =

1.926, P < 0.001) significantly predicted depression. The time-
domain PCs are the linear combinations of the original time-
domain features, and Supplementary Table 1 shows the Pearson
correlation coefficients between these PCs and the original time-
domain features.

The results showed that when all the frequency-domain
features PCs entered logistic model, it accounted for 60.71%
(Nagelkerke’s R2) of the variance in the dependent variable
depression. ORs for each significant PC retained in this
model after stepwise forward selection and their significance
are shown in Table 5; PC2 (OR = 0.924, P = 0.022),
PC4 (OR = 1.245, P < 0.001), PC5 (OR = 1.278, P
< 0.001), PC6 (OR = 0.878, P = 0.022), PC7 (OR =

0.788, P < 0.001), PC10 (OR = 0.855, P = 0.024), PC24
(OR = 0.755, P = 0.004), PC27 (OR = 0.761, P =

0.014), and PC30 (OR = 0.757, P = 0.016) significantly
predicted depression. The frequency-domain PCs are the
linear combinations of the original frequency-domain features,
and Supplementary Table 2 shows the Pearson correlation
coefficients between these PCs and the original frequency-
domain features.

TABLE 5 | Binary logistic regression model of frequency-domain principal

components.

β SE Wald Odds ratio Corrected P-value

PC2 −0.079 0.025 10.349 0.924 0.022*

PC4 0.219 0.043 26.246 1.245 <0.001***

PC5 0.246 0.047 27.014 1.278 <0.001***

PC6 −0.130 0.040 10.370 0.878 0.022*

PC7 −0.238 0.049 23.821 0.788 <0.001***

PC10 −0.157 0.049 10.216 0.855 0.024*

PC11 −0.142 0.052 7.498 0.868 0.105

PC12 0.120 0.055 4.780 1.127 0.490

PC22 0.149 0.070 4.526 1.160 0.568

PC24 −0.281 0.077 13.419 0.755 0.004**

PC27 −0.273 0.081 11.234 0.761 0.014*

PC30 −0.279 0.084 10.900 0.757 0.016*

PC40 0.281 0.098 8.266 1.325 0.069

PC50 0.291 0.115 6.424 1.337 0.191

PC60 0.305 0.125 5.936 1.357 0.252

PC70 −0.355 0.140 6.447 0.701 0.189

PC87 −0.480 0.174 7.604 0.619 0.099

The P-value is corrected by Bonferroni correction. *P < 0.05, **P < 0.01, ***P < 0.001.

TABLE 6 | Depression recognition performance measures from 10-fold cross

validation.

Sensitivity Specificity AUC

Spatiotemporal features 0.59 0.58 0.58

Time-domain features 0.89 0.78 0.83

Frequency-domain features 0.86 0.88 0.87

Spatiotemporal features + time-domain

features

0.89 0.78 0.83

Spatiotemporal features + frequency-domain

features

0.82 0.83 0.83

Time-domain features + frequency-domain

features

0.94 0.91 0.93

All features 0.94 0.91 0.93

The Recognition of Depression
In Table 6, sensitivity, specificity and AUC of the classification
models are presented. Figure 5 displays the receiver operating
characteristics (ROC) curves of different classification models,
showing the balance between sensitivity and specificity
throughout the decision space. When only spatiotemporal
features were used to classify depression, the classification
accuracy (AUC) was 0.58. When only time-domain features were
used to classify depression, the classification accuracy (AUC)
was 0.83. When only frequency-domain features were used to
classify depression, the classification accuracy (AUC) was 0.87.
The classification accuracy (AUC) achieved 0.83, when both
spatiotemporal features and time-domain features were used to
classify depression. The classification accuracy (AUC) achieved
0.83, when both spatiotemporal features and frequency-domain
features were used to classify depression. The best accuracy
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FIGURE 5 | Receiver operating characteristics (ROC) curve for different machine learning methods.

(AUC) is 0.93, when both time- and frequency-domain features
or all features were used to classify depression.

DISCUSSION

In this study, several machine learning models for detecting
depression were trained using gait data captured via Kinect.
Ten spatiotemporal features were extracted by following the
approaches of previous studies. Besides, 300 time- and 825
frequency-domain features were extracted using time-frequency
analysis methods. The results of multiple logistic regression
analysis showed that the impacts of spatiotemporal, time-
domain, and frequency-domain features on the dependent
variable (depression diagnosis) were 12.55%, 58.36%, and
60.71% respectively. The classification models consisting of the
above features were found effective in detecting depression.
The performance of the optimal model was very outstanding
(sensitivity = 0.94, specificity = 0.91, and AUC = 0.93). These
findings address the primary goals of the study, which suggest
that (1) depression can be reflected in gait, with different
types of gait features contributing differently to depression
detection and (2) machine learning is an effective approach to
recognize depression.

One critical finding in this study is that gait patterns associated
with depression are characterized by reduced arm swing and head
posture, especially left-arm swing and head posture are predictors
of depression in the logistic regression model, which is consistent
with previous studies that found that patients with depression
tended to walk with reduced movements (e.g., arm swing, head

movements) (23, 39, 40). Furthermore, this study validated the
effectiveness of both time- and frequency-domain features in
recognizing depression, which is also consistent with previous
studies (41, 42). However, significant time- and frequency-
domain PCs can only provide us with mathematical relationships
between gait patterns and time- and frequency- domain features.
Although further insights can be gained by calculating the
correlation coefficients between each significant PC and original
features (as shown in Supplementary Tables 1, 2), they are
also not intuitive. It is worth noting that while high-level
spatiotemporal features may provide an intuitive understanding
of individual gait patterns, they contribute less to depression
recognition than low-level time- and frequency- domain features.
The limited information contained in spatiotemporal features
restricts the possibility of understanding the disorganization of
gait control and early detection of gait impairments (49, 50),
which is why the clinical gait assessment based on spatiotemporal
features (e.g., gait speed) is mainly applicable to monitoring the
overall health status of a large population (25).

It is worth noting that the models built of time- domain
features and spatiotemporal and time- domain features have the
same performances, which suggests that spatiotemporal features
had very few contributions to recognize depression. It is also
reflected in the fact that the model comprised of time- and
frequency-domain features has the same performance as the
model consisted of all features. These results are consistent
with those reported in previous studies that demonstrated the
superiority of signal features such as time- and frequency-
domain features over spatiotemporal parameters (42). In
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summary, time- and frequency-domain features are more
efficient in constructing computational models to identify
depression than spatiotemporal features.

This study is the first attempt to systematically investigate
the impact of different types of gait features on depression
recognition. The proposed method allows recognizing
depression in real-time and remotely, which can be useful
when immediate clinical assessment may not be available. This
method is able to overcome many disadvantages of psychological
questionnaires (24) include time-consuming (51), recall bias
(52), and desirability bias (53). Furthermore, the proposed
use of Kinect can be practical in daily-life settings since the
devices are low-cost, widely available, and do not require any
markers or sensors to be attached to the body. Therefore, the
method proposed in this paper holds a promise for detecting
depression on a fine-grained scale with ecological validity and
low economic burden.

This study has several limitations. First, although Kinect is
widely used for estimating body posture and movement (29, 31,
32), it may not record spatiotemporal body data as accurately as
more expensive 3D motion capture systems. Second, we could
not extract many indicators (e.g., skewness, kurtosis) because the
footpath in our experiment is short (6 meters) that resulted in
the length of valid gait data we could analyze was short (two
cycles) as well. These indicators were computed by high-level
spatiotemporal features that could have more contribution to
depression recognition if they could be extracted from a longer
time gait data. Third, the aim of this study is to examine the
contribution of gait features in recognizing depression, thus
there is a lot we can optimize to get better model performance
(e.g., experimenting with more complex filters, tuning hyper-
parameters of machine learning models) from the perspective
of engineering.

CONCLUSIONS

This study demonstrated that gait characteristics could be
effectively utilized to identify depression, while gait-related
features were used for building machine learning models.

According to experimental results, spatiotemporal features
are appropriate for interpreting gait patterns, while time-
and frequency- domain features are effective in depression
recognition. In conclusion, the study is a step forward toward
developing low-cost, non-intrusive solutions for real-time
depression recognition. In the future, this proposed method
might be applied in both hospitals to aid diagnosis and scenarios
that require a simple and rapid large-scale investigation.
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42. Sejdić E, Lowry KA, Bellanca J, Redfern MS, Brach JS. A comprehensive

assessment of gait accelerometry signals in time, frequency and time-

frequency domains. IEEE Transact Neural Syst Rehabil Eng. (2013) 22:603–12.

doi: 10.1109/TNSRE.2013.2265887

43. Stanley WD, Dougherty GR, Dougherty R, Saunders H. Digital signal

processing. J VIB ACOUST. (1988) 110:126–7. doi: 10.1115/1.3269472

44. Zhang J, Kai FY. What’s the relative risk?: a method of correcting the odds

ratio in cohort studies of common outcomes. JAMA. (1998) 280:1690–1.

doi: 10.1001/jama.280.19.1690

45. Bewick V, Cheek L, Ball J. Statistics review 14: logistic regression. Crit Care.

(2005) 9:112. doi: 10.1186/cc3045

46. Gheyas IA, Smith LS. Feature subset selection in large dimensionality

domains. Pattern Recogn. (2010) 43:5–13. doi: 10.1016/j.patcog.2009.06.009

47. Suykens JA, Vandewalle J. Least squares support vector machine classifiers.

Neural Process Lett. (1999) 9:293–300. doi: 10.1023/A:1018628609742

48. Davis J, Goadrich M. The relationship between precision-recall and ROC

curves. In: Proceedings of the 23rd International Conference on Machine

Learning. Pittsburgh (2006). p. 233–40.

49. Kressig RW, Beauchet O. Guidelines for clinical applications of spatio-

temporal gait analysis in older adults. Aging Clin Exp Res. (2006) 18:174–6.

doi: 10.1007/BF03327437

50. Nutt JG. Classification of gait and balance disorders. Adv Neurol.

(2001) 87:135–41.

51. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio

A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction

in clinical and non-clinical samples: a systematic review and meta-analysis.

Sleep Med Rev. (2016) 25:52–73. doi: 10.1016/j.smrv.2015.01.009

52. Raphael K. Recall bias: a proposal for assessment and control. Int J Epidemiol.

(1987) 16:167–70. doi: 10.1093/ije/16.2.167

53. Fisher RJ. Social desirability bias and the validity of indirect questioning. J

Consumer Res. (1993) 20:303–15. doi: 10.1086/209351

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Wang, Wang, Liu and Zhu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychiatry | www.frontiersin.org 10 May 2021 | Volume 12 | Article 661213

https://doi.org/10.1001/jama.262.23.3298
https://doi.org/10.1377/hlthaff.2010.1024
https://doi.org/10.1159/000345968
https://doi.org/10.1136/bmj.f7140
https://doi.org/10.1176/ajp.154.1.4
https://doi.org/10.1016/j.jad.2007.10.019
https://doi.org/10.1371/journal.pone.0090311
https://doi.org/10.14802/jmd.16062
https://doi.org/10.1017/S0033291718003033
https://doi.org/10.1176/ajp.139.1.94
https://doi.org/10.1016/S0022-3956(00)00017-0
https://doi.org/10.1097/PSY.0b013e3181a2515c
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1123/japa.2013-0236
https://doi.org/10.1038/mp.2017.148
https://doi.org/10.1007/s12603-009-0246-z
https://doi.org/10.1111/j.1365-2753.2007.00917.x
https://doi.org/10.3390/s16020194
https://doi.org/10.1109/MMUL.2012.24
https://doi.org/10.1016/j.gaitpost.2012.03.033
https://doi.org/10.1371/journal.pone.0216591
https://doi.org/10.1109/ACCESS.2019.2957179
https://doi.org/10.1109/JSEN.2020.3022374
https://doi.org/10.3760/cma.j.issn.0254-6450.2017.01.021
https://doi.org/10.1016/j.gaitpost.2017.09.001
https://doi.org/10.1186/1471-244X-4-39
https://doi.org/10.1016/j.psychres.2014.02.001
https://doi.org/10.7717/peerj.2258
https://doi.org/10.1109/TNSRE.2013.2265887
https://doi.org/10.1115/1.3269472
https://doi.org/10.1001/jama.280.19.1690
https://doi.org/10.1186/cc3045
https://doi.org/10.1016/j.patcog.2009.06.009
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1007/BF03327437
https://doi.org/10.1016/j.smrv.2015.01.009
https://doi.org/10.1093/ije/16.2.167
https://doi.org/10.1086/209351
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles

	Detecting Depression Through Gait Data: Examining the Contribution of Gait Features in Recognizing Depression
	Introduction
	Materials and Methods
	Participants
	Experimental Settings
	Data Preprocessing
	Coordinate System Transformation
	Data Segmentation
	Low-Pass Filtering

	Feature Extraction
	Spatiotemporal Features Extraction
	Time-Domain Features Extraction
	Frequency-Domain Features Extraction

	Data Analysis
	Binary Logistic Regression
	Classification Modeling


	Results
	Binary Logistic Regression
	The Recognition of Depression

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References


