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Recently, the dimensional approach has attracted much attention, bringing a paradigm

shift to a continuum of understanding of different psychiatric disorders. In line with

this new paradigm, we examined whether there was common functional connectivity

related to various psychiatric disorders in an unsupervised manner without explicitly

using diagnostic label information. To this end, we uniquely applied a newly developed

network-based multiple clustering method to resting-state functional connectivity data,

which allowed us to identify pairs of relevant brain subnetworks and subject cluster

solutions accordingly. Thus, we identified four subject clusters, which were characterized

as major depressive disorder (MDD), young healthy control (young HC), schizophrenia

(SCZ)/bipolar disorder (BD), and autism spectrum disorder (ASD), respectively, with the

relevant brain subnetwork represented by the cerebellum-thalamus-pallidum-temporal

circuit. The clustering results were validated using independent datasets. This study is

the first cross-disorder analysis in the framework of unsupervised learning of functional

connectivity based on a data-driven brain subnetwork.

Keywords: clustering, functional connectivity, biomarker, multiple clustering, psychiatric disorder

1. INTRODUCTION

Abnormal functional connectivity (FC) in the brain has been extensively studied for a better
understanding of psychiatric disorders (1–3). Typically, an FC study focuses on a particular
psychiatric disorder, and reports the brain regions related to abnormal FC for psychiatric
disorders. The results of these individual studies are not necessarily consistent, even for the
same psychiatric disorder (4, 5). Nonetheless, several meta-analyses imply that there may be
shared brain regions of abnormal FC that are related to different psychiatric disorders. A
meta-analysis focusing on the default mode network (DMN) (6) suggests that the DMN is a
consistent biological correlate of various psychiatric disorders, including major depressive disorder
(MDD), bipolar disorder (BD), and schizophrenia (SCZ). Furthermore, a meta-analysis focusing
on psychomotor systems, including the DMN (7), suggests that the balance in psychomotor
mechanisms may determine MDD, BD, and SCZ. Recently, a large sample study by (8) showed that
shared connectomic abnormalities among MDD, BD, and SCZ are bilateral thalamus, cerebellum,
frontal pole, supramarginal gyrus, postcentral gyrus, lingual gyrus, lateral occipital cortex, and
parahippocampus. Another recent large sample study by (9) showed that the common abnormality
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among MDD, BD, and SCZ is frontoparietal network
connectivity. In contrast, in non-FC based studies, a genome-
wide association study (10) showed substantial overlap of genetic
influences among MDD, BD, and SCZ. A meta-analysis by (11)
showed that gray matter density decreased in the dorsal anterior
cingulate and right/left insula for MDD, BD, SCZ, addiction,
obsessive-compulsive disorder, and anxiety disorders. In a
large sample study (12), it was shown that SCZ, BD, and ASD
subjects shared similar white matter microstructural differences
in the body of their corpus callosum, as compared to healthy
subjects. Such cross-disorder analysis is vital for a comprehensive
understanding of various psychiatric disorders and for deepening
our understanding of a particular psychiatric disorder. In the
present study, we aimed to perform cross-disorder analysis using
a novel unsupervised approach to reveal the underlying shared
functional connectivity related to psychiatric disorders.

Typically, to elucidate the relevant functional connectivity for
a psychiatric disorder, FC is contrasted between patients and
healthy control (HC) subjects using various machine learning
techniques in a supervised manner (13–17). Diagnostic label
information is used as the response variable in supervised
learning, which is based on clinical criteria such as the Diagnostic
and Statistical Manual of Mental Disease (DSM) (18). DSM
diagnosis defines various types of psychiatric disorders based on
several clinical symptoms that are shared by these psychiatric
disorders. It relies on clinical interviews to which patients
respond, which makes the diagnosis subjective by nature.
Moreover, various psychiatric disorders share common cognitive
deficits with high comorbidity across psychiatric labels, which
raises questions about the underlying structure and assumptions
of the classification (19, 20). All these aspects of DSM diagnosis
imply that the diagnostic label does not necessarily denote the
“ground truth” (21).

To overcome this problem of the diagnostic label, it will
be of interest to perform unsupervised analysis, that is, cluster
analysis. Combined with the feature selection procedure, the
unsupervised method allows the identification of functional
connectivity related to psychiatric disorders, without explicitly
using psychiatric labels. Such an approach is in line with
the dimensional approach proposed by the Research Domain
Criteria (RDoC), which is based on the mechanism of disorders
rather than their symptoms (22). Moreover, it is quite useful
to perform a cluster analysis that includes multiple psychiatric
disorders because it enables us to reveal a common or different
functional connectivity for cross-disorder analysis without
directly using psychiatric labels. Nonetheless, cluster analysis
for cross-disorders is currently limited to clinical data, such as
symptom data, genetic data, and EEG data only (23–25). Though
several studies have performed FC-based cluster analysis for a
single disorder (26, 27), to the best of our knowledge, no study
for cross-disorders has performed cluster analysis using FC data.

The objective of the present study was hence to examine
whether there is a common functional connectivity related to
various psychiatric disorders. We performed a cross-disorder
analysis using FC data in an unsupervised manner. To this
end, we applied the ROI-based multiple clustering method,
which has been recently developed specifically for clustering
functional connectivity matrices (28). This ROI-based multiple

clustering method is unique because it optimally divides ROIs
into several subsets; for each subset of ROIs, an optimal
cluster solution is identified accordingly. In the present paper,
we refer to each subset of ROIs as a “view” in which the
terminology carries connotations that help us view only a
particular set of ROIs for a single clustering. For multiple
clustering, we identify multiple views in which subject clustering
is performed separately. The ROI-based method that we use
optimizes both view structures and subject clustering in each view
simultaneously (for more details, please see section 2.1). This
specific aspect of the method enables us to identify a data-driven
brain subnetwork that is relevant to subject cluster patterns.
Furthermore, this method reduces the search space of parameters
from combinations of connectivity to combinations of nodes,
enabling efficient inferences of clustering for high-dimensional
FC data. We applied this method to the FC dataset consisting
of 322 subjects with various psychiatric disorders. For a specific
brain subnetwork, there were four clusters characterized by
MDD, young HC, SCZ/BD, and ASD, respectively. To examine
the reproducibility of the clustering results, we applied the
yielded model of classification to independent data, which largely
confirmed the reproducibility of the results.

In the following sections, we first outline the multiple
clustering method, which is unique to the present study. Second,
we describe the datasets for both discovery and validation.
Third, we analyze the clustering results for discovery data and
classification results for the validation data. Finally, we discuss
the interpretations of the clustering results and methodological
novelty of the present study.

2. MATERIALS AND METHODS

2.1. ROI-Based Multiple Clustering Method
In this study, we applied a recently developed multiple clustering
method (28) to perform cluster analysis. Multiple clustering is
generally based on the assumption that multiple cluster solutions
of objects (subjects) exist in a given dataset, and there are several
approaches to revealing the underlying multiple-view structure
in data [for comprehensive reviews, see (29, 30)]. In the present
study, we focused on “subspace clustering,” in which cluster
solutions were obtained for several subspaces (i.e., subsets) of
features. It was not known in advance which subsets of features
should be used for optimal cluster solutions; hence, the multiple
clustering method entailed the optimization of both (exclusive)
feature partitioning and cluster solutions. The advantage of such
an approach was that we did not discard from the analysis any
irrelevant features for a particular cluster solution, but utilized
these features for another cluster solution, which widened the
scope of possibilities to identify optimal cluster solutions.

The novel multiple clustering method (28) was developed
specifically for clustering subjects based on functional
connectivity matrices without vectorization. The uniqueness
of this method is its ROI-based approach rather than the
conventional FC-based approach, which is achieved by fitting
the data to the Wishart mixture model (hereafter referred to
as “ROI-based multiple clustering method”). As an output, the
method yields several pairs of relevant ROIs and subject cluster
solutions (Figure 1A), where each pair is referred to as “view.”
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FIGURE 1 | Conceptual illustration of multiple clustering methods. (A) ROI-based multiple clustering method. ROIs are partitioned into several groups (views). In each

view, the subject cluster solution is obtained using a particular subset of ROIs (i.e., a subnetwork). The FC matrix represents connectivity within the subnetwork. For

instance, in this illustration, the connectivity within view 1 consists of three ROIs, which are denoted by the 3× 3 FC matrix. This method identifies optimal pairs of

subnetworks and cluster solutions, where optimization is performed simultaneously for both the subnetwork and cluster solution. The color in the subnetwork for

subjects A–G denotes a cluster-specific pattern of functional connectivity. For simplicity, there are two views in this example. (B) FC-based multiple clustering method.

Instead of ROIs, FCs are exclusively partitioned for the subject cluster solutions. This method identifies optimal pairs of subsets of FCs and cluster solutions.

It is noteworthy that all FCs pertaining to a selected subset of
ROIs are evaluated by fitting to the Wishart mixture model,
which results in subnetwork identification. The number of views
and clusters are automatically inferred in the nonparametric
Bayesian framework (31), setting the concentration parameter
for the Chinese restaurant process to one (32).

The key idea of this method is the assumption of
independence between subnetworks, each of which consists
of several ROIs. This assumption does not hold for real

data because subnetworks in the brain are putatively
interconnected in a complex manner (33). Hence, to meet
this assumption, the “whitening” procedure is applied for
the correlation matrices as a pre-processing requirement
[for more details, please refer to (28)]. It is expected
that the whitening procedure preserves cluster structures
within subnetworks, whereas the functional connectivity
between subnetworks becomes zero. Furthermore, it is
expected that this procedure normalizes the correlation
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matrices such that it enhances the generalization of
the yielded model.

One limitation of the method is that a conventional approach
to removing the influence of confounding factors (e.g., age
and sex) based on Generalized Linear Model (GLM) cannot be
applied for pre-processing of FC. This is because the positive
definiteness of the FC matrices would be lost by the application
of the GLM. As an alternative approach, we consider the
confounding factors in the post-hoc analysis (for more details,
please refer to section 4.4).

The optimization strategy of the method was based on a
greedy search, which was initialized with a random configuration
of views and clusters. We set the number of initializations to
1,000, which in turn yielded 1,000 models. For model selection,
we used the heuristic method used by (28), aiming to select
a stable and well-fitted model. First, we selected the top ten
models in terms of their posterior distribution of the relevant
parameters. Among these ten models, we subsequently evaluated
the agreement of view memberships between models using the
Adjusted Rand Index (ARI) (34). Then, we identified a pair of
models that gave the largest value of ARI. The final model was the
one in this pair, which gave a larger posterior value. To regularize
the correlation matrices, we simply added a small fraction (0.05)
to the diagonal elements and subsequently converted it into a
correlation matrix.

As a reference method for clustering, we also performed
an FC-based multiple clustering method (27, 35), in which a
connectivity matrix was vectorized, and each FC was considered
a feature (Figure 1B). The vectorized FCs were then partitioned
into views by fitting to Gaussian mixture models, in which the
number of views and clusters were automatically determined in a
data-driven manner.

2.2. Data
We used two resting-state FC datasets that are publicly available
at the Strategic Research Program for Brain Sciences (SRPBS)1,
in which FC was evaluated in a conventional manner using
Pearson’s correlation coefficient for mean blood-oxygen-level-
dependent signals between two ROIs. These two datasets were
collected at the University of Tokyo (hereafter referred to as
“UTO”) and Kyoto University (hereafter referred to as “KYO”),
respectively. The FC dataset of the UTO was obtained using the
same MRI scanner, while the KYO dataset was obtained using
two different MRI scanners. Hence, we further divided the KYO
data into two datasets according to the scanner type: “KYO-A”
and “KYO-B.” Detailed information on MRI scanning for UTO
and KYO is provided in Table 1. Regarding brain parcellation,
the BAL atlas, which is a composite of the BrainVisa Sulci Atlas
(BSA) (36) and automated anatomical labeling (AAL) atlas (37)
with 140 ROIs [for more details, please refer to (38)], was used
for both UTO and KYO.

The UTO dataset consisted of 322 subjects: 170 HC, 62
MDD, 41 BD, 35 SCZ, 10 ASD, and 4 dysthymia (DY) subjects,
respectively (Table 2). The KYO-A dataset consisted of 219

1SRPBS Multidisorder Connectivity Dataset. Available online at: https://

bicrresource.atr.jp/srpbsfc/

TABLE 1 | MRI scanning information for UTO (the University of Tokyo) and KYO

(Kyoto University) data.

Configuration UTO KYO-A KYO-B

Scanner type GE MR750W Siemens trimtrio Siemens trio

Magnetic field strength (T) 3.0 3.0 3.0

Field of view (mm) 212 × 212 212 × 212 256 × 192

Matrix 64 × 64 64 × 64 64 × 48

Number of slices 40 40 30

Number of volumes 240 240 177

(+4 extra volumes

for dummy scan)

In-plane resolution (mm) 3.3 × 3.3 3.3125 × 3.3125 4.0 × 4.0

Slice thickness (mm) 3.2 3.2 4.0

Slice gap (mm) 0.8 0.8 0

TR (ms) 2,500 2,500 2,000

TE (ms) 30 30 30

Total scan time (mm:ss) 10:00 10:00 6:00

Flip angle (deg) 80 80 90

Slice acquisition order Ascending Ascending Ascending

(interleaved)

In addition, the instructions for participants and other imaging conditions were as follows:

For UTO, “Please relax. Do not think of anything in particular. Do not sleep, but keep

looking at the crosshair mark presented.;” for both KYO-A and -B, “Please relax. Fixate

on the central crosshair mark and do not think of anything during rest.” The lights in the

scan room were dimmed.

TABLE 2 | Psychiatric and demographic information of subjects in UTO (The

University of Tokyo) and KYO (Kyoto University) datasets.

Dataset Diagnosis Sample size Sex Age

N % M/F Mean Std

UTO HC 170 52.8 78/92 35.5 17.4

(discovery) MDD 62 19.2 36/26 38.7 11.6

BD 41 12.7 26/15 34.2 9.1

SCZ 35 10.8 23/12 31.6 10.3

ASD 10 3.1 9/1 37.0 9.5

DY 4 1.2 3/1 30.2 16.1

Sum 322 100 175/147 35.5 14.7

KYO-A HC 159 72.6 93/66 36.5 13.5

(validation) MDD 16 7.3 10/6 42.5 12.4

SCZ 44 20.1 20/24 41.2 10.9

Sum 219 100 123/96 37.9 13.1

KYO-B HC 75 63.0 48/27 28.8 9.0

(validation) SCZ 44 37.0 25/19 37.2 9.6

Sum 119 100 73/46 31.9 10.1

HC, healthy control; MDD, major depressive disorder; BD, bipolar disorder; SCZ,

schizophrenia; ASD, autism spectrum disorder; DY, dysthymia.

subjects: 159 HC, 16 MDD, and 44 SCZ. The KYO-B dataset
consisted of 119 subjects: 75 HC and 44 SCZ. We used the UTO
data as discovery data, where cluster analysis was performed
using the ROI-based multiple clustering method, and used the
KYO-A and KYO-B datasets as validation data to examine the
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reproducibility of the UTO clustering results. In addition, we
used the dataset of traveling subjects (TS) as validation data.
The SRPBS depository included FC datasets for nine HC subjects
who underwent fMRI scanning at different sites or with different
scanners. These subjects were scanned three times for the UTO
and KYO-A scanners. There was no overlapping of subjects
observed among the UTO, KYO, and TS datasets.

3. RESULTS

First, we performed cluster analysis for the UTO data by fitting
the ROI-based multiple clustering method. Second, to verify the
clustering results of the UTO data, we classified the subjects in
the KYO data based on the statistical model inferred from the
UTO data. For further verification, we classified the subjects in
the TS dataset based on the UTO model. Finally, for the purpose
of comparison, we performed a supplementary analysis of the
UTO data using the supervised learning method.

3.1. Discovery Data
We applied the ROI-based multiple clustering method to UTO
data. For comparison with the clustering results, we also applied
the FC-based multiple clustering method accordingly.

3.1.1. Cluster Solutions
The ROI-based multiple clustering method yielded 15 views
(number of ROIs, 2–25; number of clusters, 3–77; Table 3). In
this analysis, we assigned view labels and cluster labels as follows.
Views were sorted in ascending order of the number of subject
clusters in a view, whereas clusters in each view were sorted in
a descending order of the number of subjects. The FC-based
multiple clustering method yielded 13 views (number of FCs, 26–
2,830; number of clusters, 5–10). Views and clusters were sorted
in the same manner as the results of the ROI-based multiple
clustering method.

For each view, we evaluated the association between cluster
labels and psychiatric disorders, including HC. For the ROI-
based multiple clustering method, the subject clusters in view 4
were significantly associated with psychiatric disorders, as shown
by the Pearson’s χ2 test for contingency tables (simply referred
to as “χ2 test” hereafter) (p = 0.0002, significant at the 0.05 level
with Bonferroni correction; Figure 2A). In contrast, for the FC-
based multiple clustering method, no significant association was
found with the Bonferroni correction (Figure 2B). Therefore,
for further analysis, we focused on view 4 yielded by the ROI-
based multiple clustering method (we discuss the remainder of
the views in section 4.1).

Regarding view 4, we first examined the distribution of
psychiatric labels in the clusters. In this view, 12 clusters were
yielded, with sample sizes of 111, 77, 75, 45, 4, 4, 1, 1, 1, 1, 1, and
1 for clusters 1–12, respectively (Table 4). For further analysis,
we focused on clusters 1–4, which had sample sizes larger
than 10. To alleviate the imbalanced distribution of psychiatric
labels in the data, we evaluated the proportions of subjects
in the disorder-wise manner (Figure 3A), which showed that
the subject distribution of these clusters was closely associated
with psychiatric labels. In contrast, the proportions of subjects

TABLE 3 | Summary of the multiple clustering results.

ROI-based method FC-based method

View ID Number of Number of View ID Number of Number of

ROIs clusters FCs clusters

1 2 3 1 161 5

2 3 5 2 128 5

3 25 7 3 53 5

4 15 12 4 26 5

5 7 13 5 126 6

6 9 13 6 325 7

7 7 14 7 421 8

8 14 14 8 340 8

9 11 16 9 2,820 9

10 9 19 10 1,238 9

11 6 28 11 774 9

12 6 29 12 2,830 10

13 9 36 13 488 10

14 8 60

15 9 77

Sum 140 9,730

The view ID is sorted in ascending order of the number of clusters for each method.

evaluated in a cluster-wise manner reflected the imbalanced
distribution of psychiatric labels in the data (Figure 3B). For
a better understanding of clusters, hereafter, we deal with
the proportions of subjects in a disorder-wise manner, as in
Figure 3A. Based on the disorder-wise proportions of subjects,
we characterized these clusters in terms of the proportion of each
psychiatric label over the clusters as follows: cluster 1, MDD;
cluster 2, HC; cluster 3, SCZ/BD; and cluster 4, ASD. Note that
we combined SCZ and BD because their subject distributions
were similar for clusters 1–4; for any pair of clusters, there was
no difference noted in the distributions for the two psychiatric
labels using the χ2 test.

For each pair of clusters, we performed the χ2 test on
the association between the cluster and psychiatric labels. To
this end, we focused on specific psychiatric disorders that
characterized the pairs of clusters in question. For instance, to
test the pair of clusters 1 and 2, we considered the psychiatric
labels of MDD and HC only because these psychiatric labels
characterize clusters 1 and 2, respectively. We found that these
associations were significant at a level of 0.05, for any pair of
clusters (Figure 3C), except for the pair of clusters 2 and 4 (p =

0.069), which supported the aforementioned characterization of
the four clusters.

We also characterized the subject clusters using demographic
and clinical information. It was found that age was significantly
related to these clusters (p = 4.4 × 10−6; Figure 3D). The
mean age is at 36.4, 29.5, 35.8, and 40.9 years for clusters
1–4, respectively (Supplementary Figure 1A), showing that it
is rather small for cluster 2. Moreover, we examined the
association between age and psychiatric disorders. For HC,
the age difference between cluster 2 and the remaining
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FIGURE 2 | Associations between cluster labels and psychiatric disorders. (A) Results of the ROI-based multiple clustering method. (B) Results of the FC-based

multiple clustering method. The horizontal axis denotes the view ID, whereas the vertical axis denotes the negative logarithm of the p-value yielded by the χ2 test to

evaluate the association between the corresponding cluster labels in the view and psychiatric labels. The red line denotes the significance level at 0.05, whereas the

dotted line denotes the significance level at 0.05, with Bonferroni correction.

three clusters was significant (Kruskal–Wallis test, p =

0.0003), whereas such differences were not significant for
MDD, SCZ, and BD (p = 0.21, 0.39, and 0.10, respectively;
Supplementary Figures 1B–D).

To summarize, the results of the analysis of the four clusters
suggest that we may characterize the clusters in view 4 as
follows:

• Cluster 1: MDD
• Cluster 2: young HC
• Cluster 3: SCZ/BD
• Cluster 4: ASD

where “young HC” denotes the HC subjects of a relatively young
age (around 20 years).

For the characterization of the clusters, it is noteworthy
that HC (as well as the remainder of the psychiatric disorders)
is, to some extent, included in all clusters. One may wonder
whether there is a difference in depression scores (BDI or
CES-D) for HC between these clusters. For BDI, the difference
among clusters was not significant (Kruskal–Wallis test, p
= 0.58), whereas for CES-D, the difference was significant
(p = 0.016). Furthermore, for CES-D, the pairwise test for
these clusters suggests that the difference was significant for
the following pairs of clusters: cluster 4 < cluster 3 (p =

0.0044), cluster 4 < cluster 2 (p = 0.022), and cluster 1
< cluster 3 (p = 0.048). In particular, this result provides
additional characterization for Cluster 4 as a non-depressive
disorder. We discuss the interpretation of this result in
section 4.3.

3.1.2. Relevant Brain Region
Furthermore, we examined the relevant brain regions for the
four clusters in view 4. The subnetwork for view 4 consisted of
a cerebellum-thalamus-pallidum-temporal circuit. The relevant

TABLE 4 | Distribution of psychiatric disorders of UTO data for clusters in view 4.

Cluster ID HC MDD SCZ BD ASD DY Sum

1 53 29 12 14 1 2 111

2 57 7 5 6 2 0 77

3 25 14 14 17 3 2 75

4 25 8 4 4 4 0 45

5 4 0 0 0 0 0 4

6 3 1 0 0 0 0 4

7 0 1 0 0 0 0 1

8 0 1 0 0 0 0 1

9 1 0 0 0 0 0 1

10 1 0 0 0 0 0 1

11 1 0 0 0 0 0 1

12 0 1 0 0 0 0 1

Sum 170 62 35 41 10 4 322

The digits in the table denote the number of subjects.

ROIs for this subnetwork are as follows: left posterior intra-
lingual sulcus; right anterior occipito-temporal lateral sulcus; left
median occipito-temporal lateral sulcus; right median occipito-
temporal lateral sulcus; left posterior occipito-temporal lateral
sulcus; right anterior inferior temporal sulcus; left posterior
inferior temporal sulcus; right posterior inferior temporal sulcus;
right polar temporal sulcus; left superior temporal sulcus;
left thalamus; left pallidum; right thalamus; left cerebellum;
and vermis.

For these ROIs, we identified FCs that were specifically
relevant to a pair of clusters. To this end, we evaluated Cohen’s
d (39) for FC differences between the pairs of clusters. We
found that several FCs largely discriminate between two clusters,
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FIGURE 3 | (A) Distribution of subjects of UTO data for view 4, normalized by each disorder. The horizontal axis denotes the cluster ID, whereas the vertical axis

denotes the proportion of subjects for each psychiatric disorder over all the four clusters. For each cluster, the proportion of subjects with a particular psychiatric

disorder is denoted by a colored bar. Note that the proportion is evaluated in the disorder-wise manner. That is, the summation of the four proportions becomes one

for each disorder (e.g., for HC, the summation of the proportions denoted by blue bars becomes one). Furthermore, note that clusters with <10 subjects were

removed. (B) Distribution of subjects of UTO data for view 4, normalized by each cluster. In contrast with (A), the proportion of subjects is evaluated in a cluster-wise

manner. That is, the summation of the five proportions becomes one for each cluster (e.g., for cluster 1, the summation of the proportions denoted in blue, red,

orange, purple, and green becomes one). (C) Results of the χ2 test for the association between pairs of cluster labels and pairs of psychiatric labels in view 4. For the

pairs of psychiatric labels, we consider those psychiatric labels that characterize the pair of clusters in question. Namely, MDD and HC for clusters 1 and 2, MDD and

SCZ/BD for clusters 1 and 3, MDD and ASD for clusters 1 and 4, HC and SCZ/BD for clusters 2 and 3, HC and ASD for clusters 2 and 4, and SCZ/BD and ASD for

clusters 3 and 4. The horizontal axis denotes the pair of cluster labels, whereas the vertical axis denotes the negative logarithm of the p-value by the χ2 test. (D)

Characterization of four clusters in view 4. The horizontal axis denotes demographic/clinical indices, whereas the vertical axis denotes the negative logarithm of the

p-value by the χ2 test on cluster labels and sex, and the Kruskal-Wallis test on cluster labels and the remainder of the indices. BDI2, beck depression inventory II;

CES-D, center for epidemiologic studies depression scale; PANASS-P, positive and negative syndrome scale consisting of positive psychopathology scale;

PANASS-N, negative scales; PANASS-general, general scales.

following the conventional criterion of d > 0.8 (Figure 4,
Supplementary Figure 2). Moreover, to narrow down to an
individual cluster, we examined the commonly important FC
in Figure 4 for a particular cluster against the remainder of
the clusters. We found that clusters 2 and 4 have a common
important FC, as shown in Figure 5:

• Cluster 2: right thalamus−left cerebellum−left thalamus
• Cluster 4: right polar temporal sulcus−right anterior inferior

temporal sulcus−right anterior occipito-temporal lateral
sulcus−(left and right) median occipito-temporal lateral
sulcus.

We discuss the interpretation of these results in more detail in
section 4.2.

3.2. Validation Data
In this section, we examine the reproducibility of the clustering
results from view 4. Here, we classified the subjects of two
independent datasets, KYO-A and KYO-B, using the clustering
model in view 4. Furthermore, we also classified subjects in the
TS data to examine the reproducibility of classification at the
individual subject level.

3.2.1. KYO Data
We examined the validity of the clustering results from view
4, which was obtained in the previous section. We classified
KYO subjects based on the UTO model (Table 5). Note that
the KYO data were not used for model estimation; hence, they
were independent of the estimated model. For pre-processing,
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FIGURE 4 | Relevant connectivity for differences between pairs of the four clusters in view 4. The relevant connectivity for the difference between cluster i and cluster j

is displayed in panel “c.i vs. c.j.” The relevance of connectivity is evaluated by Cohen’s d for the effect size of FC differences between two clusters. The connectivity

with d > 0.8 [large separability; (39)] is shown in the diagram in which the ROI is denoted as a dot. S.Li.post.L, left posterior intra-lingual sulcus; S.O.T.lat.ant.R, right

anterior occipito-temporal lateral sulcus; S.O.T.lat.med.L, left median occipito-temporal lateral sulcus; S.O.T.lat.med.R, right median occipito-temporal lateral sulcus;

S.O.T.lat.post.L, left posterior occipito-temporal lateral sulcus; S.T.i.ant.R, right anterior inferior temporal sulcus; S.T.i.post.L, left posterior inferior temporal sulcus;

S.T.i.post.R, right posterior inferior temporal sulcus; S.T.pol.R, right polar temporal sulcus; S.T.s.R, left superior temporal sulcus; thalamus.L, left thalamus; pallidum.L,

left pallidum; thalamus.R, right thalamus; cereb.L, left cerebellum; vermis, vermis. For visualization of these brain regions, see Supplementary Figure 2.

we separately applied the whitening procedure for KYO-A and
KYO-B (referred to as “KYO-whitening”). Subsequently, the
classification was performed for each subject by fitting the
Wishart mixture model of view 4 to the subject correlation
matrix. To compare the performance, a similar classification was
also performed for the KYO datasets that were whitened using
the UTO data (referred to as “UTO-whitening”).

To examine the reproducibility of the clustering results,
we consider psychiatric labels and age distributions in the
study sample. First, a visual inspection suggests that for
KYO-whitening, the psychiatric label distribution of subjects
over clusters is quite similar between KYO-A/B and UTO
(Figures 6A,C,E), whereas this is not the case for UTO-
whitening (Figures 6B,D,E). More precisely, focusing on HC,
SCZ, andMDD (MDD is applicable only for KYO-A), the χ2 test
for the difference in the subject distribution between KYO and
UTO supports this observation (Table 6). For KYO-whitening,
the difference between KYO-A and UTO was not significant
for HC, SCZ, or MDD (p = 0.52, 0.97, and 0.73, respectively).
Similarly, the difference between KYO-B and UTO was not

significant for either HC or SCZ (p= 0.43 and 0.94, respectively).
In contrast, for UTO-whitening, the difference between KYO-
A and UTO was significant for HC and MDD (p = 0.010 and
0.045, respectively) but not for SCZ (p = 0.11). Furthermore,
the difference between KYO-B and UTO was significant for SCZ
but not for HC (p = 0.031 and p = 0.44, respectively). Next,
we evaluated the extent of the difference between two clustering
results by means of Cramér’s V (40, 41) (Table 6). For KYO-
whitening, the average Cramér’s V is 0.09 for both KYO-A and
KYO-B, whereas for UTO-whitening it is 0.27 and 0.23 for
KYO-A and KYO-B, respectively. Following Cohen’s criterion for
effect size V (equivalent to Cohen’s w: small 0.10; medium 0.30;
large 0.50) (39), this result suggests that the clustering difference
is small for KYO-whitening, whereas for UTO-whitening, the
difference is medium.

Regarding age distribution, we then examined whether
the age difference among clusters for the UTO data was
reproduced for the KYO data. For both KYO- and UTO-
whitening, the age of the subjects in cluster 2 was relatively small
(Supplementary Figure 3); however, the age difference among
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FIGURE 5 | Visualization of the commonly important FC for cluster 2 (A) and for cluster 4 (B). (A) The commonly important FC that discriminates cluster 2 against the

remainder of the clusters with the criterion Cohen’s d > 0.8: right thalamus−left cerebellum−left thalamus. (B) The commonly important FC that discriminates cluster

4 against the remainder of the clusters with the criterion Cohen’s d > 0.8: right polar temporal sulcus−right anterior inferior temporal sulcus−right anterior

occipito-temporal lateral sulcus− (left and right) median occipito-temporal lateral sulcus. The numbering in the sagittal image denotes the corresponding ROI names in

the axial image. Note that there is no commonly important FC for clusters 1 and 3 with the criterion Cohen’s d > 0.8. Hence, we did not visualize brain images for

these clusters.

the clusters was minor. More precisely, for KYO-whitening, the
difference was not significant for KYO-A and KYO-B (Kruskal–
Wallis test; p = 0.41, and p = 0.53, respectively), whereas
for UTO-whitening, the difference was significant for KYO-
A but not for KYO-B (Kruskal–Wallis test; p = 0.0034 and
p= 0.36, respectively).

3.2.2. Traveling Subject Data
Finally, we examined the reproducibility of the view 4 clustering
results using TS data. We found that the reproducibility of
cluster labels at the individual level was rather limited, with
some variations in cluster labels observed for three scans at the
same site (Supplementary Table 1). Nonetheless, focusing on the
pattern of cluster labels, the reproducibility at the individual
level was statistically significant between UTO and KYO-A using

the permutation test (Figure 7). Furthermore, at the group level,
the cluster-wise distribution of the total number of subjects was
similar between UTO and KYO-A (Supplementary Table 2; p =
0.26, using the χ2 test).

3.3. Supervised Classification
The framework of our analysis has so far been unsupervised
learning, without explicitly using psychiatric label information.
We used the label information only when we characterized the
clustering results, which showed a correspondence between the
yielded clusters and psychiatric disorders. One may wonder
whether such a correspondence may become clearer in the
framework of supervised learning, explicitly using the label
information for model development. To address this issue, as a
supplementary analysis, we performed a supervised classification
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TABLE 5 | Summary of classification of KYO subjects for view 4 with

KYO-whitening and UTO-whitening.

KYO-whitening UTO-whitening

Cluster KYO-A KYO-B KYO-A KYO-B

ID HC MDD SCZ HC SCZ HC MDD SCZ HC SCZ

1 57 6 12 22 16 35 5 14 28 25

2 46 2 6 21 5 80 6 8 20 4

3 31 6 18 17 14 13 1 6 7 5

4 21 2 5 9 4 22 3 9 8 4

5 1 0 0 1 0 1 0 1 2 0

6 0 0 1 1 0 0 0 0 1 0

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 1 0

11 1 0 0 1 0 1 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0

New 2 0 2 2 5 7 0 6 8 6

Sum 159 16 44 75 44 159 16 44 75 44

The classification is obtained by fitting the ROI-based multiple-clustering method to each

KYO subject using the estimated parameters yielded from the UTO data. Note that the

ROI-based multiple-clustering method determines the number of clusters in a data-driven

manner. Owing to this nature of the method, a subject can be allocated to a new cluster

that consists of itself. In such a case, the subject is considered to be allocated to a “new”

cluster.

of the UTO data. For simplicity, we based our multiclass
classification on a pairwise classification. First, we created a
classification model for each pair of five psychiatric disorders
(HC, MDD, SCZ, BD, and ASD) in a supervised manner. In
so doing, we balanced the sample size for the corresponding
psychiatric disorders by subsampling subjects with psychiatric
disorders with a larger sample size. For this balanced data, we
evaluated the classification probability of the subjects in the data
in a framework of leave-one-out cross-validation. Subsequently,
we created a classification model using all the subjects in
this balanced dataset. Second, using the classification model,
we evaluated the classification probabilities of the remaining
subjects. In this classification method, all subjects were classified
as the test data. We then repeated this procedure for all pairs
of psychiatric disorders, which yielded a vector of classification
probability of the pair of psychiatric disorders for each subject.
Therefore, for subject i, we obtained a classification probability
pi(j, k) (j 6= k), which denoted the probability that subject i
belonged to a psychiatric disorder j in the classification model
of that psychiatric disorder j vs. psychiatric disorder k. Note that
pi(j, k) = 1 − pi(k, j). Third, for each subject i, we evaluated
the marginal classification probability for a particular psychiatric
disorder j by averaging the classification probabilities pi(j, k) over
psychiatric disorders k. Finally, we assigned a classification label
to each subject based on the marginal classification probability
(i.e., the label with the largest marginal probability). For the
pairwise classification, we applied elastic net classification to
vectorized FC data, which is a linear classification method with

L1 and L2 regularization (42). We considered two pre-processing
steps: regression-out and non-regression-out of age and sex
effects from the data.

The HC classification worked well for both the
regression-out and non-regression-out cases (Figure 8,
Supplementary Table 3). However, the performance of the
classification of psychiatric disorders was rather poor, except
for BD in the non-regression-out case, in which the majority
of BD subjects were correctly classified into the BD category.
Further, we evaluated the agreement between the classification
results and the clustering results (clusters 1–4 in view 4) by
means of ARI. For the regression-out and non-regression-out
cases, ARI was 0.036 (p= 1.4×10−4 in the permutation test) and
0.054 (p = 6.0×10−6), respectively. When we excluded HC, the
ARI was 0.022 (p = 0.048) and 0.025 (0.028), respectively. This
suggested that there might be a small correspondence between
the supervised and unsupervised results.

4. DISCUSSION

4.1. Clustering Results
The ROI-based multiple clustering method revealed four clusters
in view 4 of the UTO data that were characterized by psychiatric
disorders: cluster 1 by MDD, cluster 2 by young HC, cluster 3
by SCZ/BD, and cluster 4 by ASD. The difference in psychiatric
label distributions between a pair of clusters was significant
when we focused on psychiatric disorders characterizing the
clusters in question (except for the pair of clusters 2 and 4).
The relevant subnetwork for these clusters consisted of 15 ROIs
in a cerebellum-thalamus-pallidum-temporal circuit, which may
suggest common functional connectivity to discriminate between
HC, MDD, SCZ/BD, and ASD.

Regarding cluster 2 and the age effect, the statistical test
showed that the age difference among clusters was significant
for HC, whereas this was not the case for the remainder of the
psychiatric disorders. This suggested that the effect of age was
limited to HC only. Accordingly, it is worth noting that in Cluster
2, the proportion of psychiatric disorders was rather small.
Hence, we can interpret that the FC pattern of the majority of
psychiatric disorders is largely different from that of young HCs.

For cluster 3, note that SCZ and BD were not discriminated
in the present study because there was no difference in the
distributions between SCZ and BD over clusters using the χ2

test. This result is consistent with the growing evidence in
the literature for phenological, biological, and genetic overlaps
between SCZ and BD (43, 44).

The association between the four clusters and psychiatric
disorders was largely reproduced by the validation datasets. First,
the distribution pattern of psychiatric labels for the UTO data
was reproduced for HC, SCZ, and MDD of KYO-A data and for
HC and SCZ of KYO-B data with KYO-whitening. Regarding the
age difference between clusters, the same tendency was observed
between the UTO and KYO data, although it was not statistically
significant. Moreover, reproducibility was not obtained when
we inappropriately whitened the KYO data using the UTO
data, which further strengthened the validity of the classification
results with KYO-whitening. Nonetheless, the reproducibility
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FIGURE 6 | Results of validation for KYO data. (A,B) Proportion of subjects per disorder of KYO-A data with KYO-whitening and with UTO-whitening, respectively.

(C,D) Similar graphs for KYO-B data. (E) Proportion of subjects per disorder of UTO data. This is a copy of Figure 3A, but to compare with the results of the KYO

data, the proportion is displayed only for HC, MDD, and SCZ.

discussed here is limited to the sense of grouped data since
the subjects differed between the discovery and validation data.
The analysis of the TS data showed that even under the same
conditions of the site and scanner, the classification results may
differ among the three scans for a single subject. Nonetheless, the
distribution pattern of cluster labels was statistically consistent
at the individual subject level. This demonstrated the extent to
which the clustering results were valid and the level of statistical
consistency of the distribution pattern of cluster labels at the
individual subject level. One possible interpretation of this result

is dynamic FC, a phenomenon in which FC presumably changes
dynamically (45, 46). The dynamic nature of FC may contribute
to the variation in classification results for a single subject,
possibly because of the insufficient number of fMRI volumes.

Finally, we discuss views other than View 4. In the present
study, we mainly focused on view 4, in which the cluster
labels and psychiatric labels, including HC, showed a close
association. Nonetheless, this does not rule out the usefulness
of the remainder of the views. An additional analysis of
paired psychiatric disorders suggests that view 6 is relevant
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for ASD and SCZ (Supplementary Figure 4). Likewise, it is
expected that the remainder of these views may have clinical
and biological implications. However, because of the limited
clinical information on the subjects, it is not straightforward to
characterize these views in the present framework.

4.2. Relevant Brain Regions
Combined with the characterization of the clusters using
psychiatric labels, we also interpreted clusters 2 and 4 in terms
of the commonly important FC (Figure 5). First, cluster 2
was dominated by young HCs, with a small proportion of
subjects with psychiatric disorders (Figure 3A). This suggests
that the relevant FC in the cerebellothalamic circuit for cluster
2 is related to the contrast between young HCs and various
psychiatric disorders. Several previous studies have reported on
the relevance of this circuit for SCZ, which is referred to as the
“cognitive dysmetria” theory (47). Cognitive dysmetria theory
posits that dysfunction in this circuit impairs coordination of
the mental process. A recent study (48) using two independent
datasets showed that the abnormality of this circuit for SCZ is
trait-dependent rather than state-dependent, which implies the
underlying dysfunction of the circuit for SCZ. Furthermore, a
study (49) suggested that the circuit can function as a possible
biomarker for SCZ progression. In contrast, for MDD, this
circuit has not been considered as a major biomarker of the
disease (50). A study (51) showed that this circuit and DMN
are closely associated with MDD, which is correlated with the
Hamilton Depression Rating scale (51). In contrast, for BD,
the role of the cerebellum in brain circuits remains unclear
(52). To the best of our knowledge, there are no reports on
the association between this circuit and BD, except for the
recent cross-disorder study by (8). Nonetheless, for a better
understanding of various psychiatric disorders, it has recently
been suggested that the cerebellothalamic circuit may be added
to psychomotor modulation (7, 53). The results of the present
study are in line with the state-of-the-art understanding of shared
neural circuits for various psychiatric disorders.

Second, cluster 4 is characterized by ASD with the relevance
of FC between several temporal regions, including the occipito-
temporal region. However, the important connectivity patterns
for ASD remain unclear in literature (54). Nonetheless, it has
been reported that the fluid intelligence of ASD is strongly
associated with FC between the occipito-temporal region and
the angular gyrus, posterior cingulate, and precuneus (55).
Furthermore, it has been shown that FC between the occipito-
temporal region and the posterior right temporo-parietal
junction is correlated with social deficits in ASD (56). In
conclusion, the yielded brain circuit in the present study is a new
finding that discriminates ASD against HC and the remainder of
the psychiatric disorders.

4.3. Methodology
The ROI-based multiple clustering method is unique in two
ways. First, it reveals the underlying multiple-view structure in
the data, which allows feature selection for a particular cluster
solution. Second, it identifies the relevant subnetworks of the
ROI for cluster solutions. As shown in Figure 4, these properties

TABLE 6 | Differences of clustering results (clusters 1–4 in view 4) between the

discovery and validation data based on the χ2 test.

KYO-whitening UTO-whitening

KYO-A KYO-B KYO-A KYO-B

V p-value V p-value V p-value V p-value

HC 0.084 0.52 0.11 0.43 0.19 0.010* 0.11 0.44

MDD 0.13 0.73 N/A N/A 0.33 0.045* N/A N/A

SCZ 0.055 0.97 0.069 0.94 0.29 0.11 0.35 0.031*

Average 0.090 0.090 0.27 0.23

Instead of the χ2 statistic, we report on Cramér’s V (0 ≤ V ≤ 1), which is defined as
√

χ2/N with a sample size N. Cramér’s V is evaluated for a contingency table of clustering

results for each disorder and each type of validation data. If there is a large difference

between the UTO and the corresponding KYO data, V takes a value close to one. If there

is no difference, V approaches zero. Cramér’s V is displayed in the first column for each

type of dataset, whereas in the second column, the p-value is displayed (∗p < 0.05).

FIGURE 7 | Agreement of cluster labels of traveling subjects (TS) between

UTO scanner and KYO-A scanner. The agreement was measured as follows:

each traveling subject performed three repetitions of fMRI scans for both the

UTO scanner and KYO-A scanner. For each scan, we evaluated the FC matrix,

which was subsequently used for classification based on the estimated model

of view 4. Next, we evaluated the number of scans out of the three

agreements between UTO and KYO-A (minimum 0; maximum 3). Finally, we

took the average of the agreement for all traveling subjects (nine subjects). The

null distribution of agreement is shown in the bar chart, which is based on

10,000 randomly shuffled TS data. The red line denotes the observed value of

the mean agreement (the observed mean agreement and p-value are

displayed on the right). Note that the correlation matrices are whitened by the

corresponding datasets.

are useful for identifying the underlying loop or tree structure
of several ROIs related to a particular cluster solution. It is
expected that this novel clustering method will pioneer data-
driven subnetwork analysis for psychiatric disorders. However,
the FC-based multiple clustering method does not provide a
useful view in the present research. A possible reason for the poor
performance is the considerably high feature dimension when
an FC matrix is vectorized, which hinders the effective search
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FIGURE 8 | Classification results of UTO subjects in the supervised approach. First, a classification model is built for each pair of psychiatric disorders, including HC,

by applying elastic net classification to vectorized FC data. Second, based on the marginal probability yielded by these classification models, a subject is classified into

one of the psychiatric categories. (A) FC is pre-processed by regressing-out of the effect of age and sex. (B) FC is not preprocessed.

FIGURE 9 | Relative positions of cluster centers in view 4 by means of

multidimensional scaling (MDS). The red line denotes a possible axis for the

continuum of clusters 1–3, which is a linear regression line for the centers of

clusters 1–3.

of the optimal solution and leads to unstable cluster solutions.
In addition, it could be attributed to the vectorization of the FC
matrix, which may mask the underlying useful information to
discriminate between psychiatric labels.

Next, the classification results of the KYO data suggests
the importance of whitening the FC matrices. The whitening
procedure involves a linear transformation of correlation
matrices using the sample mean correlation matrix as the
benchmark, which is analogous to normalization in conventional
data processing. The better performance of KYO-whitening than
UTO-whitening suggests that the measurement bias attributed to
the site or scanner (57) may be removed through whitening.

Furthermore, in the present study, the supervised approach
using elastic net classification did not work well for the
classification of psychiatric disorders. HC subjects were classified
well into the correct category, whereas psychiatric patients
were not. Note that most patients were classified into non-HC
categories, which suggested that the supervised classifier correctly
discriminated between HC and non-HC subjects. Notably, none
of the subjects with ASD were correctly categorized. This was
possibly due to the very small sample size of ASD subjects
(N = 10). In contrast, our unsupervised approach was able to
identify cluster 4, which was characterized by ASD. This was
possibly due to the prominence of cluster 4 in the unsupervised
approach, not only by ASD but also by other non-ASD subjects
with FC patterns similar to those of ASD subjects. However, it
is currently not clear whether the misclassification of patients
in the supervised approach was due to the intrinsic nature of
the supervised approach using the diagnostic label or because of
the small sample size for building a classification model in the
present study.

Finally, the present cluster analysis provides a useful
framework for the dimensional approach to psychiatric
disorders. To the best of our knowledge, there have been few
attempts to structurally elucidate the relationships among
various psychiatric disorders (12). Thus, we consider one
possible attempt to project cluster centers onto a two-
dimensional plane using multidimensional scaling (MDS).
MDS is a dimension-reduction method that preserves the
distance between objects (58). In the present study, we use
the Euclidean distance between the mean correlation matrices
for cluster centers. The MDS results for clusters 1–4 in view
4 suggest that cluster 1 (MDD) and cluster 3 (SCZ/BD) are
located nearby, whereas cluster 2 (young HC) and cluster 4
(ASD) are far apart (Figure 9). A closer look at the figure
shows that young HC, MDD, and SCZ/BD are in the same
continuum (red line), in which MDD is slightly closer to young
HC than SCZ/BD. ASD is not located in this continuum,
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which suggests that it may comprise its own dimension.
This interpretation of ASD is consistent with our finding
that the depression scale (CES-D) of HC subjects is lower in
cluster 4 than in clusters 2 and 3, implying less depressiveness
for ASD.

4.4. Limitations
The first major limitation of the present study was the small
sample size for psychiatric disorders, which lowered the statistical
power for the characterization of the yielded clusters. The reason
for the small sample size was that we focused on the specific
site or scanner for the discovery data to alleviate the issue
of site or scanner biases. Second, the main characterization
of the yielded clusters was based on single diagnostic label
information, due to the limited availability of other clinical
information of the subjects. With the availability of more clinical
data, it would be possible to characterize the clusters in a more
comprehensive manner. Third, we did not remove the effects
of confounding factors, such as age and sex. This was due
to the intrinsic nature of the ROI-based multiple clustering
method (not due to the FC-based method), which fitted a
correlation matrix to the Wishart distribution. Note that the
Wishart distribution required an input matrix to satisfy the
positive-definite condition. This strict condition on the input
matrix did not allow us to perform arithmetic operations for
the matrix in an element-wise manner. Hence, the conventional
GLM approach (57) to remove the confounding effect in an
element-wise manner was not readily applicable to the present
framework. For the same reason, it would not be straightforward
to perform harmonization to remove the site or scanner bias,
such as ComBat (59) and TS (57). It will be important for future
work to overcome these difficulties for the ROI-based multiple
clustering method.
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