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Major Depressive Disorder (MDD) is a disabling illness affecting more than 5% of

the elderly population. Higher female prevalence and sex-specific symptomatology

have been observed, suggesting that biologically-determined dimensions might affect

the disease onset and outcome. Rumination and executive dysfunction characterize

adult-onset MDD, but sex differences in these domains and in the related brain

mechanisms are still largely unexplored. The present pilot study aimed to explore any

interactions between adult-onset MDD and sex on brain morphology and brain function

during a Go/No-Go paradigm. We hypothesized to detect diagnosis by sex effects

on brain regions involved in self-referential processes and cognitive control. Twenty-

four subjects, 12 healthy (HC) (mean age 68.7 y, 7 females and 5 males) and 12

affected by adult-onset MDD (mean age 66.5 y, 5 females and 7 males), underwent

clinical evaluations and a 3T magnetic resonance imaging (MRI) session. Diagnosis and

diagnosis by sex effects were assessed on regional gray matter (GM) volumes and task-

related functional MRI (fMRI) activations. The GM volume analyses showed diagnosis

effects in left mid frontal cortex (p < 0.01), and diagnosis by sex effects in orbitofrontal,

olfactory, and calcarine regions (p < 0.05). The Go/No-Go fMRI analyses showed MDD

effects on fMRI activations in left precuneus and right lingual gyrus, and diagnosis by

sex effects on fMRI activations in right parahippocampal gyrus and right calcarine cortex

(p < 0.001, ≥ 40 voxels). Our exploratory results suggest the presence of sex-specific

brain correlates of adult-onset MDD–especially in regions involved in attention processing

and in the brain default mode–potentially supporting cognitive and symptom differences

between sexes.

Keywords: major depressive disorder, sex differences, brain morphology, brain function, inhibitory control,

adult-onset depression

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2021.683912
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2021.683912&domain=pdf&date_stamp=2022-01-05
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paolo.brambilla1@unimi.it
mailto:eleonora.maggioni@policlinico.mi.it
https://doi.org/10.3389/fpsyt.2021.683912
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.683912/full


Piani et al. Brain Sexual Dimorphism in Depression

INTRODUCTION

Major depressive disorder (MDD) is a disabling psychiatric
illness affecting an increasing proportion of the global
population, reaching a peak of 5.74% in late adulthood,
higher among females (6.75%) compared to males (4.60%) (1, 2).

The growing burden of disease in the elderly population
is partly attributable to social risk factors, including stressful
life events, which have been shown to facilitate MDD onset
during adulthood (3–7). Of note, adult-onset MDD seems to
have worse prognosis than MDD occurring at younger ages, as
findings suggest that the course of illness is more severe, the
recurrence rate is higher as well as is the suicide rate, which
appears to be the 13th cause of death in this clinical group
(3, 8–11). Executive dysfunction–including aberrant interference
resolution and inhibitory control–is another core trait of late life
depression, suggesting a cumulative burden of disease (12).

The higher prevalence of adult-onset MDD in females relative
to males is in line with the documented sex gap in lifetime
MDD rates (4, 13) and supports sex-specific models of MDD
vulnerability, neurobiology, and psychopathology (14).

Notably, in MDD in general, sex differences are not limited
to the rates of disease, but also involve its clinical presentation,
with females developing more somatic symptoms, comorbid
anxiety disorders and atypical depression, and males having
higher mortality rates, both from suicide and from somatic
comorbidity or substance abuse (4, 5, 15). Differences in the
cognitive correlates of MDD between females and males have
also been observed, even if the results appear fragmented
(16, 17).

Up to now, fewer studies have attempted to disambiguate
the role of sex in adult-onset MDD (18–20), leaving a number
of questions either undiscussed or unresolved. Of note, sex
differences in disease susceptibility do not appear to be merely
due to sex-specific responsivity to stressors (7).

Overall, a more complex interplay among genetic loading,
stress susceptibility, and life events might contribute to sex-
specific risk factors for adult-onset MDD, which in turn might
result in neurobiological and clinical features that are at least
partly different between sexes.

Nevertheless, most of the available knowledge on the topic
regards MDD in general. From a neurobiological perspective,
like in healthy individuals who show numerous sex-related brain
differences throughout the lifespan (21–25), there is evidence
of peculiar patterns of brain alterations in males and females
affected by MDD (26). Sex-specific deficits in GM volume
have been observed in regions within the frontal and temporal
cortices and the prefrontal-striatal circuit in MDD males, and
in areas of the prefrontal-limbic circuit and the lingual gyrus in
MDD females (27–30). Interaction effects of late life depression
and sex on frontal regional brain volumes were suggested as
well (19).

Functional Magnetic Resonance Imaging (fMRI) paradigms
in MDD reported sex differences in the fMRI correlates of facial
emotion processing and autobiographical memory recall (31, 32).

Despite the wide profile of cognitive dysfunctions
characterizing MDD, sex differences in cognitive performances

and in the underlying functional brain networks remain largely
unexplored. The cognitive domain of inhibitory control is
receiving special interest, since it appears to be greatly affected
by the MDD pathology and to impact on the therapeutical and
functional outcomes (33–37).

This domain is often assessed with the Go/No-Go paradigm,
which is a well-established tool also used to measure sustained
attention (38, 39). Adapted versions of the Go/No-Go task,
especially those with affective valences, have been used to study
brain activations in MDD patients compared to healthy controls,
but evidence of sexual dimorphisms remains scarce. On this
regard, Chuang et al. (40) reported group by sex effects on
the fMRI response to the affective task in the supramarginal
gyrus and in the posterior cingulate cortex (PCC), but not on
task performances (40). Additionally, van Deurzen et al. (41)
proposed that inhibitory control impairments may predict the
onset of affective disorders, including depression, in adolescent
females (41). Moreover, evidence from preclinical studies points
at a possible sexual dimorphism in the mechanisms that underlie
stress-induced alterations in structural brain plasticity and
sustained attention disruption in MDD (41).

Sex dimorphisms in inhibitory control have been reported,
but mostly in healthy individuals. Concerning the Go/No-
Go paradigm, females showed slightly lower accuracy while
processing the Go vs. No-Go contrast, and also longer processing
times for the monitoring of response conflict, motor response
execution, and outcome inhibition (42, 43). In addition,
concerning patterns of brain activation, it has been shown
that, during impulse inhibition, males tend to show more
activity in the anterior cingulate cortex (ACC), while females
in the middle temporal cortex (44). Conversely, sex differences
in pure inhibitory control and related brain mechanisms are
more poorly documented in MDD. In fact, the only evidence
available indicates that deficits in this domain may predict the
onset of affective disorders, including depression, in adolescent
females (41). Adapted versions of the Go/No-Go task, especially
those with affective valences, have been used to study the
neural bases of emotion-cognitive interference in MDD. On this
regard, Chuang et al. (40) reported group by sex effects on the
fMRI response to the affective task in the supramarginal gyrus
and in the posterior cingulate cortex (PCC), but not on task
performances (40). Of note, evidence from preclinical studies
points at a possible sexual dimorphism in the mechanisms that
underlie stress-induced alterations in structural brain plasticity
and sustained attention disruption in MDD (41).

To summarize, despite the remarkable sex differences inMDD
and the increasing evidence that its clinical heterogeneity is
biologically-determined, the impact of sex on MDD clinical
presentation and outcome and on the underlying brain processes
has been often underestimated and remains unclear (45).

In this context, very little is still known about sex-
related brain mechanisms responsible for inhibitory control and
sustained attention in adult-onset MDD. Investigating sexual
dimorphisms in these domains may be particularly important
for choosing the most appropriate treatment plan, since the
functional connectivity of the cognitive control network has
been demonstrated to be a good predictor of antidepressant
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treatment response and to be as well correlated to symptom
improvement (46).

On account of these premises, the present work aimed to
preliminarily explore the impact of sex and adult-onset MDD on
brain morphology and function, especially in the brain regions
involved in response inhibition and sustained attention. To this
end, we carried out a pilot 3T structural and functional MRI
study on subjects with adult-onset MDD and healthy controls
and assessed the putative role of sex on brain changes in MDD,
in terms of both regional GM volumes and activation patterns
during a standard parametric Go/No-Go task.

MATERIALS AND METHODS

Study Population
Twenty-four subjects, 12 affected by MDD and 12 healthy
controls (HC), aged between 50 and 90 years were enrolled
in the study. Clinical diagnoses were assessed using the
Italian version of the Structured Clinical Interview for
DSM-5 (SCID): only subjects with adult-onset MDD (≥
45 years) were included in the patient group, and only
subjects without psychiatric diagnoses were included in the
control group. Exclusion criteria for patients were lifetime
psychotic symptoms and current DSM-5 comorbid disorders.
Exclusion criteria for all participants comprised lifetime
alcohol or substance abuse, intellectual disability, history
of head trauma with loss of consciousness, neurological or
neurodegenerative illnesses.

All subjects provided a written informed consent to the
study protocol, which was conducted in accordance with the
Declaration of Helsinki and approved by the Ethical Committee
of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore
Policlinico, Milan, Italy.

Psychopathological and Cognitive
Assessment
In MDD patients, information on age of onset and current
pharmacological treatment were collected. All participants
underwent a comprehensive psychopathological assessment
including the Hamilton Depression Rating Scale (HDRS) (47),
the Depression Anxiety and Stress Scales-21 (DASS-21) (48), and
the Traumatic Experience Checklist (TEC) (49). The participants’
cognitive performances were rated using the Repeatable Battery
for the Assessment of Neuropsychological Status (RBANS) (50).

Multimodal Neuroimaging Acquisition
Structural and functional MRI data were acquired on a 3T Philips
Achieva DStream scanner (Philips, Best, The Netherlands)
equipped with a 32-channel head coil. Structural T1-weighted
images were collected using a 3D turbo field echo (TFE) SENSE
sequence (field of view: 250mm (FH)× 240mm (AP)× 180mm
(RL), voxel size: 1 mm3, echo time (TE): 4ms, repetition time
(TR): 8ms, flip angle: 8◦). Two hundred (plus two dummy)
functional MRI volumes were collected during a visuomotor task
(described in section the following) using a multi-transmit T2∗-
weighted echo planar imaging (EPI) sequence (field of view:
120mm (FH) × 256mm (AP) × 256mm (RL), voxel size: 2 ×

2× 2mm, echo time (TE): 30ms, repetition time (TR): 2,000ms,
flip angle: 90◦). Five additional (plus two dummy) fMRI scans
acquired with the same parameters but opposite phase encoding
direction were used to estimate and correct for susceptibility
induced distortions in the fMRI volumes.

fMRI Experimental Protocol
The fMRI experiment was a visuomotor Go/No-Go
task implemented using the Presentation R© software
(Neurobehavioral Systems, Inc., Berkeley, CA, USA). Visual
stimuli were delivered in the MR scanner through the MR-
compatible NordicNeuroLab VisualSystem HD (NNL, Bergen,
Norway) and synchronized to the fMRI pulses using the NNL
SyncBox. The participants’ responses were collected using the
MR-compatible NNL ResponseGrip device (composed of thumb
and index finger buttons). Prior to the fMRI session, all subjects
were trained to perform the task outside the MRI environment.

The Go/No-Go task combined blocks with only target stimuli
(“Go” blocks) with blocks with both target and non-target stimuli
(“Go/No-Go” blocks). Consecutive stimuli were delivered either
at 1 s intervals (“Periodic” blocks) or at random intervals around
1 s (“Random” blocks). In the “Go” blocks, the subject was asked
to push the thumb button every time a red or green flashing
square appeared on the screen (excitation mode). In the “Go/No-
Go” blocks, the participants were asked to push every time a
green square flashed on the screen, and to not push when a red
square flashed on the screen (inhibition mode). All responses
were collected using the dominant thumb, which was in the
right hand for all subjects. The experiment consisted of eight
task blocks (two “Periodic Go”, two “Periodic Go/No-Go”, two
“Random Go”, two “Random Go/No-Go”, lasting 32 s each)
alternated with resting state 16 s intervals, during which the
subjects had to focus on a fixation cross at the center of the screen
and to not think of anything specific.

Data Processing
The processing of clinical, behavioral, and neuroimaging data
was performed on Matlab R2019a Update 4 (The Mathworks,
Inc.). Neuroimaging analyses were conducted using the Matlab-
based Statistical Parametric Mapping (SPM) software (version
12, https://www.fil.ion.ucl.ac.uk/spm) (51), its CAT12 toolbox
(http://141.35.69.218/cat/) (52), and Matlab in-house scripts.
The FMRIB Software Library (FSL) was also used for fMRI
pre-processing (53). Statistical comparisons were performed
using SPM12 statistical tools and the Statistics and Machine
Learning ToolboxTM.

Extraction of Brain Morphological Features

Pre-processing
The participants’ T1-weighted images were visually inspected
and manually reoriented as the SPM tissue probability maps
(TPMs). Brain tissue segmentation was performed using the
CAT12 segmentation tool. The pipeline included the SPM
bias inhomogeneity correction, initial affine registration to
SPM12 TPMs, SPM unified segmentation, skull stripping, local
adaptive segmentation, adaptive maximum a posterior (AMAP)
segmentation, and optimized shooting registration to the CAT12
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default template in the Montreal Neurological Institute (MNI)
space. Spatially normalized and modulated GM images were
resampled (voxel size: 1.5 × 1.5 × 1.5mm) and smoothed
with a 3D 6mm Full Width Half Maximum (FWHM) Gaussian
kernel. Total intracranial volumes (ITV) were extracted from
the subjects’ CAT12 report files. The processing quality was
checked by displaying the normalized andmodulated GM images
(one slice per subject) and by checking their correlation among
subjects to identify outliers. The quality of the pre-processed
GM maps was reasonable for all subjects; therefore no subjects
were excluded.

Region-Based Volume Estimation
Region of interest (ROI) analyses were performed using in-house
Matlab scripts. The normalized, modulated, and smoothed GM
images were used to extract region of interest (ROI) GM volumes
in the 116 Automated Anatomical Labeling (AAL) atlas regions
(54).

Extraction of Brain Functional Features

Pre-processing
For each subject, the pre-processing of the fMRI volumes
recorded during the Go/No-Go task was performed using SPM12
and FSL tools. In SPM12, head motion artifacts were estimated
and used to realign all fMRI volumes to the first reference fMRI
volume. For all but one subjects, the movement parameters felt
within the pre-specified limits (translation < 2mm, rotation <

3◦). The realigned fMRI volumes (and the additional fMRI data
with inverse phase-encoding polarity) were imported in FSL, in
which the TOPUP tool was used to estimate and correct for
susceptibility-induced distortions. This correction step could not
be applied to the fMRI volumes from two subjects due to the
absence of the inverse polarity data. In SPM12, the subject’s
structural image was co-registered to the mean fMRI image and
used to estimate the deformation fields for spatial normalization.
The fMRI volumes were then normalized to the MNI space and
spatially smoothed using a 3D 4mm FWHM Gaussian kernel.
The post-processing fMRI data quality in the subject with 3.7mm
translation was carefully verified and considered sufficient for
inclusion in the analyses.

Subject-Level fMRI Statistics
The pre-processed fMRI volumes from each subject were entered
in a voxel-based block-related GLM activation analysis. The
BOLD signal from each voxel was modeled as a function
of both task-related and confounding factors (regressors).
The GLM design matrix included one regressor for each
experimental condition (1. “Periodic Go”, 2. “Periodic Go/No-
Go”, 3. “Random Go”, 4. “Random Go/No-Go”) obtained by
the block convolution with the canonical hemodynamic response
function (HRF), and head translation (n=3) and rotation (n=3)
parameters as confounding regressors.

After estimation of the GLM coefficients, inference on the
experimental effects was performed with appropriate t-contrasts
(t-tests on linear combinations of the coefficients). The following
subject-level t-contrasts were considered for the group-level

statistics: 1. task vs. rest, 2. “Go” vs. rest, 3. “Go/No-Go” vs. rest,
4. “Go” vs. “Go/No-Go”.

Statistical Analyses
The statistical comparisons of demographic, clinical, cognitive,
and brain morphological data were performed using in-house
Matlab scripts based on the Statistics and Machine Learning
ToolboxTM functions. The effects of diagnosis, sex, and their
interaction on clinical (HDRS, DASS-21, TEC) and cognitive
(RBANS, fMRI performance) measures were assessed using
linear regression models where the selected variable was
explained in terms of diagnosis and sex, in interaction, and
age. Inference on the GLM coefficients was performed using
two-sided t-tests, with significance threshold placed at p= 0.05.

In the brain morphological analyses, the AAL ROI volumes
were used as dependent variables in univariate General Linear
Model (GLM) designs, in which they were modeled as a function
of diagnosis, sex, age, and ITV, with diagnosis and sex interacting.
After GLM least-squares fitting estimation, diagnosis, sex, and
diagnosis by sex effects were assessed via two-sided t-tests on
the GLM coefficients. Significance threshold was set to p =

0.05 after multiple comparison correction using Bonferroni’s
method (n=116). Due to the conservativeness of such correction,
tendencies are also reported (p < 0.01 for main factor effects, p <

0.05 for interaction effects).
Group-level statistics on the fMRI activations were extracted

using SPM12 functions. The subject-level fMRI contrast maps
were entered in second-level random-effects GLM analyses. For
each contrast, we employed a full-factorial GLM design with
diagnosis and sex factors in interaction, and age and “Go/No-
Go” task performances (1. Percent of responses to target stimuli,
2. Time of response to target stimuli, 3. Percent of responses
to non-target stimuli) as covariates of no interest. After GLM
estimation, we assessed diagnosis, sex, and diagnosis by sex
effects on the subject-level fMRI activations using positive and
negative one-sided t-tests enabled by SPM12 (p < 0.001, >

40 voxels). The significant clusters were localized based on
the AAL atlas and the subjects’ peak contrast values were
illustrated as a function of diagnosis, sex, or their combination,
as appropriate.

RESULTS

Demographic, Clinical, and Cognitive
Information
The sample characteristics are summarized in Table 1. Further
details on the patients’ therapies and dosages and disease
characteristics can be found in Supplementary Tables S2, S3. Sex
distribution was comparable between MDD and HC groups.
Age was comparable between MDD subjects and HC, females
and males, and diagnosis by sex subsets. Total HDRS scores
were higher in MDD subjects compared to HC and in females
compared to males, but no diagnosis by sex effects emerged.
Females also showed higher DASS-21 stress and depression
scores than males, regardless of the diagnostic group. No effects

Frontiers in Psychiatry | www.frontiersin.org 4 January 2022 | Volume 12 | Article 683912

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


P
ia
n
ie
t
a
l.

B
ra
in

S
e
xu

a
lD

im
o
rp
h
ism

in
D
e
p
re
ssio

n

TABLE 1 | Demographic, clinical, and cognitive information of the sample.

MDD HC Diagnosis

(MDD vs.

HC)

Sex (M vs. F) Diagnosis

by sex

Total F M Total F M Stats Stats Stats

Sex, N 12 5 7 12 7 5 χ
2 = 0.67,

p = 0.41

– –

Age [years] 66,5 ± 9,1 64 ± 11,7 68,2 ± 7,2 68,7 ± 12,3 64,4 ± 13,1 74,6 ± 9 T = −0.07,

p = 0.95

T = 1.65,

p = 0.12

T = −0.67,

p = 0.51

Medication, N* 3 SSRI,

2 SNRI,

2 BDZ,

1 AC,

1 lithium,

1 NSAID,

1 AAP

1 SSRI,

1 AC,

1 BDZ,

1 NSAID

2 SSRI,

2 SNRI,

1 BDZ,

1 lithium,

1 AAP

1 SSRI∧,

1 MAOI§
1 SSRI∧,

1 MAOI§
– – – –

HDRS score 11 ± 6.5 13.8 ± 7.8 8.8 ± 4.9 3.7 ± 5.2 6.1 ± 5.7 0.2 ± 0.4 T = 3.03,

p < 0.01

T = −3.35,

p < 0.01

T = 0.78,

p = 0.45

DASS−21 D score 13.2 ± 13.7 21.2 ± 17.8 7.4 ± 6.5 7.8 ± 9.5 11.7 ± 10.9 2.4 ± 2.6 T = 1.91,

p = 0.07

T = −2.84,

p = 0.01

T = −0.12,

p = 0.91

DASS−21A score 8.5 ± 10.7 14.4 ± 12.9 4.3 ± 7.1 6.7 ± 8.1 8.6 ± 10.2 4.0 ± 3.2 T = 1.28,

p = 0.22

T = −1.78,

p = 0.09

T = −0.45,

p = 0.66

DASS−21S score 15.3 ± 14.2 25.6 ± 16.1 8.0 ± 6.4 13.1 ± 8.3 17.7 ± 5.8 6.8 ± 7.1 T = 1.47,

p = 0.16

T = −2.27,

p = 0.04

T = −0.70,

p = 0.49

TEC score 16 ± 10.1 16.2 ± 11.3 15.8 ± 10.1 13.6 ± 15.0 19.1 ± 18.0 5.8 ± 3.1 T = −0.39,

p = 0.70

T = −1.93,

p = 0.07

T = 1.33,

p = 0.20

RBANS score 95.2 ± 15.3 94.2 ± 17.2 95.8 ± 15.2 95.3 ± 13.6 99.1 ± 13.5 90.0 ± 13.3 T = −0.74,

p = 0.47

T = −0.10,

p = 0.92

T = 0.58,

p = 0.57

Target resp % 91.91 (8.06) 87.70 (9.26) 94.92 (6.05) 91.51 (8.10) 96.30 (3.30) 84.81 (8.23) T = −2.49,

p = 0.02

T = −2.22,

p = 0.04

T = 3.37,

p <0.01

Target resp time 3,365.486

(563.642)

3,723.803

(547.062)

3,109.545

(446.656)

3,222.856

(499.719)

3,242.857

(401.313)

3,194.545

(665.936)

T = 2.39,

p = 0.02

T = −1.83,

p = 0.08

T = −1.21,

p = 0.24

Non–target resp % 31.000

(12.548)

27.200

(3.347)

33.714

(15.142)

27.667

(19.704)

21.143

(14.554)

36.800

(23.900)

T = 0.64, p =

0.53

T = 1.39, p =

0.18

T = −0.61,

p = 0.55

Non–target resp time [ms] 3,282.353

(716.570)

3,529.601

(447.813)

3,105.748

(848.731)

2,959.744

(1,118. 360)

3,107.667

(1,219.406)

2,752.653

(1,056.965)

T = 0.80, p =

0.43

T = −1.16,

p = 0.26

T = 0.15,

p = 0.89

Go resp % 96.653

(2.948)

95.118

(3.833)

97.750

(1.666)

89.239

(21.420)

96.175

(6.072)

79.527

(31.692)

T = −0.11,

p = 0.91

T = −1.90,

p = 0.07

T = 1.58,

p = 0.13

Go resp time [ms] 2,856.840

(482.479)

3,128.650

(540.870)

2,662.691

(355.251)

2,943.950

(473.858)

2,910.402

(377.190)

2,990.917

(631.943)

T = 0.94,

p = 0.36

T = −0.58,

p = 0.57

T = −1.20,

p = 0.25

For continuous variables, mean ± standard deviations are reported. F, females; M, males. MDD, major depressive disorder, HC, healthy controls; T, T-statistics; χ
2, χ

2 statistics; p, p-value. Group, sex, and group by sex effects were

assessed using linear regression models and one-sided t-tests on their coefficients. SSRI, selective serotonin reuptake inhibitors; SNRI, selective serotonin and norepinephrine reuptake inhibitors; BDZ, benzodiazepines; AAP, atypical

antipsychotics; AC, anticonvulsants; NSAID, nonsteroidal anti-inflammatory drugs; MAOI, monoamine oxidase inhibitors; HDRS, Hamilton depression rating scale; DASS-21, depression anxiety stress scale, 21 items (D, depression; A,

anxiety; S, stress); TEC, traumatic experiences checklist; RBANS, repeatable battery for the assessment of neuropsychological status.
∧Paroxetine 20mg for medical conditions.
§ Amitriptyline 16mg for medical conditions. * The data from one female adult-onset MDD are not available. Significant T statistics are highlighted in bold.
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of diagnosis, sex nor their interaction emerged on DASS-21
anxiety and TEC scores.

Regarding cognitive performances, total RBANS scores were
comparable across diagnosis and sex groups, whereas the fMRI
task performances were more influenced by these factors. In
the “Go/No-Go” blocks (inhibition mode), the percentage of
correct responses to target stimuli (hits) was slightly higher in
HC compared to MDD and in females compared to males, with
stronger diagnosis by sex effects. Specifically, hit rates were higher
in healthy females than in healthy males, lower in MDD females
than in MDDmales. The times of response to target stimuli were
higher in MDD patients than in HC, but no sex or group by sex
effects emerged. No influences of diagnosis and sex emerged on
the percentage of commission errors (i.e., responses to non-target
stimuli) and on the delay of such incorrect responses. Similarly,
the performance rates in the “Go” blocks (excitation mode) were
comparable across diagnoses and sexes.

Diagnosis and Sex Effects on Brain ROI
Morphology
Regional GM volumes in the AAL ROIs were comparable
between MDD and HC groups, females and males, and diagnosis
by sex subsets (p < 0.05, Bonferroni corrected), but some
tendencies emerged. Compared to HC, MDD subjects showed
lower GM volume in the left mid frontal cortex (T = 3.19, p =

0.005). Diagnosis by sex effects emerged also in the orbitofrontal
gyrus [left middle (T= 2.18, p= 0.043) and superior (T= 2.79, p
= 0.012) portions, right superior portion (T = 2.25, p = 0.037)],
in the left olfactory cortex (T = 2.56, p = 0.019), and in the
bilateral calcarine cortex (left: T= 2.30, p= 0.033; right: T= 2.21,
p = 0.040). As shown in Figure 1, the normalized GM volume
in all these ROIs was higher in healthy females than in healthy
males, but lower in MDD females compared to MDDmales. The
pairwise differences between group by sex subsets are marked in
the boxplots (p < 0.05).

Diagnosis and Sex Effects on Task-Related
fMRI Activations
This section is dedicated to the effects of diagnosis and sex
on the fMRI activations induced by the Go/No-Go task, which
are detailed in Table 2 and illustrated in Figure 2. The fMRI
activations emerged in the entire group, described in the
Supplementary Material, are used as reference to interpret the
influences of diagnosis and sex.

Diagnosis Modulation on fMRI Activations
Significant effects of MDD diagnosis were observed on the
fMRI response to the task in general and to the “Go/No-Go”
condition (p < 0.001, ≥ 40 voxels) (Table 2, section “Main effect
of diagnosis”, Figure 2A). Indeed, when compared to HC, MDD
subjects showed higher fMRI response to the task (vs. rest) in a
portion of the left precuneus, and higher fMRI response to the
“Go/No-Go” condition (vs. rest) in a portion of the right lingual
gyrus. Both clusters were proximal to DMN nodes with negative
BOLD response to the task, suggesting that MDD subjects might
fail to deactivate these regions. No differences betweenMDD and

HC groups were observed in the fMRI response to the “Go” vs.
rest and the “Go/No-Go” vs. “Go” conditions.

Sex Modulation on fMRI Activations
Females and males were characterized by different fMRI
responses to the task in general and to both “Go” and “Go/No-
Go” conditions (p < 0.001, ≥ 40 voxels) (Table 2, section “Main
effect of sex”, Figure 2B). When compared to males, females
showed enhanced fMRI activation during the task, especially
in the “Go” condition, in a cluster in the left hemisphere at
the interface between anterior cingulate cortex and superior
medial frontal cortex. Females also showed higher fMRI response
than males to “Go” vs. “Go/No-Go” conditions in a cluster in
the right middle and superior occipital cortex. Conversely, the
fMRI activations induced by the “Go/No-Go” condition were not
influenced by sex.

Diagnosis by Sex Modulation on fMRI Activations
Interaction effects were observed in the fMRI responses to
the task in general and to its “Go/No-Go” condition (p <

0.001, ≥ 40 voxels) (Table 2, section “Diagnosis by sex effects”,
Figure 2C). The fMRI response to the task and to the “Go/No-
Go” condition in a portion of the right parahippocampal gyrus
showed diagnosis by sex effects. As illustrated in Figure 2C, such
response was more negative in MDD females compared to MDD
males, whereas an opposite tendency emerged in the HC group.
Similar interaction effects were observed in the fMRI response
to the task in a cluster in the right calcarine cortex, which
was significantly deactivated by the task at the group level (see
Supplementary Material). The fMRI activations concerning the
“Go” vs. rest and “Go” vs. “Go/No-Go” conditions did not exhibit
interaction effects.

DISCUSSION

The focus of this study was to explore brain morphology and
functional activations during a Go/No-Go task in a pilot sample
of adult-onset MDD patients and HC, while paying attention
to possible differences between females and males. To our
knowledge, this is the first attempt to assess sex differences
in the brain morphological and cognitive-related functional
features of adult-onset MDD. Despite being preliminary, the
obtained results suggest reduced GM volume in adult-onset
MDD compared to HC in the left mid frontal cortex, coupled
with diagnosis by sex effects on GM volumes within the
orbitofrontal gyrus, the left olfactory cortex, and the bilateral
calcarine cortex. In the same line, the fMRI analyses showed
interaction effects on the Go/No-Go activation patterns in the
right parahippocampal gyrus and in the right calcarine cortex,
as well as higher fMRI responses in the left precuneus and in the
right lingual gyrus in adult-onset MDD compared to HC.

This pilot evidence, which needs to be reproduced on larger
samples, confirms the importance of considering sex as a
relevant neurobiological factor in studies on MDD, including
adult-onset disease, paving the way for future patient-centered
investigations. A better knowledge of sexual dimorphism in
adult-onset MDD could be particularly helpful in predicting
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FIGURE 1 | Diagnosis by sex effects on brain morphology. The brain clusters showing sexually dimorphic GM volume differences between MDD and HC groups are

highlighted in green (p < 0.05). In the top and bottom rows, the boxplots represent the normalized GM volume distribution in HC females, HC males, MDD females,

and MDD males. Pairwise differences between diagnosis by sex subsets (net of age and ITV) are highlighted (p < 0.05). GM, gray matter; MDD, major depressive

disorder; HC, healthy controls; L, left; R, right. *significant pairwise differences (p < 0.05).

the disease vulnerability over lifetime and in understanding
the differential sex response to the available antidepressant
treatments (55), allowing the identification of new targets for
personalized interventions.

Diagnosis by Sex Effects on Brain
Morphology
Overall, the majority of the areas emerged from the structural
MRI comparison between adult-onsetMDD andHC are involved
in different aspects of emotional processing and regulation and
included the left middle frontal cortex, the orbitofrontal cortex,
and the left olfactory cortex. Additionally, selective deficits in the

calcarine cortex, a region involved in diverse cognitive processes,
were also observed.

Diagnosis Modulation on ROI Morphology
The structural MRI comparison showed that adult-onset MDD
patients, regardless of sex, had lower GM volumes in the left mid
frontal cortex, an area that in the healthy brain is known to have
a key role in several cognitive (56–59) and emotional processes
(60, 61). Notably, our result is in line with evidence from previous
studies on MDD patients (30, 62, 63).

Moreover, in depression, reduced GM volumes (63) in
this area have been associated with impaired attention,
psychomotor retardation and cognitive impairments as well as
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TABLE 2 | Diagnosis and sex modulations on the task-related fMRI activations.

Effect Contrast # voxels x, y, z AAL region T–stat p

diagnosis (MDD vs. HC) task vs. rest 40 −12, −56, 34 Precuneus, L 4.84 <0.001

“Go/No–Go” vs. rest 46 22, −52, −8 Lingual gyrus, R 4.67 <0.001

sex (females vs. males) task vs. rest 76 −14, 46, 14 Anterior cingulate gyrus, L 5.81 <0.001

“Go” vs. rest 40 −14, 48, 16 Superior frontal gyrus, medial L 5.35 <0.001

“Go” vs. “Go/No–Go” 70 40, −82, 14 Middle occipital gyrus, R 5.54 <0.001

diagnosis by sex task vs. rest 46 24, −4, 28 Parahippocampal gyrus, R 7.39 <0.001

50 14, −60, 14 Calcarine cortex, R 6.06 <0.001

“Go/No–Go” vs. rest 48 24, −4, −28 Parahippocampal gyrus, R 7.32 <0.001

AAL, automated anatomical labeling atlas; T, T-statistics; p, p-value; x,y,z, MNI coordinates expressed in mm; MDD, major depressive disorder; HC, healthy controls; L, left; R, right.

with pathological negative affectivity in response to negative
emotional stimuli (60, 61, 64). Therefore, our results together
with previous evidence support the key role of this region in
MDD and further highlight the putative role of this structure in
the development of clinical and cognitivemanifestations ofMDD
that involve both males and females.

Diagnosis by Sex Modulation on ROI Morphology
A diagnosis by sex interaction effect was observed in three
different areas, including the orbitofrontal cortex, the olfactory
cortex, and the calcarine cortex, where healthy females showed
higher GM volumes compared to healthy males, whereas adult-
onset MDD patients reported an opposite pattern.

With regards to the orbitofrontal cortex, this brain region is
involved in the behavioral modulation through the integration
of sensory and visceral motor information, and has a key role
in emotional processing (65). Although some studies reported
the presence of structural differences between healthy males and
females in this area (24, 25, 66, 67), the results are not univocal,
possibly due to the different study characteristics. In contrast, the
GM reduction in the orbitofrontal cortex in MDD was already
observed by our and other research groups (68–72). Some studies
also reported a correlation between deficits in this area and illness
severity (72–74). Therefore, the increased GM deficits in the
orbitofrontal cortex observed in adult-onset MDD females may
explain the higher rates of internalizing problems and rumination
often observed in the female sex, which could also be explained
by the presence of different illness-related genes that in turn
contribute to the different symptomatology observed in males
and females with MDD (14, 75–77).

The same pattern of diagnosis by sex effects was observed
in the olfactory cortex. Besides its key role in olfaction, this
structure was found to be involved in emotional regulation (78).
The presence of physiological sexual dimorphism on the area
is not surprising, since literature evidence reports sex-related
differences in olfactory ability and related pathways (79, 80),
although there is no specific evidence regarding the olfactory
cortex itself (79, 81).

With regards to the opposite sexually dimorphic pattern
observed in adult-onset MDD, there is evidence supporting the
fact that in depression the hedonic features of olfaction are
impaired together with the sensitivity and identification of odors

(82), which are also correlated to the severity of disease and
emotional dysregulation (83, 84), ultimately suggesting a role of
this structure in the pathogenesis (83, 84). Therefore, based on
this evidence, lower GM volumes observed in the olfactory cortex
in female adult-onset MDD patients are possibly correlated to
worse affectivity and emotional dysregulation compared to male
MDD patients.

Finally, healthy females showed higher GM volumes than
healthy males in the calcarine cortex, a key region involved in
processing visual information (85). Several studies reported the
presence of different visuospatial information processing in the
two sexes and of sex-related structural differences, although not
consistently (86, 87). Notably, our results are in line with previous
evidence that found higher GM volumes in females (88, 89),
ultimately supporting the hypothesis that this structure can be
considered a possible neuroanatomical classifier of biological sex.
Conversely, sex-related differences in this area have not been
previously observed in MDD. However, some evidence reported
GM volume reduction and connectivity alterations in this area
in MDD (90, 91), which were correlated to the presence of
negative cognitive models (92, 93) and impairments in other
cognitive domains, such as attention and working memory (94–
96). Therefore, the reduced GM volumes observed in females
with adult-onset MDD compared to their male counterpart may
determine higher impairments in those cognitive domains, as
preliminarily observed in our sample in relation to the fMRI task
performances (hit rates). However, further studies are needed to
corroborate this finding.

Sex by Diagnosis Effects on Task-Related
fMRI Activations
Diagnosis Modulation of fMRI Activations
Our results showed significant effects of adult-onset MDD
diagnosis on fMRI response to the task in general and to the
inhibitory condition, with adult-onset MDD patients showing
reduced deactivation in the left precuneus and in the right lingual
gyrus compared to HC.

Specifically, the precuneus is well known to be a functional
core of the DMN (97, 98), which is a large-scale brain network
encompassing different brain areas, creating a system for self-
related cognitive activity (99). In healthy individuals, this
network is normally active during internally oriented processes,
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FIGURE 2 | Diagnosis, sex, and interaction effects on task-related fMRI activations. (A) Diagnosis effects. Brain clusters with different fMRI responses to the task (left

panel) and to the “Go/No-Go” inhibitory blocks (right panel) in MDD compared to HC (p < 0.001, ≥ 40 voxels). (B) Sex effects. Brain clusters with different fMRI

responses to the task and “Go” excitatory blocks (left panel), and the “Go/No-Go” inhibitory blocks vs. “Go” excitatory blocks (right panel) in females compared to

males (p < 0.001, ≥ 40 voxels). (C) Diagnosis by sex effects. Brain clusters with interaction effects on fMRI responses to the task (left panel) and the “Go/No-Go”

inhibitory blocks (right panel) (p < 0.001, ≥ 40 voxels). The boxplots in the lower panel represent the corresponding normalized peak fMRI response distributions in

HC females, HC males, MDD females, and MDD males. Pairwise differences in the peak fMRI response between diagnosis by sex subsets (net of age) are highlighted

(p < 0.05). MDD, major depressive disorder; HC, healthy controls; L, left; R, right. *significant pairwise differences (p < 0.05).
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and deactivates during external attention-driven cognitive tasks
(94, 99, 100). In MDD, the DMN is known to be dysregulated
and to display a decrease in task-related deactivation compared
to HC that might contribute to the reduced response to external
stimuli characteristic of MDD (74, 101–103). This characteristic
might have been enhanced by the Go/No-Go task, which requires
a shift of the subject’s attention from internally-oriented thinking
to external cues.

Our evidence of higher precuneus activity in adult-onset
MDD patients compared to HC is concordant with the
symptomatology of emotional and attentional dysregulation
and with previous fMRI findings (104–106). Moreover,
the abnormalities found in this area are also postulated
to underline other specific characteristics of MDD, such
as the negative representation of the self (107, 108) and
rumination (109, 110). Thus, our results support the
hypothesis that the DMN represents a putative biomarker
of depression also in the adult-onset population, which
can explain depressive symptoms like the ones that rely on
self-referential processes.

Our sample of adult-onset MDD patients also showed higher
fMRI responses to the “Go/No-Go” condition (vs. rest) in
the right lingual gyrus. This area is known to regulate visual
processing and is in close relation to the primary visual cortex
(calcarine fissure) (111). In MDD, activity and connectivity
alterations in this structure (108, 112) have been observed.
Overall, these results support the involvement of this area in
working memory and response inhibition, two key cognitive
domains known to be impaired in depression and that are mostly
tested during the “Go/No-Go” condition (113–116).

Diagnosis by Sex Modulation of fMRI Activations
An interaction between diagnosis and sex was observed
in the fMRI activation patterns associated with the task
and especially the inhibitory “Go/No-Go” condition. Indeed,
opposite differences between sexes and groups were observed
in the right calcarine cortex and the right parahippocampal
gyrus. The fMRI response in these regions was more negative,
reflecting a higher deactivation, in healthy males vs. healthy
females and in adult-onset MDD females vs. adult-onset
MDDmales.

Notably, regarding the right calcarine cortex, a similar pattern
of diagnosis by sex effects was observed on its regional GM
volume, providing a neuroanatomical basis to the fMRI results.
This region is housing the primary visual cortex (85) and
has an important role in targeting attention (117). As already
mentioned, sexual dimorphism in this area has been previously
documented in healthy brains, supporting the existence of
different visual processes in the two sexes depending on the
task. The interactions with diagnosis may further suggest sex-
specific attentional processes elicited by the Go/No-Go paradigm
in MDD individuals, but this result needs to be confirmed on
larger samples.

The opposite sexually dimorphic pattern observed in adult-
onset MDD patients, with females showing a more negative
response than males, might reflect the role of calcarine gyrus
in MDD symptomatology. In literature a plethora of alterations

have been documented (92, 93), and have been associated both
to resistance to treatment (118) and pathological cognitive
processes, such as self-isolation, social avoidance, and impaired
attentional performances (119).

In light of this evidence, the more negative fMRI response
that we observed in adult-onset MDD females can explain
the presence of a more severe symptomatology, documented
by higher HDRS scores, and to the worse performance in
the Go/No-Go task, maybe due to attentional impairments,
observed in this subgroup of participants compared to the male
counterpart. This evidence, if confirmed on larger samples, lets
us hypothesize a role of the calcarine cortex in the pathological
cognitive models documented to be more frequent in females
than in males also in adult-onset MDD (4, 13, 120).

With regards to the right parahippocampal gyrus, this region
is part of the limbic system and is primarily involved in spatial
memory and retrieval of associative contextual memory (121,
122). Interestingly, sexual dimorphism in this area in healthy
brains, from both structural and functional perspectives, has been
documented (25, 123). From the functional perspective, healthy
males have been characterized by lower functional connectivity
and higher efficiency than healthy females, possibly associated
with higher flexibility and better adaptation to stress (124),
but differences in the mechanisms of autobiographical memory
retrieval have been proposed as well (125). In contrast, meta-
analytic evidence supports an increased right-sided activation
of this region during working memory tasks in females than in
males (126).

Notably, an opposite sexually dimorphic pattern of
parahippocampal activation was observed in adult-onset
MDD patients, with females having a more negative response
compared to males. Several strands of evidence reported the key
role of the parahippocampal gyrus in the pathophysiology
of depression. Indeed, the region is considered to be a
component of the DMN (96, 127, 128) and deficits in this
region have been associated with clinical symptoms often
observed in MDD, including rumination, abnormal retrieval of
autobiographical memory (109), and generation of contextual
associates (129). In addition, there is evidence of its role in
emotion-mediated memory formation (96, 128) and emotional
regulation (128, 130, 131), possibly contributing to impairments
in reward and in the development of happy feelings (108).
Nevertheless, our preliminary evidence is new in the literature. If
reproduced on larger samples, the parahippocampal deactivation
that we observed in MDD females during response inhibition
might either contribute to and/or result from the female-specific
symptomatology (4, 13, 120) characterized by detrimentally high
stress levels (4, 13, 75, 132).

Limitations
The main limitation of our study resides in the small number of
participants, which significantly limited the statistical power of
the results, enabling the extraction of MDD and sex effects at
a trend level. Despite our focus on middle and late adulthood,
the large age range of the participants might have introduced
aging-related confounding effects. Moreover, we did not perform
diagnosis or sex by age analyses as well as connectivity analyses,
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which should be implemented in future replications. The
reliability and specificity of our results might have also been
affected by the patients’ pharmacological therapy, which was
characterized by diverse substances and dosages among subjects,
and by the females’ fertility phase and menstrual cycle, whose
status was not assessed during the clinical evaluation. Finally,
it should be noticed that our pilot evidence was obtained on a
sample of patients withMDD onset during adulthood.While this
choice represents the main asset of our study, future replications
on larger independent samples and on subjects with earlier illness
onset are highly encouraged to confirm and better characterize
our results.

CONCLUSIONS

Our pilot investigation of sex differences in brain morphology
and in the neural bases of inhibitory control in adult-onset
MDD showed promising results that, if confirmed, might underly
the different disease presentations that have been extensively
documented in the two sexes. Our findings strengthen the
idea that sex is a relevant factor shaping the neurobiological
correlates of depression, and can serve as an incentive to
future investigations.
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