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As digital technology increasingly informs clinical trials, novel ways to collect study data

in the natural field setting have the potential to enhance the richness of research data.

Cocaine use in clinical trials is usually collected via self-report and/or urine drug screen

results, both of which have limitations. This article examines the feasibility of developing

a wrist-worn device that can detect sufficient physiological data (i.e., heart rate and

heart rate variability) to detect cocaine use. This study aimed to develop a wrist-worn

device that can be used in the natural field setting among people who use cocaine

to collect reliable data (determined by data yield, device wearability, and data quality)

that is less obtrusive than chest-based devices used in prior research. The study also

aimed to further develop a cocaine use detection algorithm used in previous research

with an electrocardiogram on a chestband by adapting it to a photoplethysmography

sensor on the wrist-worn device which is more prone to motion artifacts. Results indicate

that wrist-based heart rate data collection is feasible and can provide higher data yield

than chest-based sensors, as wrist-based devices were also more comfortable and

affected participants’ daily lives less often than chest-based sensors. When properly

worn, wrist-based sensors produced similar quality of heart rate and heart rate variability

features to chest-based sensors and matched their performance in automated detection

of cocaine use events.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT02915341.

Keywords: cocaine, measurement, clinical trials, mobile sensing, photoplethysmography

INTRODUCTION

Digital health technologies are changing the way we conduct research (1). Collecting data via digital
devices [a.k.a., mobile health (mHealth)] in the natural field setting in which research participants
make health choices presents an opportunity to collect granular data as individuals live their daily
lives. These ecologically valid data may enhance the richness of research data, without excessive
intrusion by researchers or strict reliance on participant recall.
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Cocaine use detection in clinical trials is usually measured
via self-report and/or urine drug screens. Urine drug screens
(UDS) are considered the “gold standard” of use detection
for many substances but are intrusive, subject to attendance
at a research visit, and may be susceptible to adulteration.
Participant self-reported use of cocaine can be inaccurate and
unverifiable if not collected alongside other measures such as
UDS. Passively sensing physiological data via wearable digital
health technologies (e.g., heart rate and heart rate variability)
may offer a potential avenue to collect objective data that can
better inform the detection of use events and be unobtrusive and
convenient for both participants and researchers.

Cocaine has a half-life of 1–2 h (2), and the onset of its
effects vary by route of administration. The cardiovascular effects
of cocaine use are acute. Cocaine induces heart rate elevation;
Koenig et. al. and Vongpatanasin et. al. show that after cocaine
intake, the heart rate variability measures such as high frequency
(HF) oscillations, standard deviation of interbeat intervals from
which artifacts have been removed (SDNN), and root mean
square of successive interbeat interval differences between all
successive heartbeats (RMSSD) decreased considerably while the
mean heart rate increased (3, 4). This cocaine-induced heart rate
elevation can be detected via sensors (5). Recent studies have
demonstrated the feasibility of wearable sensors for illicit drug
use detection in lab settings via electrocardiogram (ECG) sensors
(6) but have identified several limitations for use in clinical trials
in the natural field setting (7). These challenges include the
limited ecological validity of data collected in lab studies, the
qualitatively different samples of individuals who participate in
lab vs. field studies, and the use of measurement devices (e.g.,
chestbands) that are not convenient or acceptable to participants
to use in their daily lives.

Detection of cocaine use via wrist-worn devices could
become an innovative method of leveraging convenient
technology to aid in clinical trials that measure cocaine use.
Additionally, current standard methods of detection (i.e.,
self-report or UDS) lack the temporal precision needed to
identify antecedents and precipitants to cocaine use potentially
available in continuous sensor data. Using mHealth to detect
cocaine use in research could also provide critical information
for the delivery of interventions in real time, or Just-in-Time
Adaptive Interventions (6, 8).

Previous studies suggest that it is possible to collect high-
quality, high-yield sensor data in the natural field setting
with ECG-based sensor devices. Additional work is needed to
minimize participant burden and maximize acceptability. Those
sensors were worn around the chest and approximately one-third
of participants considered them uncomfortable and reported that
the devices made them feel self-conscious (9). Less obtrusive
devices (such as wrist-worn sensors) may increase the collection
of objective cocaine use detection data in the natural field setting.
Heart rate detection in smartwatches is based on reflectance-
based photoplethysmography (PPG) sensors. However, detection
of interbeat intervals from PPG on a wrist-worn device is a
challenging task, because weak signals are contaminated by the
large motion artifacts caused by user’s movement, which create
noisy data that can infer false or mis-detected beats. Further,

many of the techniques used in commercial smartwatches (10)
target average heart rate via short-term recordings (∼1min).
These techniques are not suited to provide interbeat intervals
required for the application of advanced computational models
needed to infer health states such as cocaine use events. It would
be necessary to sample all sensor pairs at all times, but this can
lead to high power consumption and short lifetime of the sensor
battery. Commercially available smartwatch batteries last at most
10–11 h per charge with continuous sensor sampling, which is
required for accurate interbeat interval monitoring. Such limited
battery life limits the amount of time the device is available
to collect data and increases participant burden with frequent
recharging. In addition, most commercial offerings limit access
to raw data and only provide heart rate information averaged
over fixed small time segments, limiting their use in higher layer
inference problems such as stress and drug use detection.

To refine mobile sensor technology to detect cardiac interbeat
interval and physical activity data on a wrist-worn device that can
be used to detect cocaine use in a field setting, sensing must be
optimized to collect sufficient data and maintain needed battery
life to properly collect the necessary amount of data.

This study built on previous work using a wireless
physiological chest-based monitoring suite called AutoSense (11)
to build a wrist-worn device and characterize the feasibility of
using it to collect reliable interbeat interval and physical activity
data in a field setting using PPG sensors. The AutoSense chest
sensor has been previously used for in-the-field detection of
cocaine use, as described above (5, 9); various members of the
current study team were also part of this formative work with the
AutoSense chestband.

In this study, the research team explored the use of wrist-
worn PPG-sensing devices developed in the present study
named as MotionSense HRV (12), paired with measurements
from AutoSense chest sensor, ecological momentary assessments
(EMA), and standardized assessments of substance use to
characterize the amount of high quality data that can be obtained
from PPG sensors on a wrist-worn device, identify common
failure scenarios, and understand participant wearability and
usage patterns. Additionally, the research team collected UDS
results and self-reported cocaine use to compare against the
sensor data. This article reports on this study in two phases: a
preliminary pilot study to develop and test the wrist-worn device
itself, and a main study to determine the feasibility of using
wrist-worn PPG sensors to collect reliable data (determined by
data yield, device wearability, and data quality) in the natural
field setting. Additionally, the main study also aimed to adapt
and improve the computational model previously used with
ECG sensors for detecting cocaine use from interbeat interval
heart rate data to apply to data derived from PPG sensors.
The computational model used with ECG sensors for detecting
cocaine use has been described in detail previously, see (5).

METHODS

This study was conducted in two phases: A Phase 1 Pilot Study
(Pilot) and a Phase 2 Main Study (Main). The study team
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expected to enroll 5 participants in the Pilot and an additional
20 participants in the Main. The Pilot was designed to develop
a wrist-worn device, through iterations of the sensors and data
collection software, which could collect the needed heart rate data
to prepare for use with the Main participants.

Participants and Procedures
This study was conducted within the National Drug Abuse
Treatment Clinical Trials Network funded by the National
Institute on Drug Abuse. Participants from both the Pilot and
Main phases were recruited from the Center for Learning
and Health in the Department of Psychiatry and Behavioral
Sciences at the Johns Hopkins University School of Medicine in
Baltimore, MD, between May 2017 and March 2018. Participants
were unemployed cocaine-using adults who were enrolled in a
concurrent study at the site, known as the parent study (National
Institute on Drug Abuse, R01DA037314, PI: Silverman) (13).
Participation was offered to individuals who were active in the
Induction Period of the parent study (days 8–35, during which
participants were not expected to abstain from drug use and
were exposed to the same conditions) at the time of study
intake and had provided a cocaine-positive urine sample in the
week prior (based on thrice-weekly urine samples collected as
a part of the parent study). For a detailed description of the
Induction Period, see (13). Briefly, participants were offered
access to paid job-skills training in amodel therapeutic workplace
during the Induction Period. Potential participants also had to
be available to attend weekday study visits at the research site
and to participate for the full study duration (up to 16 days).
Potential participants were approached by research staff and
informed about the opportunity to participate in this study. Prior
to giving informed consent, participants were invited to try on the
AutoSense chestband and wrist-worn devices in order to factor
device comfortability into their consent decision. If they agreed,
participants provided written informed consent in accordance
with good clinical practice, including the Declaration of Helsinki.
After providing informed consent, participants were trained in
the proper use of the wrist-worn devices and the AutoSense
devices (smartwatches, chestband, and study Android-based
smartphone). Participants were compensated for the amount
of time they wore each device, the number of EMAs they
completed, and for returning all study devices at the end of their
participation. All recruitment, enrollment, and compensation
procedures were the same for both the Pilot and Main phases.
This project was approved by the Johns Hopkins University
School of Medicine Institutional Review Board. More detailed
information related to the study design and procedures was
published shortly after enrollment commenced (14).

Characteristics and Drug Use Monitoring
In the Pilot and Main phases of the study, baseline assessments
occurred on either Monday, Wednesday, or Friday in order
to coincide with participants’ UDS collection dates from the
parent study (UDS data abstracted for use in this study). At
baseline, a battery of assessment instruments was conducted,
including the PhenX Core Tier 1 measures (15), which captured
items such as recent and lifetime substance use, quality of life,

and other health indicators, and a 7-day Timeline Followback
(16), which collected data on substance use within the previous
week. In addition, contact information was verified from the
parent study. Photos were taken of participants’ wrists using
the study smartphone, both with and without the smartwatches,
to aid in the identification of factors that may influence the
quality of data collected via the smartwatches. After the baseline
assessment, participants were asked to wear the AutoSense
devices for 14 days, respond to EMA on the study smartphone,
and visit the research site every weekday during the 14-day
period. EMAs included questions about substance use, including
specifics related to use events (such as type of drug used and
the number of hits in each event), and indicators of stress,
and participants had an option to self-report use outside of
the thrice daily random EMA prompts. Participants attended
research check-ins on weekdays to ensure proper wear of the
study sensors and use of the study smartphone to transmit data
to the study team. At these weekday visits, a use-specific Timeline
Followback collected data on all substance use episodes by hits
(e.g., if a participant reported one use event with 3 hits of cocaine,
3 use events would be reported for that item) that occurred since
the previous check-in; additionally, participants provided UDS
samples for the parent study and the results of which were shared
with the study team at closeout.

Ecological Momentary Assessment
As a part of the parent study, participants made real-time self-
reports of their mood, stress level, activities, craving, and drug
use on an electronic diary (smartphone) provided by the study.
In the Pilot and Main phases of this study, participants were
prompted three times per day on the smartphone, at random
times during their waking hours, to self-report on their mood,
stress level, activities, and degree of craving. Participants were
also asked to initiate an entry on the smartphone whenever they
used cocaine, heroin, or other opioids or stimulants outside of a
medical context; felt craving for cocaine, heroin, or other opioids;
or felt overwhelmed, anxious, or stressed. Data from these EMA
procedures were abstracted from the parent study.

Ambulatory Physiological Monitoring
In the Pilot, participants wore the AutoSense chestband and
two wrist-worn devices (one on each wrist) for 2 weeks to
monitor ambulatory physiological data via passive sensing.
The AutoSense chestband collected data from (1) two-lead
ECG measurement of electrical activity from the heart, (2) a
respiratory inductive plethysmography band for measurement of
relative lung volume and breathing rate at the rib cage, and (3) a
three-axis accelerometer to assess motion artifacts in the data and
provide inferences about physical activity. This unit is small (1
inch by 2.5 inches) and includes a 750-milliamp-h battery that did
not require recharging for 10+ days. Data were collected from
this unit via streaming sensor measurements via wireless radio
connection (Bluetooth) to a smartphone in real-time.

Also in the Pilot, one wrist-worn device was worn on each
wrist to maximize data capture from the devices and to account
for within-subject differences in wrist anatomy, dominant hand,
and wearing style. In the event of device failure or another
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scenario where two smartwatches were not available for a given
participant, the use of one smartwatch was acceptable until an
alternate could be provided for the missing device. Each of
these devices contained a 9-axis inertial measurement unit (IMU)
sensor comprised of 3-axis accelerometer, 3-axis gyroscope and
3-axis magnetometer sensors for the detection of activity and
gestures. Each also contained reflectance PPG sensors, which
used passive LED light reflectance to detect pulse waveform
characteristics from the radial artery. IMU and PPG sensor data
were collected by the wrist-worn device and then transmitted
using Bluetooth wireless radio to the study smartphone in
real-time. These data were used to derive characteristics of
cardiovascular physiology, including heart rate and heart rate
variability, on which the cocaine detection model was applied
and refined. Data yield was derived from both the AutoSense
chestband and wrist-worn devices in order to characterize the
data capture from each device.

Participants were trained at baseline to put on the AutoSense
chestband and chest electrodes. At each weekday clinic visit, the
placement of the chestband, electrodes, and wrist-worn devices
was checked by study staff, and participants were asked whether
any of the devices were causing problems. Participants were given
extra electrodes in case of detachment.

In the Main, procedures for ambulatory physiological
monitoring via the AutoSense chestband and wrist-worn devices
were identical to the Pilot. As described in the section
Results below, the wrist-worn devices themselves underwent
modifications based on results from the Pilot, but the procedures
outlined above continued through the Main.

AutoSense Usability Questionnaire
At the end of their participation, participants were asked to
respond to an 18-item questionnaire that assessed the usability
and acceptability of both the AutoSense chestband and wrist-
worn devices. Thirteen of the questions were multiple choice,
measuring items such as participant’s comfort putting on and
wearing the devices, and whether they encountered problems
while wearing them, whereas the five remaining items were
open-ended and asked about their general experiences.

Wrist-Worn Device Development
Version 1.0 of the wrist-worn device, dubbedMotionSense Heart
Rate Variability (MSHRV), was 42.5mm long by 16.5mm wide,
resembling approximately the form factor of the commercial
Fitbit One sensor; hence, Fitbit One wrist straps were used
to begin the Pilot. Figures 1A,B show the computer-aided
design image of the MSHRV Version 1.0 enclosure and the
MSHRV Version 1.0 sensor in its 3D printed enclosure.
The sensor included a 9-axis IMU sensor (accelerometer,
gyroscope, and magnetometer) and a multispectral (red, green,
infrared) PPG module from Maxim, and microcontroller from
Nordic Semiconductor to perform inter-chip communication
and wireless communication through Bluetooth Low Energy
(BLE) to the smartphone. A custom 3D printed enclosure was
designed and deployed.

The quality of the heart rate data collected by the sensor
depends on the proximity of the sensor to the skin. For the first

version, a commercial Fitbit One wrist strap was used to secure
the sensor in place, resulting in a 2-mm gap between the PPG
sensor and the user’s skin. The Pilot revealed that this skin-sensor
gap degraded the PPG signal quality significantly.

The first three participants recruited for the Pilot wore the
first version of the wrist-worn devices (Version 1.0). Iterative
improvements were made to the devices based on evaluation
of the PPG data and participant-identified device failures,
particularly reported issues with waterproofing of the internal
sensor components (i.e., protection from sweat).

Problems identified via Pilot participants from the AutoSense
Usability Questionnaire related to the fit of the device on the
wrist were used to iteratively refine the wrist sensor devices for
improved wearability and data collection, resulting in Version 2.0
of the wrist-worn devices. Version 2.0 utilized the same internal
sensing components as Version 1.0 (e.g., microcontroller,
LED/PPG sensor, inertial motion unit), but were refined to
accommodate a more robust and comfortable enclosure, better
waterproofing of the internal sensing components, and firmware
updates to improve the LED intensity levels to improve data
quality and yield compared to those of Version 1.0. Figures 1C,D
show the MSHRV Version 2.0 sensor in its 3D printed enclosure.
With the modified form factor of the PCB and the new enclosure
design, the PPG sensor in Version 2.0 was flush with its enclosure
and was in direct contact with the skin. This design change
provided better heart rate signal quality compared to Version 1.0.

Data Analysis
In the Pilot, descriptive statistics were used for the analyses
of the usability questionnaire, participant characteristics and
demographics, standard treatment and drug use monitoring, and
EMA data. Participants were asked to engage in the study period
for 16 days (14 days of device wear, with Day 1 for startup
procedures and Day 16 for closeout procedures). The usability
questionnaire and baseline characteristics and demographics
were collected once, while urine drug screens and EMA random
prompt data were expected to be collected more frequently
(thrice weekly and thrice daily, respectively). The total number
of outcome points per participant were calculated from these
expected collection periods. Descriptive and inferential statistics
were used to evaluate data yield (i.e., whether participants were
wearing the devices and for what duration) and identify periods
of time during which high quality data were collected by each
sensor suite (i.e., the AutoSense ECG chestband and the PPG
wrist-worn sensors). Data quality is defined as periods for which
the heartbeat detection algorithm indicated continuous (1min)
segments of beats consistent with a human heart rate in the
interval of 50–150 beats per min.

In the Main, the research team conducted the same analyses
as in the Pilot. In addition, the cocaine-use detection algorithm
was modified for use on data collected by the wrist-worn devices
by preprocessing PPG signal to generate likely hypotheses for
peak locations. Specifically, a probabilistic labeling algorithm
developed previously by authors was used (17, 18) to generate
likely sequences of heartbeats consistent with sensor data. These
labels in turn were used to generate heart rate and heart
rate variability measure features used in the cocaine detection
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FIGURE 1 | Wrist-worn sensor development. (A,B) Illustrate the version of the wrist-worn sensor used in the Phase 1 Pilot study. (C,D) Show the sensor used in the

Phase 2 Main study.

algorithm (5). The study team used only events where sensors
were worn and providing acceptable data quality to calculate
the probability of detection. Detections were cross-referenced
with EMA data to identify cocaine use events, and the cocaine
detection algorithmwas then run on those episodes (±3 h). Heart
rate data for each episode was inspected manually to narrow
down the cocaine episode timing when possible, as review of
the data indicated that participants tended to only mark the
timing approximately, usually rounding to the nearest 30min.
The research team secondarily compared data yield and data
quality characteristics for the wrist-worn PPG sensors and the
AutoSense ECG chest sensors. For the portions of the data where
ECG and PPG signals were simultaneously available, the research
team compared heart rate data from the two modalities using
Bland Altman plots and linear correlation analysis (Pearson and
robust statistics).

No analyses of stimulant use other than cocaine were
conducted, as participants throughout the Main reported other
stimulant use a total of 5 times (via EMA data), resulting in
insufficient power to analyze these data within the current study.

RESULTS

Participant Characteristics
Phase 1: Pilot Study
In the Pilot, six participants consented and enrolled out of an
anticipated five (see Table 1). Half of the Pilot study population
were male. On average, the age of Pilot participants was 51 (sd
= 7.1) years, and none were Hispanic or Latino. Half of the
participants self-reported as White and half as Black/African
American. All six enrolled Pilot participants indicated that they
used methadone in the 7 days prior to study enrollment. Pilot
participants also indicated that they had used cocaine (1/6) or
crack cocaine (5/6) in the 7 days prior to study enrollment, and
the average number of days in which crack cocaine was used in

that time was 3.3 days (sd = 2.34). Concomitant medications
prescribed for enrolled Pilot participants included methadone,
an Angiotensin Converting Enzyme (ACE) inhibitor, calcium
channel blocker, anti-convulsant, proton pump inhibitor,
antipsychotic, antidepressant, and a benzodiazepine.

Phase 2: Main Study
In the Main, 20 participants consented and 19 enrolled out
of an anticipated 20, with one participant not returning after
signing consent.

Unfortunately, due to an error with the servers where sensor
data provided by participants in the Main were stored, the study
experienced a loss of some electronically stored data. Due to this
loss of data, sensor data were available for a total of 14 Main
participants. Of those for whom sensor data were available to
analyze (n = 14, see Table 1): they averaged 47 (sd = 13) years
of age; 10 were male; none were Hispanic or Latino; and the
majority self-reported as Black/African American (9/14). All 14
Main participants indicated that they used methadone (13/14) or
buprenorphine (1/14) in the 7 days prior to study enrollment.
In the 7 days prior to study enrollment, 4 participants reported
using cocaine on 3.8 days (sd = 2.5), and 11 reported using
crack cocaine on 3.9 days (sd = 2.2). Concomitant medications
for Main participants included methadone, buprenorphine,
antidepressants, an antihypertensive, antineuropathic, calcium
channel blocker, a blood thinner, HIV/AIDS antiretroviral, and
a benzodiazepine.

Primary Outcome Availability
Primary Outcome Availability in the Phase 1 Pilot

Study
In the Pilot, data collection was completed with five participants
each for 2 weeks (1 participant was withdrawn for a failure
to wear the study devices), resulting in 10 expected weeks of
data. As some primary outcome data were still collected from
the withdrawn participant, those are represented here. During

Frontiers in Psychiatry | www.frontiersin.org 5 June 2021 | Volume 12 | Article 674691

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Ertin et al. Examination Feasibility Cocaine Detection

TABLE 1 | Participant demographics and characteristics.

Characteristic Pilot (N = 6) Main (N = 14)

Gender

Male 3 (50%) 10 (71.4%)

Female 3 (50%) 4 (28.6%)

Age [mean (std)] 51 (7.1) 47 (13)

Age

<18 0 (0%) 1 (7.1%)

18 < 25 0 (0%) 1 (7.1%)

25 < 35 0 (0%) 3 (21.4%)

35 < 45 1 (17%) 4 (28.6%)

45 < 55 4 (67%) 3 (21.4%)

55 < 65 1 (17%) 2 (14.3%)

Ethnicity

Not hispanic or latino 6 (100%) 14 (100.0%)

Race

Black or African American 3 (50%) 9 (64.3%)

White 3 (50%) 5 (35.7%)

Education completed

Less than high school diploma 2 (33%) 4 (28.6%)

High school graduate 0 (0%) 6 (42.9%)

GED or equivalent 0 (0%) 1 (7.1%)

Some college, no degree 4 (67%) 3 (21.4%)

Marital status

Married 1 (17%) 2 (14.3%)

Divorced 1 (17%) 3 (21.4%)

Separated 0 (0%) 1 (7.1%)

Never married 4 (67%) 8 (57.1%)

Employment

Looking for work, unemployed 5 (83%) 11 (78.6%)

Disabled permanently or temporarily 1 (17%) 3 (21.4%)

Body mass index [mean (std)] 34 (10) 28 (6)

Most recent HIV test result

Negative 6 (100%) 12 (86%)

Positive 0 (0.0%) 2 (14%)

Smoked at least 100 cigarettes in lifetime

No 2 (33%) 1 (7%)

Yes 4 (67%) 13 (93%)

If yes, current smoking status

Every day 3 (75%) 11 (85%)

Some days 1 (25%) 2 (15%)

the Pilot, 39 of the 44 expected UDS (88.6% compliance)
were collected; all 5 Pilot participants responded to at least
one EMA random prompt, with an average (sd) random
prompt completion rate of 87.6% (17.3%). Five of the six
AutoSense Usability Questionnaire forms were collected, though
only five were expected as one participant was withdrawn
(100% compliance; Table 2).

As 6 participants were enrolled in the Pilot, it was anticipated
that this would yield at least 36 individual cocaine use episodes
(six episodes per participant were expected based on rates of
cocaine use observed in the parent study). In actuality, at least

TABLE 2 | AutoSense usability questionnaire.

Main

(N = 14)

Number of participants who completed questionnaire 13

In general, how easy is it to put on the AutoSense chest band?

Very easy 4 (30.8%)

Easy 9 (69.2%)

Difficult 0 (0%)

Very difficult 0 (0%)

In general, how easy is it to put on the AutoSense smartwatch?

Very easy 8 (61.5%)

Easy 5 (38.5%)

Difficult 0 (0%)

Very difficult 0 (0%)

In general, how easy is it to use the smartphone?

Very easy

6 (46.2%)

Easy 7 (53.8%)

Difficult 0 (0%)

Very difficult 0 (0%)

In general, how comfortable is it to wear the AutoSense chest band?

Very comfortable 2 (15.4%)

Comfortable 10 (76.9%)

Uncomfortable 1 (7.7%)

Very uncomfortable 0 (0%)

In general, how comfortable is it to wear the AutoSense smartwatch?

Very comfortable 6 (46.2%)

Comfortable 7 (53.8%)

Uncomfortable 0 (0%)

Very uncomfortable 0 (0%)

In general, how self-conscious did you feel

while wearing the AutoSense chest band?

Very self-conscious 0 (0%)

Moderately self-conscious 2 (15.4%)

A little self-conscious 0 (0%)

Not self-conscious at all 11 (84.6%)

In general, how self-conscious did you feel

while wearing the AutoSense smartwatch?

Very self-conscious 0 (0%)

Moderately self-conscious 0 (0%)

A little self-conscious 0 (0%)

Not self-conscious at all 13 (100.0%)

How often did you have problems with the AutoSense chest band?

Never 11 (84.6%)

One to two times during the whole week 1 (7.7%)

Three to four times during the whole week 1 (7.7%)

Five to six times during the whole week 0 (0%)

Every day 0 (0%)

How often did you have problems with the AutoSense smartwatch?

Never 8 (61.5%)

One to two times during the whole week 2 (15.4%)

Three to four times during the whole week 2 (15.4%)

Five to six times during the whole week 0 (0%)

Every day 1 (7.7%)

(Continued)
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TABLE 2 | Continued

Main

(N = 14)

Did the AutoSense chest band affect your daily activities in any way?

No, I was able to do everything as usual. 9 (69.2%)

No, not really. I may have made a few adjustments to

what I normally do.

4 (30.8%)

Yes, quite a bit and I had to change my routine. 0 (0%)

Yes, I totally changed my routine to accommodate the

AutoSense.

0 (0%)

Did the AutoSense smartwatch affect your daily activities in any way?

No, I was able to do everything as usual. 11 (84.6%)

No, not really. I may have made a few adjustments to

what I normally do.

1 (7.7%)

Yes, quite a bit and I had to change my routine. 1 (7.7%)

Yes, I totally changed my routine to accommodate the

AutoSense.

0 (0%)

58 cocaine use events (doses or “hits”) were indicated by EMA
data. Nearly 75% of UDSs from the Pilot were positive for
cocaine. Additionally, one participant reported cocaine use, and
five participants reported crack cocaine use during the study
period via the Use-Specific Timeline Followback, totalling 171
episodes over the study period. Pilot study participants reported
zero uses of other stimulants throughout the Pilot study period.

Primary Outcome Availability in the Phase 2 Main

Study
During the Main, 89 of the 100 expected UDS (89.0%
compliance) were collected; 92.9% of the AutoSense Usability
Questionnaires were collected. All 14 participants reported
substance use on the Use-Specific Timeline Followback
throughout the study period, with four reporting cocaine use
in 42 events and 11 reporting crack cocaine use in 140 events
(indicating that at least one participant reported using both
substances); and 11 of 14 (78.6%) participants responded to
at least one EMA random prompt (see Table 3); for those 11
participants, the average (sd) random prompt completion rate
was 73.3% (13.1%).

Feasibility of Wrist-Worn Sensor Data
Collection
Data Yield and Quality in the Phase 1 Pilot Study
During the Pilot, a heuristic motion-based algorithm was
used to assess data yield. Motion, as detected via the
IMU of the wrist sensors (containing accelerometer and
gyroscope sensors), was used to detect whether participants
were wearing the devices and for what duration. This
algorithm employed a predetermined threshold to the
accelerometer and gyroscope signals to indicate whether
the sensors were being worn or not. Concurrently, Pilot
participants were compensated for wearing the wrist-worn
devices, which they did for 13.5 (sd = 5.06) h per day on
average. Compensation was calculated via a data dashboard

TABLE 3 | Availability of primary outcome data in the main study.

Main (N = 14)

Urine drug screena

Number collected 89

Number expected 100

Percent collected 89.0%

AutoSense usability questionnaire

Number collected 13

Number expected 14

Percent collected 92.9%

Use-specific timeline followback

Number of cocaine use episodes 42

Number of crack use episodes 140

Ecological momentary assessment (EMA)

Completed at least one EMA entry n (%) 11 (78.6%)

aThe maximum number of UDS that a participant can contribute is no greater than the

number of UDS expected per protocol.

with real-time estimates of device wear. This real-time
processing occurred on the smartphone device itself and
used algorithms to evaluate data quality from the sensor data
streams using the Cerebral Cortex platform developed in
Hossain et al. (19), Hnat et al. (20), and Kumar et al. (21).
Based on sensor patterns that deviated from an expected
baseline, the algorithms evaluated whether the wrist sensor
accelerometers were in motion (yielding an expectation of good
data quality), not in motion (indicating a pattern of non-wear),
or disconnected.

Similarly, algorithms were run on the smartphone to detect
wear, non-wear, or disconnection of the AutoSense chest
sensor suite for both the respiratory induction plethysmography
(RIP) signal, as well as the ECG signal. These data quality
metrics were computed approximately once every 3 s for
each data stream (left- and right-wrist sensors, RIP, and
ECG) and were uploaded to the backend of the data
dashboard where these computations were expressed as hours
of wear per day for compensation purposes. Research staff
at the study site would access this dashboard at daily
research visits, confirm participants’ previous day’s use of
both the wrist-worn devices and chestband, and compensate
them accordingly.

Although they were compensated for an average of 13.5 h
of wear per day, an offline analysis of data yield from Pilot
participants indicated that wrist-worn devices were only being
worn on average 5.79 h per day. This offline analysis was
based on PPG signal quality itself, as opposed to the real-
time motion-based algorithm, which was based on motion
alone, to compensate the participants via the Cerebral Cortex
dashboard. This discrepancy indicated that the motion-based
algorithm being used to define data quality and detect yield
was confounded, perhaps by wearing the wrist sensors loosely
or carrying the sensors in a bag/pocket instead of on the wrist,
which will result in a motion signal being detected without a
concurrent valid PPG signal. Research staff at the study site were
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TABLE 4 | Correlation coefficient between PPG and ECG sensors.

Participant ID Robust correlation

coefficient between

heartrate from ECG and

left wrist PPG

Robust correlation

coefficient between

heartrate from ECG and

right wrist PPG

Pearson correlation

coefficient between

heartrate from ECG and

left wrist PPG

Pearson correlation

coefficient between

heartrate from ECG and

right wrist PPG

Participant 1 0.1 0.13 −0.1 −0.15

Participant 2 0.38 0.26 0.26 0.16

Participant 3 0.89 −0.06 0.21 −0.09

Participant 4 0.17 0.23 0.21 0.19

Participant 5 0.28 0.38 0.27 0.31

Participant 6 0.48 0.42 0.24 0.24

Participant 7 0.89 0.98 0.21 0.29

Participant 8 0.57 0.42 0.27 0.18

Participant 9 0.93 0.91 0.69 0.67

Participant 10 −0.08 −0.11 −0.07 −0.01

Participant 11 0.24 0.12 0.24 0.31

Participant 12 0.03 0.26 0.03 0.14

Participant 13 0.08 0.01 0.23 0.26

Participant 14 −0.1 −0.44 0.13 0.07

also encouraged to routinely check Cerebral Cortex and discuss
lags in data collection with participants during weekday study
visits. Once the Pilot was complete, the research team made
significant changes to the real time algorithm that detected data
yield, integrating PPG sensing and skin contact detection (see
Main Study results for further details). Participants from the
Pilot wore the AutoSense chestband on average 6.50 h per day
as determined by a data quality assessment algorithm tailored
for ECG signals based on the expected signal morphology
and periodicity. This ECG data yield algorithm assesses the
morphology of the ECG signal in a fixed window (such as 3 s)
through computing the outlier percentage, range, maximum,
minimum, and other statistics from the window before rendering
a decision.

Data Yield and Quality in the Phase 2 Main Study
Participants were expected to wear the sensor devices (both wrists
and chest) for at least 10 h per day. On average, participants
in the Main (n = 14) wore the left wrist sensor for 14.8 (sd
= 3.1) h per day, the right wrist sensor for 14.1 (sd = 3.6) h
per day, and the chest sensor for 16.2 (sd = 3.7) h per day for
the 2-week study period. Though participants appear to have
worn the chest sensor (ECG) longer, the quality of the data
collected was superior in the wrist sensors (PPG); 68.7% of data
collected from the left wrist sensor and 77.7% from the right
wrist sensor were of acceptable quality, while only 34.4% of
data were of acceptable quality. Acceptable quality in the data is
defined as periods for which the heartbeat detection algorithm
indicated continuous (1min) segments of beats consistent with
a human heart rate in the interval of 50–150 beats per min.
Data quality metrics were calculated only for the periods that
the sensor data were available. Additionally, data from the
AutoSense Usability Questionnaire indicated that, compared to
the chestband, participants thought the wrist sensors were very

easy to put on (61.5 vs. 30.8%), very comfortable (46.2 vs.
15.4%), not self-conscious to wear (100 vs. 84.6%), and were
better able to perform daily activities as usual (84.6 vs. 69.2%)
vs. the chestband. However, participants more often reported
never having problems with the chestband vs. wrist sensors
(84.6 vs. 61.5%). These data indicate that yield, compliance, and
sensor data quality were better in the wrist-worn sensors than
the chestband sensors, though, as was somewhat expected, more
problems were reported with the wrist-worn sensors developed
in this study.

The study team also calculated correlation coefficients
between ECG and PPG sensors, as the Pearson Correlation
coefficient is known to be sensitive to outliers present in this
type of data. Robust statistical estimates of the correlation
coefficients (22, 23) were calculated (Table 4). The results show
a wide range of variability (0.1–0.9) across subjects, indicating
possible differences in how different participants wore the
wrist sensors. The average yield of good quality ECG data is
5.6 h per day per participant. The correlation coefficients are
computed on these intervals. The study team also observed that,
in general, correlation coefficients were consistent across the
left and right wristbands for the same subject, giving further
credence to the hypothesis that incorrect sensor attachment
or device wear is a major factor to low performance of the
PPG sensor.

On average, female participants wore the PPG (wrist) sensors
for about 1 h longer than males, and Black/African American
participants wore both the PPG and ECG sensors nearly 2 h
longer than White participants (Table 5).

There were four female and 10 male participants; analyses
of data quality and yield between these two groups (Table 5)
found no statistically significant differences. Correlation
between chestband and wrist-worn sensor readings were
slightly higher for female participants (female r = 0.28;
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FIGURE 2 | Bland-Altman plots comparing differences in ECG data by race and gender. (A,B) Illustrate the Bland-Altman plots comparing the ECG chest sensor and

wrist sensor for African American participants and White participants. (C,D) Show the Bland-Altman plots comparing the ECG chest sensor and wrist sensor for

female and male participants.

TABLE 5 | Data yield for PPG and ECG sensors by gender and race.

Participants Hours of ECG

data: mean (sd)

Hours of PPG

data: mean (sd)

Female (N = 4) 5.30 (2.80) 12.50 (2.52)

Male (N = 10) 6.01 (3.95) 11.51 (2.99)

African American (N = 9) 6.53 (3.57) 12.56 (2.65)

White (N = 5) 4.50 (3.55) 10.43 (2.80)

male r = 0.21). There were five White and nine African
American participants; analyses of data quality and yield
between these two groups (Table 5) found no statistically
significant differences. The correlation between chestband
and wrist-worn sensor readings was higher for White
participants (African American r = 0.11; White r = 0.38).
However, the ability to detect statistically significant differences
may have been limited by the sample size. Figure 2 shows
Bland-Altman plots comparing the ECG chest-sensor- and
wrist-sensor-derived heart rates by race and gender. The
participants are organized according to gender and race to
illustrate the sensitivity of the wrist-worn sensors across
these categories. The Y coordinate in the Bland-altman
plot represents the difference between heart rate from PPG
and heart rate from ECG. Heart rate from PPG falling

below the heart rate from ECG produces negative error.
Therefore, the Bland-altman plot shows that at higher
heart rate the PPG sensor under-determines the heart
rate estimate.

Cocaine Use Detection
Cocaine Use Detection in the Phase 1 Pilot Study
As the main goal of the Pilot was to develop the
device through iterations of the sensors and data
collection software, no analysis of cocaine use detection
was performed.

Cocaine Use Detection in the Phase 2 Main Study
Among the 14 participants for whom sensor data were available
to analyze, a total of 58 cocaine use events were reported
via EMA (cocaine alone: 37 events; cocaine with other drugs:
21 events) in the Main. Additionally, participants reported 42
cocaine and 140 crack cocaine use events throughout the study
period via the Use-Specific Timeline Followback. Nearly all
(98.8%) of the UDSs collected from these participants were
positive for cocaine (Tables 6, 7). These data were meant to
assist in identifying cocaine use events by sensor data (ECG
and PPG). Among these 58 cocaine use events, the AutoSense
chestband (ECG) was worn during 36 (62%), and at least one
of the wrist-worn sensors was worn for 34 use events; 28 of
these use events occurred while the participant was wearing
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both the chest and at least one wrist sensor (Table 8). The
study team used only events in which sensors were worn and
providing acceptable data quality to calculate the probability of
detection. In general, the probability of detection with the PPG
(wrist) sensor was higher for females {67%, [Confidence Interval
(CI): 46, 83%]} compared to males [54%, (CI: 29, 78%)] and
higher for White participants [86%, (CI: 62, 97%)] compared
to Black/African American participants [45%, (CI: 26, 65%)]
(Table 9).

As summarized in Table 8, out of the 58 reported cocaine
use events, there were 36 episodes in which chestband (ECG)
sensor data were available, which resulted in 18 detections
(probability of ECG-based detection 50.0%) of cocaine use
indicated by the algorithm. This method focuses on the
heart rate changes around the EMA-reported cocaine intake.
Therefore, false positives are not feasible to evaluate. Data
from at least one wrist (PPG) sensor were available in 34
episodes and resulted in 21 detections (probability of PPG-
based detection 61.8%) of cocaine use. Finally, there were
13 cocaine use events detected by both sensors out of 28
use events when both sensors were available (probability of
joint detection: 46.4%). While these detection probabilities
are lower than the ones reported in previous studies of the
AutoSense chestband (3), the PPG sensors achieved better
probability of detection than the ECG sensors within this
protocol. A careful visual inspection of the sensor data
streams suggests that some self-reported use events may have
been marked by the participants at the wrong time; in
these reports, participants may have been “rounding” their
use times to the nearest half-hour, rather than reporting
the exact times. However, these events were kept in the
analyses for uniform treatment, leading to overestimation of
misdetection probability.

As the number of cocaine use events that were
matched to known ground truth data collected (reported
EMAs) was less than the expected number of use events
required to refine the algorithm for use with PPG sensor
data, the study team had to train the algorithm using
estimations. Though participants’ reported use of cocaine
was as expected, the study team needed ∼150 use events
while participants were wearing all devices to refine the
algorithm properly. As only 36 were available to analyze,
the study team used a heart rate estimator for PPG
signals trained with data from other pilot studies with the
previously developed cocaine detection algorithm for the
initial analysis.

DISCUSSION

This study developed a wrist-worn device that can be used
in the natural field setting among people who use cocaine
to collect reliable heart rate data that is less obtrusive than
chest-based devices. Findings demonstrated that the quality of
the data collected was superior in the wrist sensors (PPG)
compared to the chest (ECG) sensors (68.7% of data collected
from the left wrist sensor and 77.7% from the right wrist

TABLE 6 | Summary of substance use in the main study.

Main (N = 14)

Any substance use over the study perioda

Tobacco

Number of participants who used substance 13

Number of episodes [mean (std)] 90.1 (47.93)

Total number of episodes over study period 1,171

Alcohol

Number of participants who used substance 3

Number of episodes [mean (std)] 10.0 (3.46)

Total number of episodes over study period 30

Cannabinoids/marijuana

Number of participants who used substance 5

Number of episodes [mean (std)] 1.0 (0.00)

Total number of episodes over study period 5

Synthetic cannabinoids

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

Total number of episodes over study period 0

Cocaine

Number of participants who used substance 4

Number of episodes [mean (std)] 10.5 (13.72)

Total number of episodes over study period 42

Crack

Number of participants who used substance 11

Number of episodes [mean (std)] 12.7 (9.75)

Total number of episodes over study period 140

Amphetamines

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

Total number of episodes over study period 0

Methamphetamine

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

Total number of episodes over study period 0

Heroin

Number of participants who used substance 8

Number of episodes [mean (std)] 7.6 (9.69)

Total number of episodes over study period 61

Methadone

Number of participants who used substance 13

Number of episodes [mean (std)] 13.3 (3.33)

Total number of episodes over study period 173

Buprenorphine

Number of participants who used substance 1

Number of episodes [mean (std)] 13.0 (0)

Total number of episodes over study period 13

Other opioids

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

Total number of episodes over study period 0

Hallucinogens

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

(Continued)
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TABLE 6 | Continued

Main (N = 14)

Total number of episodes over study period 0

MDMA/ecstasy

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

Total number of episodes over study period 0

Barbiturates

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

Total number of episodes over study period 0

Benzodiazepines

Number of participants who used substance 4

Number of episodes [mean (std)] 7.8 (7.80)

Total number of episodes over study period 31

Tranquilizers

Number of participants who used substance 1

Number of episodes [mean (std)] 4.0 (0)

Total number of episodes over study period 4

Other sedatives and hypnotics

Number of participants who used substance 1

Number of episodes [mean (std)] 13.0 (0)

Total number of episodes over study period 13

Inhalants/solvents

Number of participants who used substance 0

Number of episodes [mean (std)] 0 (0)

Total number of episodes over study period 0

Other drug

Number of participants who used substance 5

Number of episodes [mean (std)] 20.0 (27.69)

Total number of episodes over study period 100

aSubstance use as reported on the Timeline Followback (TUS) form.

sensor were of acceptable quality, while only 34.4% from the
chest sensor data were of acceptable quality). In terms of
wearability, participants reported that the wrist sensors were
easier to put on, more comfortable, less self-conscious to wear,
and affected daily activities less often than the chest band.
The study also further developed the cocaine use detection
algorithm to identify cocaine use events from the wrist-worn
PPG sensors. Results showed that when properly worn, wrist-
worn PPG sensors can produce similar quality of heart rate and
heart rate variability features to chest-worn ECG sensors that
can be used for cocaine intake event detections. As described
below, however, additional steps could be taken to more fully
refine the cocaine use detection algorithm for wrist-based
data collection.

Although results in this initial study evaluating the feasibility
of heart rate detection via a wrist-worn device are promising,
they also highlight several areas that require iterations before
a system based on wrist-worn PPG sensors can be fielded to
scale. First, in order to collect better quality data, the wrist-worn
sensors have to be more robust to better account for different
wear styles that affect contact with the skin, participant skin color

TABLE 7 | Summary of urine drug screens.

Percentage of positive

UDSs over the study period

[mean (std)]

Main (N = 14)

Benzodiazepines 34.5% (38.16)

Amphetamine 0% (0)

Marijuana 23.8% (30.89)

Methamphetamine 0% (0)

Cocaine 98.8% (4.45)

Oxycodone 0% (0)

Methadone 89.3% (28.95)

Opiates 41.1% (35.69)

Buprenorphine 10.7% (28.95)

which can interfere with certain LEDs, and motion artifacts to
account for movement and other background noise not related
to direct sensor contact (e.g., from being carried in a backpack).
Based on the findings from this trial, the study team developed
an improved version of the wrist-based sensor for use in another
National Institutes of Health-funded study outside the scope of
this project. This sensor featured a larger glass window with two
green and two infrared LEDs and two photodiodes/receivers,
resulting in a significantly larger signal-to-noise ratio and fewer
motion artifacts.

Second, real-time indicators for participants to adjust the
wrist sensor’s fit or position are needed to improve the
quality of sensor data being collected. The ability to notify
the wearer that data quality is low and instruct the wearer
regarding ways to adjust the wristband to improve data
quality could markedly improve the data and cocaine-use
event detection.

Third, improved self-reporting of drug intake events in real-
time would improve robustness and the time resolution of the
ground truth information that will produce training data to
more fully refine the cocaine detection algorithm for wristband
data. Though reporting via EMA has been fruitful, the results
of this study indicate that the potential for participants to more
conveniently and reliably report use with the wrist-worn device
itself (e.g., double-tapping the wristband to mark a cocaine use
event) could be very useful.

A few limitations of this study should be noted. First,
complete data sets were not obtained from the originally intended
sample of 25 participants, resulting in a smaller sample size
than originally planned. Subsequent research will seek to obtain
complete data sets from a larger sample of participants. Second,
cocaine use events were inconsistently reported across the
Timeline Followback and EMA entries, contributing to fewer
identified use events that could be used to train the algorithm to
detect use within PPG sensor data. Future studies can develop
technology for in-the-moment reporting (i.e., double tapping
the wrist-device). Third, no analyses of stimulant use other
than cocaine use were conducted, as participants rarely used
stimulants other than cocaine. Future research efforts can seek to
recruit a larger sample of people who use both cocaine and other
stimulants to allow for sufficient power to conduct such analyses.
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TABLE 8 | Cocaine use event detections in the main phase.

Participant ID Drug intake

EMA report

PPG sensor

presenta
ECG sensor

present

PPG and ECG

sensor presenta
Detections by

PPG

Detections by

ECG

Common

detections

Participant 1 5 5 5 5 1 4 1

Participant 2 0 0 0 0 0 0 0

Participant 3 2 2 1 1 2 1 1

Participant 4 1 1 1 1 1 1 1

Participant 5 17 10 15 8 9 5 4

Participant 6 6 5 6 5 4 4 4

Participant 7 0 0 0 0 0 0 0

Participant 8 5 1 0 0 0 0 0

Participant 9 3 2 2 2 1 1 1

Participant 10 5 1 1 1 0 1 0

Participant 11 0 0 0 0 0 0 0

Participant 12 2 1 1 1 1 0 0

Participant 13 10 5 3 3 1 0 0

Participant 14 2 1 1 1 1 1 1

Total 58 34 36 28 21 18 13

aAt least one wrist-worn sensor present.

TABLE 9 | Probability of detection of EMA events by gender and race.

Participants Probability of

detection chestband

(ECG)

Probability of

detection wristband

(PPG)

Female (N = 4) 0.37 0.67

Male (N = 10) 0.75 0.54

African American (N = 9) 0.61 0.45

White (N = 5) 0.39 0.86

Future Directions of the Research
This line of research is innovative and at the early stages of its
inception. There is a multitude of avenues in which a device such
as this can be useful in clinical trials. Based on the promising
results of this study, the next step in this line of research is
to conduct a study with a larger sample size to increase the
precision of cocaine use detection using unobtrusive PPG wrist
sensors. The study would also utilize longer periods of assessment
(potentially 12 weeks per participant) to increase the number
of cocaine use episodes. This longer period of measurement
may also enable us to understand better the utility of including
this device as part of outcome measurement in future clinical
intervention trials. Additional potential areas for extending
research with this device include expanding into the detection of
both stimulants and opioids, as analyzed in (20) by measuring
peripheral capillary oxygen saturation (SpO2) to detect opioid
use by reduced heart rate and blood oxygen saturation.

Additionally, the future of this research could include the
analysis of whether there are different cardiovascular profiles
associated with different routes of cocaine administration or with
polydrug use, as well as whether polydrug use (vs. use of cocaine
alone) affects the reliability of detecting cocaine use (24). Once

the detection algorithm has been refined, it is also possible to
study whether the algorithm can detect differences in the route of
cocaine administration. This device and detection of cocaine use
may also help to iteratively adapt treatment options to increase
engagement and retention and improve patient-centered care.
That is, the evolution of this line of research and measurement-
based care could lead to the proactive monitoring and real-
time detection of substance use, including polysubstance (e.g.,
stimulant and opioid) use, which may inform in-the-moment
intervention delivery. It may allow for the identification of
populations with differential risk profiles, which may inform
tailored intervention delivery.
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