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Objective: Age of onset is one of the heterogeneous factors in schizophrenia, and an

earlier onset of the disease indicated a worse prognosis. The left superior frontal gyrus

(SFG) is involved in numerous cognitive and motor control tasks. Hence, we explored

the relationship between abnormal changes in SFG resting-state functional connectivity

(rsFC) and cognitive function in the peak age of incidence to understand better the

pathophysiological mechanism in youth-onset drug-naïve schizophrenia to search for

reliable biomarkers.

Methods: About 66 youth-onset drug-naïve schizophrenia patients and 59 healthy

controls (HCs) were included in this study. Abnormal connectivity changes in the left

SFG and whole brain were measured using the region of interest (ROI) rsFC analysis

method. The cognitive function was assessed using the MATRICS Consensus Cognitive

Battery (MCCB), and the severity of the clinical symptoms was evaluated by positive and

negative syndrome scale (PANSS). Furthermore, we analyzed the relationships among

abnormal FC values, cognition scores, and clinical symptoms.

Results: We found decreased FC between left SFG and bilateral precuneus (PCUN),

right hippocampus, right parahippocampal gyrus, left thalamus, left caudate, insula, and

right superior parietal lobule (SPL), whereas increased FC was seen between the left

SFG and right middle frontal gyrus (MFG) in the youth-onset drug-naïve schizophrenia

group, compared with HCs. Meanwhile, the T-scores were lower in each cognitive

domain than HCs. Moreover, in the youth-onset drug-naive schizophrenia group, the

insula was negatively correlated with processing speed. No significant correlations were

found between the FC-value and PANSS score.

Conclusions: Our findings suggest widespread FC network abnormalities in the

left SFG and widespread cognitive impairments in the early stages of schizophrenia.

The dysfunctional connectivity of the left SFG may be a potential pathophysiological

mechanism in youth-onset drug-naïve schizophrenia.
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INTRODUCTION

Schizophrenia is a highly heterogeneous severe mental disorder
(1). Age of onset is an important confounding factor, with
the peak onset at 16–25 years old. This age group is defined
as youth-onset schizophrenia (2–5). A second small peak
occurs after the age of 40 years old, referred to as late-onset
schizophrenia. Compared with late-onset schizophrenia, youth-
onset schizophrenia experiences fewer life changes and stressors
essential for the disease’s occurrence and development (6). The
earlier the age of onset, the more serious the clinical symptoms
and cognitive impairments and the heavier the burden to
the society and family. Moreover, the neurodevelopment of
young schizophrenia patients is incomplete. Hence, the study of
schizophrenia at peak ages may provide abundant evidence to
understand neurodevelopmental abnormalities in schizophrenia.

Over the past decades, neuroimaging studies have become
a hot research area, and the region of interest (ROI) analysis
method was widely used in the etiology of schizophrenia (7).
Current studies have confirmed that the pathological mechanism
of schizophrenia is associated with the abnormality in multiple
neural circuits and networks, including default mode network
(DMN), salience network (SN), frontoparietal network (FPN),
central executive network (CEN), and frontostriatal-thalamic
circuit (8–11). However, previous studies mainly focused on
chronic schizophrenia patients. Few studies have targeted specific
age groups without considering the effects of drugs and disease
progression (8–10). Different ages of onset, medication, and
disease duration may lead to different brain structures and
function damage patterns.

The application of resting-state functional magnetic
resonance imaging (rs-fMRI) in elucidating the changes in
brain function in specific dorsolateral prefrontal cortex (DLPFC)
subareas [left superior frontal gyrus (SFG)] in the high incidence
age group has not been fully explored. The SFG is one of the vital
brain regions of the DLPFC. TheDLPFC is widely interconnected
with almost all cortical and subcortical structures, responsible for
cognition and mood (12). There is no doubt that the abnormal
resting-state functional connectivity (rsFC) of the DLPFC and
other brain regions leads to various mental symptoms and
cognitive disorders (13–15). Previous studies mainly focused on
the global perspective to understand schizophrenia; however, the
results were inconsistent or even opposite (8, 11). Zhou et al. (11)
reported decreased FC between the bilateral DLPFC and parietal
lobes, posterior cingulate cortex (PCC), thalamus, and striatum,
while He et al. (8) found increased connectivity between the SFG
and thalamus/caudate. These studies’ heterogeneity may be due
to differences in small sample size, use of drugs or not, course of
the disease, age at onset, and selection of seed points.

Numerous studies have confirmed cognitive impairment in
schizophrenia patients, involving various cognitive fields (16–
18). Cognitive impairments were regarded as core features,
existed at each stage of the disease, played a significant role in the
prognosis of schizophrenia, and considered a potential treatment
target (19–21). Recent studies have shown that the frontal
cortex’s abnormal functional connectivity was related to cognitive
function in schizophrenia, both anatomically and functionally.

An anatomical study suggested that PFC–thalamus’ decreased
connectivity was associated with impaired working memory
in schizophrenia but not associated with cognitive flexibility
and inhibition (22). Another study found that functional
connectivity between the DLPFC and task-related brain regions
was significantly impaired. The study also found significant
correlations between functional connectivity of the DLPFC and
cognitive performance, behavioral disorder, and overall function
(23). However, previous studies’ sample size was smaller, and
the sample homogeneities were lower; hence, the results were
unclear. Moreover, there is no study on the relationships between
the FC abnormal brain regions of the left SFG and MATRICS
Consensus Cognitive Battery (MCCB) in youth-onset drug-
naïve schizophrenia.

Hence, based on previous studies’ inadequacy, in this study,
we used ROI imaging methods and MCCB neurocognitive
measurement tools to explore the relationships among abnormal
functional connectivity signal value, cognitive impairments,
and clinical symptoms. It was hypothesized that (1) compared
with a healthy control (HC) group, patients with youth-onset
drug-naïve schizophrenia would show abnormal functional
connectivity of the left SFG; (2) the cognitive function of the
schizophrenia group decreased significantly in various cognitive
domains; and (3) we also explored whether the brain areas
with abnormal left SFG FC were related to cognitive and
clinical symptoms.

METHODS

Participants
A total of 66 youth-onset schizophrenia subjects and 59HCs were
involved in this study. All the youth-onset schizophrenia patients
did not take any antipsychotic drugs, and the course of the disease
was ≤24 months. Neuroimaging data were stemmed from the
Affiliated Brain Hospital of Nanjing Medical University, Jiangsu,
China, from September 2015 to December 2019 (Table 1).
Diagnosis of schizophrenia was confirmed by two experienced
psychiatrists using the Structured Clinical Interview according
to the DSM-5 criteria (24). Healthy controls (59) were recruited
through advertising in the local community. The following
inclusion criteria apply to both groups: Han people, right-
handed, aged 16–25, and able to understand survey instructions
and execute cognitive tests. The general exclusion criteria
included intellectual disability, head injury, substance abuse
or dependence, pregnancy, modified electroconvulsive therapy
(MECT) or transcranial magnetic stimulation therapy (rTMS),
other neuropsychiatric disorders, or contraindications of MRI.
These research procedures were in line with the provisions of
the review committee of the Affiliated Brain Hospital of Nanjing
Medical University. Written informed consent was obtained
from all participants before the study.

Neuropsychological and Intelligence
Quotient
The Chinese version of the MCCB was implemented by two
well-experienced psychiatrists to evaluate cognitive function
(25, 26). The MCCB is sensitive to the degree of cognitive
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TABLE 1 | Demographic data, the MCCB scores, IQ, and clinical information in patients and HC.

Variable SZ (n = 66) HC (n = 59) Statistics (t/x2/F) p-value

Age (years, mean ± SD) 19.95 ± 2.703* 21.59 ± 2.943 t = −3.230 P = 0.002a

Gender (male/female) 45/21 32/27 x2 = 2.561 P = 0.110b

Education (years, mean ± SD) 12.58 ± 2.198* 14.17 ± 2.711 t = −3.583 P = 0.010a

Duration of illness (months) 11.35 ± 7.796 NA NA NA

PANSS

Positive symptoms 22.50 ± 3.647 NA NA NA

Negative symptoms 20.83 ± 4.037 NA NA NA

General 44.59 ± 4.268 NA NA NA

All totals 87.85 ± 9.147 NA NA NA

Cognitive domains

Speed of processing 35.61 ± 12.381 51.2 ± 8.062 F = 59.278 P < 0.001

Attention/Vigilance 34.74 ± 10.562 47.29 ± 7.197 F = 32.595 P < 0.001

Working memory 34.74 ± 8.526 44.32 ± 6.637 F = 26.859 P < 0.001

Verbal learning 34.98 ± 11.850 47.22 ± 9.512 F = 36.613 P < 0.001

Visual learning 39.58 ± 11.555 50.02 ± 7.210 F = 30.858 P < 0.001

Reasoning/problem solving 44.89 ± 12.024 53.93 ± 6.721 F = 33.119 P < 0.001

Social cognition 34.39 ± 11.290 40.59 ± 10.301 F = 10.651 P = 0.001

Overall composite 28.91 ± 12.806 46.44 ± 7.548 F = 80.651 P < 0.001

IQ 105.30 ± 11.140 117.64 ± 9.423 t = −6.645 P < 0.001a

Data are shown as mean ± SD. Compared with the HC group, the patient group showed a significant difference in age and education (*p < 0.05). The scores of seven cognitive

domains in the patient groups were significantly lower than in the HC group. SZ, schizophrenia; HC, healthy control; MCCB, MATRICS Consensus Cognitive Battery; IQ, intelligence

quotient; PANSS, positive and negative syndrome scale; NA, not applicable.
aTwo-sample t-test. bChi-square test.

impairment in seven domains, including speed of processing,
attention/vigilance, working memory, verbal learning, visual
learning, reasoning, problem solving, and social cognition (25,
26). Each domain’s raw scores were corrected by age, gender,
and education to get T-scores. The Wechsler Adult Scale
of Intelligence (WAIS) was used to evaluate the intelligence
quotient (IQ). The severity of mental symptoms was assessed
by the positive and negative syndrome scale (PANSS) (27),
which includes a positive, negative, and general psychopathology
scale (27).

Image Data Acquisition
Neuroimaging was conducted by Germany Siemens 3.0 T signal
scanner at the Department of Radiology, Nanjing Brain Hospital,
China. All subjects were asked to relax and stay awake and
still, and think nothing. Echo planar imaging (EPI) was used
to acquire the BOLD-fMRI images. Details of our scanning
parameters are provided in Supplementary Table 3.

Data Preprocessing and Processing
Data Processing Assistant for Resting-State fMRI (DPARSF4.4)
advanced edition (http://rfmri.org/DPARSF) was used to
preprocess all imaging data (28). The imaging data were
calculated in an original space warped by diffeomorphic
anatomical registration through exponential Lie algebra
(DARTEL). The first four images were discarded for each
participant to reduce the influence of noise and magnetic field
signal instability, and the remaining imaging was corrected for
the acquisition time delay between slices. All subjects with head

movement translation >2mm or rotation angle more than 2◦

in any direction were excluded (29). Then, functional images
were normalized to the Montreal Neurological Institute (MNI)
standard space, and the data were resampled in voxels of 3 × 3
× 3mm size. Low-frequency filtering (0.01Hz < f < 0.08Hz,
TR = 2 s) was employed to remove the high-frequency drift
after removing covariate (whole brain signal, cerebrospinal fluid,
and movement) interferences. Finally, the resulting imaging
underwent spatial smoothing using 4 × 4 × 4mm as a Gaussian
smoothing kernel to improve the signal-to-noise ratio.

ROI Selections
According to our previous study, meta-analysis results of regional
homogeneity (ReHo) abnormal brain changes reported MNI
coordinates between schizophrenia and HCs. We chose the
left SFG (x = 0, y = 36, z = 48; radius: 6mm) as the
seed point and created FC brain maps with whole brain (see
Supplementary Material for details).

Functional Connectivity and Statistical
Analysis
The left SFG was selected as seed point and DPARSF software
was used to perform functional connectivity analysis. First, the
time series of the left SFGwere extracted, and correlation analyses
were conducted with the average time series of other voxels in
the whole brain to acquire a correlation coefficient (r-value).
Then, the left SFG functional connection network map of each
individual was obtained. Next, Fisher Z transformation was used
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FIGURE 1 | The difference in each cognitive domain between youth-onset schizophrenia and healthy control. The results suggested that patients exhibited

significantly lower scores on all the cognitive domains of MCCB. ***Represent p < 0.001. **Represent p < 0.05. Error bars represent standard deviation.

to convert r-value into z-value to improve normal distribution,
thus getting the zFC map of the whole brain for all participants.
Finally, zFC-values were used for statistical analysis.

Two-sample t-test was performed using DPABI software
(http://rfmri.org/dpabi) to find the FC abnormal brain areas
between the youth-onset drug-naïve schizophrenia group and
HC group. Age, gender, years of education, and frame-wise
displacement (FD) were used as covariates, and threshold-free
cluster enhancement (TFCE) method was used for multiple
comparison correction, and the significance difference level was
p < 0.05 and the cluster size >14 voxels.

Statistical Package for the Social Sciences version 25.0 (SPSS
25.0) was used for statistical analysis. The two-sample t-test was
used to compare the difference of demographics and IQ between
youth-onset schizophrenia and HCs. Chi-squared test was used
for gender. The analysis of covariance was used to analyze the
neuropsychological date after taking IQ as a covariate control.
Furthermore, Pearson’s correlation analysis was performed to
examine whether our FC findings were related to cognition and
clinical symptoms.

RESULTS

Demographic and Clinical Characteristics
The demographic and clinical characteristics are displayed in
Table 1 and Figure 1. There were significant differences in age
(p = 0.002), education (p = 0.01), and IQ (p < 0.001) between
the two groups (youth-onset schizophrenia group andHC group)
and no significant difference in gender (p = 0.11). Considering
the cognitive level can be influenced by IQ, the effects of IQ were

added to analyze model as a covariate to compare the differences
in cognitive domains between the two groups. Compared with
HCs, the youth-onset schizophrenia group demonstrated lower
scores in each cognitive domain than HCs, especially when
processing speed was more obvious.

Functional Connectivity Network
The left SFG functional connectivity outcome is shown in
Table 2 and Figure 2. Compared with HCs, results indicated
that the youth-onset schizophrenia group showed significantly
decreased FC between the left SFG and right hippocampus,
right parahippocampal gyrus, left thalamus, insula, left caudate,
bilateral precuneus, and right superior parietal lobule (SPL),
whereas an increased FC-value in the left MFG was shown
(p < 0.05, TFCE corrected). Moreover, from Pearson correlation
analysis, the insula’s FC-value was negatively correlated with
processing speed in the youth-onset drug-naïve schizophrenia
group (r = −0.313, p = 0.011, uncorrected, Figure 3). No
significant correlations were observed between FC-value and
PANSS score.

DISCUSSION

Our study is the first systematic study to explore the relationships
between abnormal brain networks of the left SFG and cognitive
impairment using the ROI method and MCCB cognitive tool
in drug-naïve young schizophrenia. Notably, we used highly
homogeneous individuals who were youth-onset, first episode,
and without any antipsychotic drugs, which effectively avoid
the influence of age at onset and other confounding factors,

Frontiers in Psychiatry | www.frontiersin.org 4 October 2021 | Volume 12 | Article 679642

http://rfmri.org/dpabi
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Qiu et al. Resting-State FC in Schizophrenia

TABLE 2 | Altered regions of left SFG FC based on the ROI analysis between youth-onset schizophrenia and HC.

Brain regions Hemisphere Peak MNI Cluster size (voxel) T-value

x y z

SZ < HC

Hippocampus Right 33 −12 −18 88 −3.1232

Parahippocampal gyrus Right 21 −24 −18 16 −2.7411

Thalamus Left −3 −21 3 17 −2.5512

Insula – −24 −36 9 26 −3.0971

Caudate Left −15 15 12 46 −3.2242

Precuneus Right 9 −42 45 72 −3.9765

Precuneus Left −6 −48 66 35 −3.5159

Parietal_Sup Right 30 −66 60 57 −3.4324

SZ > HC

Frontal_Mid Left −39 21 51 22 3.5538

SFG, superior frontal gyrus; FC, functional connectivity; ROI, region of interest; MNI, Montreal Neurological Institute; SZ, schizophrenia; HC, healthy control.

FIGURE 2 | Correlations between the FC of altered regions and cognitive assessments in youth-onset schizophrenia. Pearson’s correlation analysis in the patients

showed that the decreased FC between left SFG and insula was negatively correlated with processing speed (r = −0.313, *P < 0.05). SFG, Superior Frontal Gyrus;

FC, functional connectivity.

thus giving us a new perspective to understand schizophrenia.
As expected, compared with HCs, the youth-onset drug-naïve
schizophrenia group showed significant differences in several
neural loops and networks, including the fronto-limbic pathway,
fronto-striatal-thalamic-cortical loops, FPN, DMN, CEN, and
SN. Each cognitive domain in patients with drug-naïve youth-
onset schizophrenia showed poor performance, consistent with
a previous study (16). In addition, we identified significant
correlations between decreased FC and cognitive domain scores.
Our research found that the insula was negatively correlated with
the speed of processing. Therefore, the abnormal FC between
the left SFG and insula may be the underlying neural basis of
cognitive disorder. Regrettably, we found no correlation between

abnormal left SFG functional connectivity and clinical symptoms
in the patient’s group. Future studies with larger sample sizes
need to be used for further exploration.

In the present study, we observed decreased connectivity in
the bilateral precuneus (PCUN), right hippocampus, and right
parahippocampal gyrus associated with left SFG in youth-onset
schizophrenia. These regions are the important node of DMN
(30), indicating that FC between the SFG andDMN are destroyed
in the early stage of schizophrenia. In the resting state, DMN has
a strong spontaneous activity closely related to the human brain’s
monitoring of the external environment, awarenessmaintenance,
emotion processing, self-introspection, and episodic memory
extraction (30). Numerous structural and functional imaging
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studies have confirmed abnormal DMN (31). A disconnectivity
functional survey revealed that some brain regions of the DMN in
schizophrenia patients, such as the PCUN and part of the frontal
lobe, have abnormal functional connectivity (11). The PCUN
plays a vital role in regulating the self-consciousness of DMN,
a key point of information transmission (30). Evidence from
the cognitive model of schizophrenia suggests that the normal
interaction disorder between these regions may be the basis
of many related symptoms and cognitive deficits (32). Recent
studies on the first-degree relatives of patients with schizophrenia
found decreased DMN activity in unaffected siblings of
schizophrenic patients (33, 34). Moreover, the hippocampus and
parahippocampal gyrus also belong to the limbic system. Recent
studies have found that the functional connectivity between
the medial prefrontal cortex and hippocampus/parahippocampal
gyrus was weakened. The parahippocampal gyrus serves as the
primary cortical input to the hippocampus, critically involved
in cognition and emotion. The hippocampus is considered
an emotional and memory hub. Dysfunctional connectivity
between the PFC and hippocampus/parahippocampal gyrus in
schizophrenia patients leads to dysregulation in workingmemory
(10, 35). Boyer et al. (36) believed that hippocampal dysfunction
might cause abnormal long-term memory in patients with
schizophrenia, supported by Zhu et al. (37). A meta-analysis
of neural correlates of functional outcome in schizophrenia
included 37 structural and 16 functional brain imaging studies.
A total of 1,631 schizophrenia patients were examined for
neural correlation. They found an abnormal alteration in the
fronto-limbic system no matter the functional and structural
neuroimaging. They suggested that reduced gray matter in
the frontal limbic area impairs functional outcomes and leads
to extensive cognitive impairment (38). Another study found
that compared to HCs, the internal connections between the
hippocampus and prefrontal cortex were damaged in first-
episode schizophrenia (FES) patients and an at-risk mental state
(ARMS) in delayed matching to sample (DMTS) task (39). As
described above, this suggested that left SFG integration disorder
appeared before the onset of schizophrenia andmaybe a potential
endophenotype, which provides a basis for early monitoring and
early intervention.

Recently, studies about the insula and cognitive impairment
are given attention, particularly in the collaborative management
of cognitive impairments with the frontal cortex. Salience
network anatomy areas include the insula and anterior cingulate
cortex (ACC). The insula is an information hub, mainly involved
in processing emotion and cognition (40, 41). A postmortem
study showed a general decrease in myelin and glial density,
especially in the white matter region that connects the frontal
lobe with the rest of the brain (42, 43). Extensive white matter
abnormalities in DTI are associated with the decreased speed of
processing (44). Another resting-state FC study found significant
correlations between several networks and working memory and
processing speed, especially in SN, attention network (AN), and
DMN in the schizophrenia group (45). Peter et al. found that
the DLPFC-insular connection pathway was related to emotion
and cognition; the higher the abnormal degree of DLPFC-
insular connection, the more severe the emotional and cognitive

FIGURE 3 | Functional connectivity analysis based on the seed of left SFG

between youth-onset schizophrenia and healthy control. The color bar

represents T-scores. Warm color represents regions where youth-onset

schizophrenia had higher FC, and cold color represents lower FC than HCs.

The statistical threshold was set with a combination of voxel-level p < 0.05

and cluster size >14 mm3 voxels for left SFG FC analysis (youth-onset drug

naïve schizophrenia vs. HCs), TFCE corrected after controlling age, gender,

education, and frame-wise displacement. L, left; R, Right.

impairment (46). In addition, some studies have found that the
insula plays a regulatory role in the activation vs. inactivation
states of the CEN and the DMN. Therefore, structural and
functional changes in the insula may have participated in the
onset and progression of schizophrenia (47). In the present
study, our main observations were decreased FC between the left
SFG and insula. Moreover, a negative correlation between the
abnormal FC of the left SFG-insula and processing speed was
found. Our findings indicate that lower SFG-insula functional
connectivity was related to better cognitive function. These
findings suggest that SFG functional connectivity abnormalities
may have a negative regulatory mechanism on cognitive function
in early schizophrenia. In view of the exploratory nature of the
analysis, it should be interpreted with caution.

Compared with HCs, we found decreased connectivity
between the left SFG and left caudate/thalamus in youth-onset
drug-naive schizophrenia. The caudate nucleus is an important
part of the striatum. The lesions of dopaminergic neurons in the
striatum may lead to many psychiatric symptoms and cognitive
disorders. A multimodal study suggests that dysfunction of the
prefrontal cortex in schizophrenia was the cause of dopamine
metabolism disorder. Meanwhile, the abnormal relationships
between dopamine and the prefrontal cortex may be among the
leading causes of schizophrenia (48). The connection between
the PFC and thalamus/striatum may control the integration
of perception, information representation, and the way people
think abstract. Based on an ROI study using DLPFC as seed
point to analyze the difference between 17 FES patients and 17
healthy subjects, they found decreased functional connectivity
between bilateral DLPFC and the parietal lobe, PCC, thalamus,
and striatum in patients with FES, which supported our outcome
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(11). These results suggest that the intrinsic neuronal activity
of the fronto-striatal-thalamic-cortical loops was abnormal in
young schizophrenia patients, which may be the pathological
mechanism of young schizophrenia. However, some authors
failed to replicate this result fully and even found increased FC-
value in the thalamus and striatum (8). These reasons may have
contributed to the heterogeneity in schizophrenia patients. Age
at onset may be an important contributing factor, and another
factor may be related to the drug and the disease course. In
the future, research on patients of different age groups could
help in better understanding schizophrenia and help develop
personalized service and management.

Moreover, we observed decreased FC between the SFG
and SPL, where increased FC was seen between SFG and
MFG. These regions are the essential components of the FPN
(49), which is related to memory, language attention, spatial
attention, and visual processing (50). A previous study confirmed
that schizophrenia patients with abnormal FPN, including
functional and structural connectivity, are highly correlated
with schizophrenia symptom scores and cognitive function (51).
Middle frontal gyrus is a significant part of the PFC involving
cognition and emotion management (52). Our previous study
confirmed that the MFG was related to attention/vigilance and
social cognition (16). The SPL is one of the nodes in FPN, which
is related to attention. However, in this study, we did not find
any relationship between FPN and cognition, where sample size,
sample population, and drug might be the main reasons for the
controversy of our findings.

LIMITATION

Although our study tries to keep the sample homogeneity and
reduce the influence of confounding factors, there are still
some limitations. Firstly, this study is cross-sectional, and the
causal relationship between abnormal network changes and
cognitive function is still unclear. Further longitudinal follow-
up studies could answer these questions. Moreover, age and
education were not matched between schizophrenia patients and
HCs. However, we have corrected age, sex, and education to
analyze crude cognitive scores and imaging data analysis. Lastly,
the follow-up study will further expand the sample size and
apply more rigorous statistical correction methods to explore
the relationship between abnormal functional connectivity and
cognition in schizophrenia.

CONCLUSION

In conclusion, our findings suggest widespread FC network
abnormalities in the left SFG and cognitive impairments
in the early stages of schizophrenia. The left SFG network

contributes significantly to impaired cognition, which may
underlie the neuropathological mechanism of schizophrenia,
thus further promoting our understanding of frontal cortical
dysfunction as a biomarker of cognitive impairments and a
neuro-intervention target.
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