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About 20–40% of estimated 121 million patients with major depressive disorder (MDD)

are not adequately responsive to medication treatment. Repetitive transcranial magnetic

stimulation (rTMS), a non-invasive, non-convulsive neuromodulation/neurostimulation

method, has gained popularity in treatment of MDD. Because of the high cost involved in

rTMS therapy, ability to predict the therapy effectiveness is both clinically and cost wise

significant. This study seeks an imaging biomarker to predict efficacy of rTMS treatment

using a standard high frequency 10-Hz 4- to 6-week protocol in adult population.

Given the significance of excitatory and inhibitory neurotransmitters glutamate (Glu) and

gamma aminobutyric acid (GABA) in the pathophysiology of MDD, and the involvement

of the site of rTMS application, left dorsolateral prefrontal cortex (lDLPFC), in MDD, we

explored lDLPFC Glx (Glu + glutamine) and GABA levels, measured by single voxel

magnetic resonance spectroscopy (MRS) with total creatine (tCr; sum of creatine and

phosphocreatine) as reference, as possible biomarkers of rTMS response prediction.

Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) MRS data from 7

patients (40–74 y) were used in the study; 6 of these patients were scanned before and

after 6 weeks of rTMS therapy. Findings from this study show inverse correlation between

pretreatment lDLPFC Glx/tCr and (i) posttreatment depression score and (ii) change

in depression score, suggesting higher Glx/tCr as a predictor of treatment efficacy. In

addition association was observed between changes in depression scores and changes

in Glx/tCr ratio. The preliminary findings did not show any such association between

GABA/tCr and depression score.

Keywords: repetitive transcranial magnetic stimulation (rTMS), major depressive disorder (MDD), magnetic

resonance spectroscopy (MRS), glutamate, gamma aminobutyric acid (GABA)
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INTRODUCTION

Major depressive disorder (MDD), which has a lifetime
prevalence of 15% (1), does not respond adequately tomedication
treatment in ∼20–40% of affected patients (2), and these
patients have higher morbidity and mortality than those with
disease that responds to medication (3, 4). Although electrical
stimulation techniques such as electroconvulsive therapy (5–
7), vagus nerve stimulation (8–10), and deep brain stimulation
(11–13) are suitable for medication-resistant MDD, they are
invasive in nature. Repetitive transcranial magnetic stimulation

(rTMS), on the other hand, is a non-invasive, non-convulsive
neuromodulation/neurostimulation method that has gained
popularity for the treatment of MDD that is not responsive

to medication (14–37). In particular, high-frequency (>5Hz)
rTMS applied to the left dorsolateral prefrontal cortex (lDLPFC)
has been found to significantly decrease Hamilton Depression

Rating Scale (HAM-D) scores in patients with medication-
resistant MDD (38, 39). Standard and most optimal rTMS
therapies are administered at a frequency of 10Hz (40, 41) over
4–6 weeks (40).

In patients with MDD, rTMS has been reported to change the
balance of excitation and inhibition in cortical networks (42, 43),
and the antidepressant effect from rTMS has been attributed
in part on modulation of the major excitatory neurotransmitter
glutamate (Glu) and the major inhibitory neurotransmitter
gamma aminobutyric acid (GABA) (44). Multiple studies have
documented the involvement of these neurotransmitters in
the pathophysiology of MDD (45–51). Changes in cortical
Glu or Glx (Glu + glutamine) and GABA levels in patients
with MDD have been investigated using in vivo magnetic
resonance spectroscopy (MRS). In spite of some differences in
acquisition (e.g., Mescher-Garwood point-resolved spectroscopy
[MEGA-PRESS] vs. short echo time [TE] PRESS), analysis, and
quantification methodologies (e.g., absolute levels vs. ratios),
these studies have demonstrated a reduction in cortical Glu or
Glx and GABA levels associated with MDD (45, 48–50, 52).
More specifically, reduced PFC Glx level in patients with MDD
has been reported in several studies (45, 53, 54). Researchers
have suggested that dysfunction of the glutamatergic system and
malfunction in Glu metabolism are contributing factors to the
neurobiology and pathophysiology of MDD (55, 56), and the
efficacy of glutamatergic agents (glutamatergic targets/receptors
such as ketamine, mamantine, riluzole, dextromethorphan,
AZD6765 etc.) for the treatment of MDD has been reported
(56, 57). Studies have also shown that reduced cortical GABA
level is associated with dysfunctional GABAergic interneurons
and GABAA receptors; affected GABAergic transmission has
been proposed as a mechanism of MDD (58–60). rTMS
studies have shown deficits in cortical inhibition in adults with
MDD (61, 62); while in children and adolescents increased
excitatory cortical facilitation with unchanged cortical inhibition
was observed (63).

Multiple in vivo studies of Glu and GABA modulation after
rTMS in patients with MDD have been performed (58, 64–
66). In one study using MEGA-PRESS, the medial prefrontal
cortex (MPFC) Glu level was unchanged but the GABA

level was elevated after 25 sessions of 10-Hz rTMS therapy
applied at the lDLPFC (58). In another study using PRESS
and involving 10 sessions of 20-Hz rTMS, an increase in Glu
level was seen in the DLPFC, with no changes seen in the
anterior cingulate cortex (64). In a short TE PRESS study
of young adults treated with 10-Hz rTMS for 15 days, the
lDLPFC Glu level was increased in responders but reduced
in non-responders (65). Another study using MEGA-PRESS
demonstrated an increase in DLPFC GABA level after 6 weeks
of 10-Hz rTMS therapy (67).

The prefrontal cortex has been shown to be important in
the pathogenesis of MDD (68, 69), and decreased activation
of the cortical areas of the mood-regulating circuit has also
been reported in patients with MDD (70, 71). More specifically,
several studies have shown abnormalities in the DLPFC in
patients withMDD (72–76), with affected patients demonstrating
reduced levels of GABA and Glx (Glu + glutamine [Gln])
in the DLPFC (45, 77, 78). Lower metabolic activity in
the DLPFC (79) as well as lower functional connectivity
within the cognitive control network (80), a network that
contains the DLPFC, has been reported in depression. In
addition MDD is associated with reduced prefrontal cortex
gray matter volume, cell counts and glucose metabolism (81).
These abnormal (mostly left) prefrontal cortex activities in
MDD therefore make the DLPFC a logical and popular rTMS
target (73, 81–83).

Differences in Glu levels between responders and non-
responders to antidepressants (84) and rTMS therapy (64, 65)
suggest that Glu level is a predictor of therapy outcomes
in MDD. More specifically, studies have demonstrated that
responders to rTMS therapy have lower baseline DLPFC Glu
levels than non-responders (64, 65), suggesting that baseline
Glu level could be a predictor of response to rTMS therapy.
However, most of these studies included only young adults
or were carried out over a different period of time than the
standard and optimal 4- to 6-week period (40). Thus, additional
research is needed to establish an imaging biomarker that can
be used to predict the success of rTMS treatment using a
standard 10-Hz (40, 41) 4- to 6-week protocol in the adult
population. Identifying such biomarker is significant from out
of pocket patient expense also, since rTMS therapy is quite
costly (can range from ∼6,000 to ∼$15,000 for 30 sessions
in the USA depending on the location, center, applicable
discounts and insurance coverage) and is often not covered
by insurance.

In this longitudinal study, we measured Glx/tCr and
GABA/tCr at the lDLPFC, the site of rTMS application, to
determine whether the baseline measures of these could be used
to predict outcomes after 6 weeks of 10-Hz rTMS therapy. To
this end, we assessed the association between these baseline
ratios (Glx/tCr and GABA/tCr) and change in 17-item Hamilton
Depression (HAM-D) score after rTMS, as well as the association
between the baseline ratios and posttreatment HAM-D score. In
addition, we evaluated the Glx/tCr and GABA/tCr ratios to track
recovery after rTMS therapy, i.e., we assessed the association
between the changes of these ratios and HAM-D scores in
response to rTMS therapy.
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MATERIALS AND METHODS

The study was performed following an IRB-approved protocol.
All patients provided written informed consent. We initially
enrolled 12 patients (4 men; mean age, 53 y ± 15 y; range,
23–74 y) who had an HAM-D score >15 and who met the
DSM-IV-TR (85) criteria for MDD inadequately responsive to
at least one antidepressant despite treatment with an adequate
dosage for at least 8 weeks (the indication for rTMS approved
by the Food and Drug Administration). Patients were recruited
from Center of Behavioral Health outpatient psychiatry clinic
for mood disorders at our center. Two of these patients did not
complete the study, undergoing only 1 MR imaging session and 3
patients had excessivemotion during the pretreatment scan; thus,
the final analysis consisted of 7 patients.

Of the 7 subjects included in the final analysis, 6 subjects
were on antidepressants in combination with low dose 2nd
generation neuroleptics (n = 4), mood stabilizers (n = 2),
stimulants (n = 2) and other augmentation agents (n = 2). Low
dose anti-anxiety medications were allowed per inclusion criteria
(n = 4). Patients were asked to remain on the same dosages on
all of the medications during the course of the rTMS treatment.
No new medications and/or other non-medication treatment
modalities were started at least 1 month before or during the
acute rTMS series.

rTMS Protocol
rTMS was performed using a MagPro R-30 magnetic stimulator
(MagVenture, Farum, Denmark) with “cool B-65” magnetic
coil, a device that has been used effectively in previous studies
(14, 86, 87). Each patient underwent rTMS therapy sessions
5 times per week for a total of 6 weeks (total of 30 rTMS
sessions); we selected a duration of 6 weeks because previous
studies have used 4–6 weeks of treatment to testy for rTMS
effectiveness (14, 88, 89). Each session lasted ∼40min and used
the following parameters: frequency, 10Hz; power, 120% of the
motor threshold (i.e., minimum amount of energy needed to
trigger thumb movement); duration of stimulus, 4 s; intertrain
interval, 26 s; number of pulses per train, 75; and total number
of pulses, 3,000. In order to locate the lDLPFC, first the left
motor strip controlling the movements of the right thumb was
located. The coil was then advanced 5 cm on to the anterior
of the motor strip to target the lDLPFC. An experienced staff
psychiatrist (MA) administered the rTMS and also performed
HAM-D assessment at baseline and every 2 weeks.

MR Imaging
MR scans were performed on a Siemens 3T Prisma scanner
(Erlangen, Germany) using a 20-channel coil head/neck coil.
Each patient was scanned within 1 week before starting rTMS
therapy (pretreatment scan) and within 1 week after the end of
6 weeks of therapy (posttreatment scan).

Each MR session consisted of the following scans: (1)
Localizer scan to obtain scout images: scan time, 9 s; (2)
Gradient recalled echo scan for field-mapping: 32 axial slices;
thickness, 4mm; field of view (FOV), 256mm × 256mm; dual
echo times (TE1/TE2)/repetition time (TR)/flip angle (FA), 4.89

ms/7.35 ms/388 ms/60◦; matrix, 64 × 64; bandwidth, 260Hz;
scan time, 36 s; (3) T1-weighted anatomical magnetization
prepared rapid acquisition gradient echo (MPRAGE) scan:
120 axial slices; thickness, 1.2mm; FOV, 256mm × 256mm;
inversion time/TE/TR/FA, 1,900 ms/1.71 ms/900 ms/8◦; matrix,
256 × 128; bandwidth, 62 kHz; scan time, 4min 5 s; and
(4) Mescher-Garwood point-resolved spectroscopy (MEGA-
PRESS) scan for GABA and Glx measurement of a 2
× 2 × 2 cm3 voxel in the lDLPFC: TR, 2,700ms; TE,
68ms; frequency-selective 180◦ pulses at 1.9 (ON-resonance)
and 1.5 ppm (OFF-resonance, to minimize macromolecule
contamination of GABA); minimum achievable frequency
selective pulse bandwidth (∼44Hz); number of averages, 128
per condition (ON-/OFF-resonance); weak water suppression
(to use residual water fluctuation to assess patient motion);
scan time, 10min 53 s. A trained technologist ensured that the
lDLPFC voxel locations (Figure 1) were closely matched between
the pretreatment and posttreatment sessions. The patients bit
onto a bite-bar during all scans to reduce head motion. For
all spectroscopy scans, shimming was performed using the
FASTESTMAP shimming routine (90).

MRS Data Analysis
Postprocessing of MRS data was performed using the MRUI
software package (91) following the method described by
Bhattacharyya et al. (92). Postprocessing consisted of zero-order
phase correction and frequency shift correction of the individual
subspectra using residual water as a reference, averaging the
individually phase- and frequency-corrected spectra, residual
water suppression with Hankel-Lanczos squares singular value
decomposition (HLSVD) filter (93), apodization by a 5-Hz
Gaussian filter, and zero filling The OFF-resonance spectrum
was subtracted from the ON-resonance spectrum to obtain the
final edited spectrum.Motion was identified retrospectively using
residual water signal fluctuation as an indicator (92).

Next the ∼3.75-ppm Glx and 3.01-ppm GABA peaks from
the edited spectrum were fitted as double Gaussian peaks using
the AMARES algorithm (94) with zero-order phase correction.
The 3.04-ppm creatine (tCr) peak was fitted similarly from the
OFF-resonance spectrum. Glx/tCr and GABA/tCr levels were
obtained from IGlx/ItCr and IGABA/ItCr, respectively, where IGlx,
IGABA, and ItCr represent areas of the Glx, GABA, and tCr fits,
respectively. Edited spectral fitting was done by including the
∼2.3 ppm GABA+Glu and inverted NAA peaks as well, but that
did not have any effect on IGlx or IGABA.

Statistical Analysis
Percent (%) changes in HAM-D score and Glx/Cr were
determined using the expressions

(Posttreatment HAMD) − (Pretreatment HAMD)

Pretreatment HAMD
× 100

and

(

Posttreatment Glx/Cr
)

− (Pretreatment Glx/Cr)

Pretreatment Glx/Cr
× 100 (1)
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FIGURE 1 | Placement of a 2 × 2 × 2 cm3 dorsolateral prefrontal cortex voxel with the outer volume suppression bands and representative single-patient

MEGA-PRESS edited spectra (original, estimate and residue). Glx, glutamate + glutamine; GABA, gamma aminobutyric acid; Glu, glutamate.

respectively. Non-parametric Wilcoxon signed rank test was
between pre- and posttreatment HAM-D scores. Spearman
correlation coefficient was used to characterize the association
between (1) pretreatment DLPFC Glx/tCr (and GABA/tCr)
ratios and changes in HAM-D scores (from pretreatment to 6
weeks posttreatment) and (2) changes in DLPFC Glx/tCr (and
GABA/tCr) ratios and changes in HAM-D scores.

RESULTS

Some MRS datasets had to be discarded because of excessive
motion. A total of 3 patients had pretreatment scans that
could not be used because of excessive motion, and 1 of
these patients also had a posttreatment scan that could not
be used because of excessive motion. Thus, 7 motion-free
pretreatment scans and 6 motion-free posttreatment scans were
used for analysis. A Representative single-patient edited spectra
(original, estimate and residual spectra) at the lDLPFC are
shown in Figure 1.

FromWilcoxon signed rank test, significant decrease inHAM-
D scores was observed for the 10 patients who completed the
study (pretreatment score, 20 ± 3; posttreatment score, 8 ± 6;
p = 0.006). Of the 7 patients (age: 59 ± 13 y) with motion-free
pretreatment scans the pretreatment and posttreatment HAM-D
scores were 21± 3 and 11± 8, respectively (p= 0.016), while the
pretreatment and posttreatment HAM-D scores for the 6 patients
(age: 59 ± 13 y) with both motion-free scans were 20 ± 3 and 10
± 8, respectively (p= 0.031).

Overall, no significant changes in Glx/tCr or GABA/tCr were
observed as a result of rTMS therapy (Table 1). Inverse Spearman
correlations were observed between (1) posttreatment HAM-D
score and pretreatment lDLPFC Glx/tCr (n = 7; p < 0.0005)
and (2) change in HAM-D score and pretreatment lDLPFC
Glx/tCr (n = 7; p = 0.001; Figures 2A,B). No such significant
correlations were observed between (1) posttreatment HAM-D
score and pretreatment GABA/tCr (n = 7; p = 0.66) and (2)
change in HAM-D score and pretreatment lDLPFC GABA/tCr
(n= 7; p= 0.39). A significant correlation was observed between
change in HAM-D score and change in Glx/tCr in the lDLPFC
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TABLE 1 | Depression ratings, Glx and GABA levels before and after rTMS treatment.

Variable Pretreatment value Posttreatment value p

HAM-D score (n = 10) 20 ± 3 11 ± 7 0.0007

Glx/tCr (n = 6) 0.21 ± 0.04 0.24 ± 0.05 0.21

GABA/tCr (n = 6) 0.11 ± 0.02 0.13 ± 0.06 0.20

Data are presented as mean ± SD. HAM-D, Hamilton Depression Rating Scale; Glx, glutamate + glutamine; tCr, total creatine; GABA, gamma aminobutyric acid.

(n = 6; p = 0.02; Figure 3); no such association was observed
between change in HAM-D score and change in GABA/tCr
(n= 6; p= 0.45).

It should be pointed out that HAM-D scores were obtained
every 2 weeks and similar analyses were run using the 4-week
HAM-D scores. Significant decrease in HAM-D scores were
observed in 7 patients with motion-free pretreatment scans (4-
week HAM-D score = 10 ± 7, p = 0.022). Similar to 6-week
data, inverse Spearman correlations were seen between (1) 4-
week HAM-D score and pretreatment lDLPFC Glx/tCr (n = 7;
p < 0.0005) and (2) change in HAM-D score in 4 weeks and
pretreatment lDLPFC Glx/tCr (n= 7; p < 0.0005).

DISCUSSION

In this study, patients treated with 6 weeks of 10-Hz rTMS
targeting the lDLPFC demonstrated a decrease in HAM-D score;
however, no overall changes in Glx/tCr or GABA/tCr ratios
(averaged over 6 patients) were observed. One previous study
reported no change in the MPFC Glu level after 25 sessions
of 10-Hz rTMS therapy (58); however, an increase in MPFC
GABA+ (GABA+macromolecule) level was observed. Although
this previous study had a higher number of patients (n= 23) than
the current study, the region of interest (MPFC) was different
from the site of rTMS application (lDLPFC), which was evaluated
in the current study.

In this study, patients with higher pretreatment Glx/tCr had
lower posttreatment HAM-D scores and larger reductions in
HAM-D score after 6 (as well as 4) weeks of rTMS. This finding,
albeit from a small sample, is promising and suggests that
lDLPFC Glu level may be a predictor of 4- to 6-week rTMS
outcome. It should be noted that a higher baseline lDLPFC
Glu level has also been previously reported in responders to
antidepressant therapy (84), indicating that the predictive power
of lDLPFC Glu level may not be limited to rTMS. On the
other hand, a lower baseline Glu level has also been reported
in youth responders to 3 weeks of rTMS (65), which is the
opposite of what we observed in the current study. We speculate
that this difference results from the difference in age groups
between the studies. Cerebral Glu level has been reported to
decrease with age (95); hence, in the older patient population
as in this study (40–74 y for the patients who completed
the study and had motion-free pretreatment scans), a higher
pretreatment Glu level may favor the therapeutic action of
rTMS. There was no overall change in Glx/tCr after rTMS. Our
results indicate that while Glx/tCr in the lDLPFC increased in

4 patients and decreased in 2 patients, a decrease in HAM-
D was associated with a lesser increase or larger decrease in
Glx/tCr ratio.

Baseline GABA level in this preliminary study was not
associated with response to rTMS therapy, and no previous
studies have demonstrated evidence of such a relationship.
Additionally, no association between baseline prefrontal cortex
GABA level and improvement in MDD was observed in a study
assessing ketamine infusion therapy (96). It is likely, therefore,
that the baseline GABA level does not predict recovery from
MDD irrespective of the treatment regimen.

Test-retest reliability of Glx/Cr and GABA/Cr measurements
of a 2 × 2 × 2 cm3 voxel in the lDLPFC using MEGA-PRESS
sequence was evaluated independently in our center as described
in the Supplementary Material. The test-retest variability (9.2%)
of Glx/Cr is less than that observed in response to rTMS
treatment, while the corresponding GABA/Cr changes for two
subjects were less than the variability (16.6%).

While a direct connection between Glx and excitatory
neurotransmission is not obvious, it should be noted that Glx
measured with the MEGA-PRESS sequence (97, 98) used in this
study has been reported to contain mostly Glu with little or no
Gln and is therefore considered a good measure of Glu (58, 99–
101). Based upon those reports, we speculate that much of our
findings pertain to the involvement of excitatory Glu in rTMS
therapy. However, we do recognize that there could be a small
contribution of Gln in the Glx peak.

A higher lDLPFC Cr in MDD than in healthy controls has
been reported (102). In this study, Glx/tCr and GABA/tCr ratios
are reported, with areas of the respective resonances in the
MEGA-PRESS edited spectra normalized to tCr area from OFF-
resonance spectra. For technical reasons, water-unsuppressed
MEGA-PRESS scans were not incorporated in the protocol
at the beginning of the study; however, those scans were
added after the scans of the first 2 patients were completed.
Normalizing Glx and GABA to tCr is a well-established
method (103–105), and we validated this in our dataset by
correlating Glx and GABA normalized to unsuppressed water
with Glx/tCr and GABA/tCr from all studies with unsuppressed
water acquisition (i.e., from both MRI sessions for patients
who completed the study and from pretreatment visits for
patients who dropped out after 1 MRI session). The 2 metrics
were correlated (p = 0.001 for Glx and 0.0001 for GABA),
which validated usage of ratio with respect to tCr for this
patient population.

Lack of any observed association of GABA in this preliminary
study should be treated with caution. It is possible that the main
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FIGURE 2 | Patients with higher pretreatment glutamate + glutamine (Glx)/total creatine (tCr) at the left dorsolateral prefrontal cortex (lDLPFC) demonstrated (A) lower

posttreatment Hamilton Depression Rating Scale (HAM-D) scores and (B) greater change in HAM-D scores after repetitive transcranial magnetic stimulation (rTMS).

FIGURE 3 | Association between change in glutamate + glutamine (Glx)/total creatine (tCr) in the left dorsolateral prefrontal cortex and change in Hamilton Depression

Rating Scale (HAM-D) score.

reason for the lack of any significant changes in GABA/tCr ratios
or any correlations therewith in this study is the lack of statistical
power with 6 subjects. Spectral fitting error was ∼30% worse in
GABA than in case of Glx, which would result in lower sensitivity

of detecting GABA association. Signal to noise ratio and fitting
error can be improved with GABA+ acquisition (103), but our
choice of macromolecule-minimized GABA accounts for any
inter-subject macromolecule level differences (106).
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This study had some limitations, including its small sample
size. However, a power analysis with n = 7 yielded power of
0.95 and 0.85, respectively, for the inverse correlation observed
between pretreatment lDLPFC Glx/tCr and change in HAM-
D and posttreatment HAM-D, respectively. In addition, with
n = 6 the study had power of 0.80 to detect 18% change in
Glx/tCr ratio. The study also did not include a sham treatment
population, which may raise questions regarding glutamatergic
involvement in the improvement of MDD as an effect of
rTMS. Use of the standard 5-cm rule for rTMS target selection
is another limitation, as use of neuronavigation instead has
been shown to ensure more reliable, precise, and consistent
targeting of the desired brain region (107). Finally, low doses
of neuroleptics, benzodiazepine (not more than 1–2mg), and
mood stabilizers were allowed in the study; we did not assess
the potential effects of these medications on the study findings.
However, for all medications a fixed dose for 4 weeks (6
weeks for benzodiazepines) before rTMS with no change in
medication during rTMS treatment was followed as part of
the study protocol to minimize any medication effect to the
observations reported in this study. We have covered a wide
range of age in this study. We hypothesize that while the baseline
metabolite levels may be varying due to age and drug regimen,
the change in those levels in 6 weeks (study period) will be due to
rTMS therapy.

CONCLUSION

This study found that the most commonly used rTMS protocol
(10Hz, 4–6 weeks, lDLPFC target) did not significantly change
lDLPFC Glx/tCr or GABA/tCr ratios in adults with MDD.
Patients with higher pretreatment lDLPFC Glx/tCr ratio did
respond better to rTMS therapy; they had a greater reduction in
HAM-D score and a lower posttreatment HAM-D score. These
findings suggest that excitatory Glu is associated with recovery
fromMDD and can potentially be used as a biomarker to predict
response to rTMS treatment, whereas no such relationship
between inhibitory GABA and MDD/rTMS outcome was
observed in this preliminary study. The results of this pilot study
should be interpreted with caution because of the small sample
size and absence of a sham arm; further studies using larger
sample sizes are needed to assess these preliminary results.
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