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Background: White matter hyperintensities (WMHs) are a common occurrence with

aging and are associated with cognitive impairment. However, the neurobiological

mechanisms of WMHs remain poorly understood. Functional magnetic resonance

imaging (fMRI) is a prominent tool that helps in non-invasive examinations and is

increasingly used to diagnose neuropsychiatric diseases. Degree centrality (DC) is a

common and reliable index in fMRI, which counts the number of direct connections for

a given voxel in a network and reflects the functional connectivity within brain networks.

We explored the underlying mechanism of cognitive impairment in WMHs from the

perspective of DC.

Methods: A total of 104 patients with WMHs and 37 matched healthy controls (HCs)

were enrolled in the current study. All participants underwent individual and overall

cognitive function tests and resting-state fMRI (rs-fMRI). WMHs were divided into three

groups (39 mild WMHs, 37 moderate WMHs, and 28 severe WMHs) according to

their Fazekas scores, and the abnormal DC values in the WMHs and HCs groups

were analyzed.

Results: There was a significant difference in the right inferior frontal orbital gyrus and left

superior parietal gyrus between the WMHs and HCs groups. The functional connectivity

between the right inferior frontal orbital gyrus and left inferior temporal gyrus, left superior

parietal gyrus, and left parietal inferior gyrus was also different in the WMHs group.

Conclusion: The change in DC value may be one of the underlying mechanisms of

cognitive impairment in individuals with WMHs, which provides us with a new approach

to delaying cognitive impairment in WMHs.
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functional connectivity

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2021.684553
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2021.684553&domain=pdf&date_stamp=2021-07-13
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wangkai1946@126.com
mailto:hpppanda9@126.com
https://doi.org/10.3389/fpsyt.2021.684553
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.684553/full


Du et al. Abnormal Degree Centrality in WMHs

INTRODUCTION

Cerebral small vessel disease (CSVD) is a common
cerebrovascular disease that refers to a syndrome of clinical and
imaging findings (1). The features seen on neuroimaging include
white matter hyperintensities (WMHs), lacunar infarcts, recent
small subcortical infarcts, perivascular spaces, microbleeds, and
brain atrophy (2); the most common neuroimaging feature
is WMHs, which are often considered to primarily represent
ischemic damage caused by CSVD (3, 4). WMHs have been
detected in 77.8% of healthy elderly individuals between 60
and 82 years of age (5). These WMHs are among the most
important vascular contributors to cognitive decline, dementia,
and parkinsonism (6). Cerebral small vessel disease (CSVD) is
a common disease in elderly and has long been implicated with
cognitive impairment, dementia, and stroke, causing up to 45%
of dementia cases worldwide, and accounting for approximately
one-quarter of all strokes (3). A longitudinal study involved 818
individuals from the Alzheimer Disease Neuroimaging Initiative
(ADNI)-2 dataset from August 2010 to May 2017 suggested
that WMHs had a significant impact on cognitive impairment
and elevate the risk of conversion to dementia. They even
pointed that WMHs volume can be regarded as a non-invasive
marker of cognitive degeneration (7). A systematic review and
meta-analysis of 36 prospective studies to explore the association
between white matter hyperintensities and risks of cognitive
impairment and dementia indicated that WMHs were associated
with increased risk of cognitive dysfunction (8). The previous
studies found an association of progression of white matter
hyperintensities with a faster decline of executive functions or
processing speed (9–12). Another study indicated that WMHs
volume were associated with an increased rate of decline in
global cognition, perceptual speed, working memory, episodic
memory, and semantic memory. Associations persisted after
adjustment for total gray matter volume, vascular risk factors,
and vascular diseases (13).

Functional magnetic resonance imaging (fMRI) is an
outstanding tool that helps with non-invasive examinations.
Using resting-state fMRI (rs-fMRI), researchers have found
that the brain exhibits consistent low frequency fluctuations
in the 0.01–0.08Hz range, and that these frequencies could
be used to indicated intrinsic activity within the whole brain
(14). rs-fMRI techniques have been increasingly utilized to
investigate functional alterations related to WMHs. It has been
reported that changes in the structural connectivity of brain
networks have been found in WMHs, and abnormalities of the
structural connectivity to central network nodes may lead to the
occurrence of cognitive impairment related to WMHs to some
extent (15, 16). Therefore, a method to explore the disruption
of functional connectivity in WMHs is needed. However, the
magnetic resonance technology of previous studies tends to
focus on the region of interest (ROI) (17–20). In previous
study, thalamus was used as ROI to study the changes of
functional connectivity (FC) of thalamic cortex in WMHs, and
they found that abnormal thalamocortical FC was closely related
with cognitive impairments in WMHs (21). Similarly, some
people pay their attention to the relationship between white

matter hyperintensity in basal ganglia and cognitive function,
they found that White Matter Hyperintensities Relate to Basal
Ganglia Functional Connectivity and Memory Performance in
amnestic mild cognitive impairment (MCI) and subcortical
vascular MCI (22). With the rapid development of neuroimaging
techniques, an increasing number of imaging techniques are used
in the diagnosis of neurological diseases. Degree centrality (DC)
analysis is one technique that attracted our attention. Degree
centrality is a particularly interesting graph metric of graph
based network analysis methods (23). It does not depend on
prior assumptions as the choice of seed region or a predefined
template to account for the brain regions. It is a robust index of
focal connectivity ascertained by counting the number of direct
connections from one node to all other nodes (23, 24). Fair
to good test-retest reliability of this technique has been proved
in previous studies (25–27). Unlike seed-based approaches or
independent component analysis, centrality measures take into
account a given region’s relationship with the entire functional
connectome and not just its relation to individual regions or to
separate larger components (28). DC is the most direct measure
of node centrality in network analysis. Generally speaking, a
higher DC value indicates a more important node. Currently,
DC has been used to evaluate changes in the brain network
in diseases such as depression (29), schizophrenia (30), asthma
(31), and Parkinson’s disease (32). WMHs are mainly manifested
as abnormal signals in white matter. Structural white matter
connectivity is the basis of functional connectivity.We speculated
that WMHs can affect white matter connectivity and further
cause abnormal functional connectivity of cortex and subcortical
nuclei. To investigate the mechanisms underlying cognitive
impairment, we used fMRI to analyze the DC value in patients
with WMHs and HCs. In the present study, we analyzed
differences in the DC value between patients with WMHs and
HCs to further explore its possible mechanism.

MATERIALS AND METHODS

Participants
We recruited 104 patients with WMHs (39 with mild WMHs, 37
with moderate WMHs, and 28 with severe WMHs) and 37 HCs.
The clinical manifestations of WMHs are heterogeneous, and the
clinical symptoms of WMHs do not exhibit a pattern; therefore,
there are no established diagnostic criteria. Consequently, the
diagnostic criteria mainly depend on imaging features. As a
result, the inclusion criteria for theWMHs group were as follows:
(1) age between 40 and 80 years and (2) visible WMHs on T2
fluid-attenuated inversion recovery (T2 FLAIR). The exclusion
criteria were as follows: (1) intracranial and extracranial stenosis
>50%; (2) Trial of Org 10172 in Acute Stroke Treatment
classification suggestive of cardiogenic stroke; (3) non-CSVD-
related WMHs (e.g., multiple sclerosis); (4) mental disorders
or alcohol addiction; (5) dementia or tumors; (6) intracranial
hemorrhage; (7) significant hearing or visual impairment,
physical movement disorders that prevented co-operation during
cognitive testing, (8) language barrier, and (9) contraindications
to MRI or known claustrophobia. Patients with WMHs were
classified based on the Fazekas scores as mild group, moderate
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group, or severe group. Periventricular hyperintensity (PVH)
and deep white matter hyperintensity (DWMH) were scored
separately using a four-point scale according to the Fazekas scale
on FLAIR images. The PVH scores were categorized as follows: 0,
absent; 1, caps or pencil-thin lining around ventricles; 2: smooth
halo around ventricles; 3: irregular PVH lesions extending into
the deep white matter. DWMH scores were categorized as
follows: 0, absence; 1, punctate foci; 2, beginning confluence of
foci; and 3, large confluent areas. The Fazekas score is the sum of
the PVH and DWMH scores. The mild WMHs group scored 1–
2, the moderate WMHs group scored 3–4, and the severe WMHs
group scored 5–6. Finally, we included 39 patients in the mild
group, 37 patients in the moderate group, and 28 patients in the
severe group. Thirty-seven HCs who were relatives of patients
with WMHs and social recruits studied during the same period
who matched the demographic data of the patients with WMHs,
including age, sex, and years of education, and who had no
previous history of neurological disease or mental illness were
also included. Imaging revealed no WMHs.

All participants provided written informed consent to our
protocol, which was approved by the medical ethics committee
of the First Affiliated Hospital of Anhui Medical University.

Study Design and Process
The screening and examination for WMHs was performed by
trained neurologists and graduate students in neurology. We
divided patients into three grades (mild, moderate, and severe)
according to the Fazekas Scale, after which we collected the
rs-fMRI and cognitive assessment data for WMHs, and finally
completed the statistical analysis of relevant data.

Cognitive Examination
A cognitive examination was completed by all participants on
the same day as the MRI scan, cognitive examination includes
both overall and single cognitive tests. We used the Montreal
Cognitive Assessment (MoCA) to evaluate the overall cognitive
function of participants and the Generalized Anxiety Disorder 7
(GAD-7) Scale, Patient Health Questionnaire 9 (PHQ-9), Trail
Making Test (TMT-A and TMT-B), Boston Naming Test (BNT),
and auditory verbal learning test (AVLT) were used to evaluate
cognitive function, respectively.

MRI Data Acquisition
All participants completed fMRI in the magnetic resonance
chamber at the Information Science Center of the University
of Science and Technology of China. During the scan, all
participants were told to lie flat in the machine while resting with
their eyes closed, but not to fall asleep, not to move their bodies,
and not to think about anything.

Functional imaging was conducted using a 3.0-TMRI scanner
(Discovery GE750w; GE Healthcare, Buckinghamshire, UK),
each participant underwent MRI scanning, and the functional
imaging was composed of 217 echo-planar imaging volumes. The
specific parameters were as follows: Time of Repetition (TR) =
2,400ms, Time of Echo (TE) = 30ms, flip angle = 90◦, matrix
size = 64 × 64, field of view = 192 × 192 mm2, slice thickness
= 3mm, no gap, and 46 continuous slices (voxel size = 3 × 3 ×

3 mm3). T1-weighted anatomic images with 188 slices were also
acquired in the sagittal orientation (TR= 8.16ms; TE= 3.18ms;
flip angle = 12◦; field of view = 256 × 256 mm2; slice thickness
= 1mm; and voxel size= 1× 1× 1 mm3).

Data Pre-processing
Functional data were preprocessed using the Data Processing
Assistant of the Resting-State Functional MR Imaging toolkit
(DPARSF) (http://www.fil.ion.ucl.ac.uk/spm) (33) and a software
package based on Statistical Parametric Mapping software
(SPM12, http://www.fil.ion.ucl.ac.uk/spm). All the data were
processed with the following steps: (1) conversion of data format;
(2) discarding of the first 10 volumes to exclude the influence of
unstable longitudinal magnetization; (3) slice-timing correction;
(4) motion correction; (5) normalization and registration to the
Montreal Neurological Institute (MNI) template space; and (6)
spatial smoothing based on the unified segmentation of structural
images (Gaussian kernel, full width at half-maximum = 8mm)
and motion correction by scrubbing; (7) Filter (0.01–0.1Hz).
All participants showed a maximum displacement of <3mm
and an angular motion of <3◦ and were thus included in the
subsequent analyses.

DC Calculation
TheDC value is used to evaluate DC. Degree centrality represents
the number of direct connections for a given voxel in the voxel-
based graphs. In the present study, the preprocessed fMRI data
were used to compute the voxel-based whole-brain correlation
analysis (34). The time course of each voxel in each brain was
correlated to every other voxel time course in the gray matter
(GM) mask. Thus, we could acquire an n× n matrix of Pearson’s
correlation coefficients between any pair of voxels, where n is
the voxel number of the GM mask. Next, we transformed the
Pearson’s correlation data into normally distributed Fisher Z-
scores and constructed the whole-brain functional network by
thresholding each correlation at r > 0.25 (24). The threshold was
the default setting while constructing the DC map. Only positive
Pearson’s correlation coefficients were considered in the present
study. For a given voxel, the DC was calculated as the sum of the
significant connections at the individual level.

Statistical Analysis
The differences in age, years of education and cognitive tests were
assessed with one-way ANOVA analysis, and sex distribution,
diabetes, hyperlipidemia, drinking history, and smoking history
between the HCs and WMHs groups were assessed with the
chi-square test using the Statistical Package for the Social
Sciences 23.0 (SPSS, Chicago, IL, United States). The Least—
Significant Difference was used for post-hoc analysis (significant
for P < 0.05). We used DPARSF to extract the average DC
and FC values of the brain region with significant difference,
and then introduced it into SPSS23.0, and we used one-way
ANOVA to analyzed the differences among groups. The statistical
significance threshold for DC and FC was set to P < 0.001 at the
voxel level and P< 0.05 at the cluster level with Gaussian random
field (GRF) correction. Meanwhile, the Pearson’s correlation
analysis was conducted to find out the relationship between
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TABLE 1 | Demographic and WMHs neuroimaging manifestations of participants in the four groups [Mean (SD)].

HCs

(n = 37)

Mild WMHs

(n = 39)

Moderate WMHs

(n = 37)

Severe WMHs

(n = 28)

F χ
2 P

Age (years) 60.65 (5.91) 63.77 (8.23) 65.08 (10.03) 65.04 (6.90) 2.412 0.069

Education (years) 9.05 (3.61) 8.41 (4.16) 8.00 (3.84) 7.75 (3.88) 0.732 0.535

Female 19 16 14 16 3.205 0.361

Hyperlipidemia 8 10 9 8 7.060 0.070

Hypertension 8 21 22 21 20.419 <0.001***

Diabetes 2 8 7 4 4.081 0.253

Drinking history 12 9 16 12 4.420 0.220

Smoking history 9 18 15 11 4.166 0.244

Microbleeds 0.33 (0.60)c 2.26 (3.61)e 1.50 (2.35)f 6.29 (14.97)c,e,f 3.429 0.020**

Lacunes 0.00 (0.00)a,b,c 0.51 (0.91)a,d 0.78 (1.25)b,d 0.64 (1.06)c 4.782 0.003**

WMHs volume / 11457.35

(12493.05)d,e
18067.56

(10873.84)d,f
30658.380

(12033.91)e,f
21.696 <0.001***

Fazekas 0.00 (0.00)a,b,c 1.64 (0.49)a,d,e 3.59 (0.50)b,d,f 5.43 (0.50)c,e,f 1004.49 <0.001***

aHealthy control group vs. mild WMHs group significantly different (P < 0.05), bHealthy control group vs. moderate WMHs group significantly different (P < 0.05), cHealthy control group

vs. severe WMHs group significantly different (P < 0.05), dMild WMHs group vs. moderate WMHs group significantly different (P < 0.05), eMild WMHs group vs. severe WMHs group

significantly different (P < 0.05), fModerate WMHs group vs. severe WMHs group significantly different (P < 0.05).

SD, standard deviation.

Volume are in cubic millimeters.
***Significant at 0.001 level and **Significant at 0.01 level (2-tailed).

abnormal DC value in the related brain area and cognitive
function, we only analyzed the correlation between the DC values
of brain regions with differences among groups and the cognitive
tests with differences among groups.

RESULTS

Demographics, Cognitive Examination,
and Clinical Characteristics
There were no significant differences in age, years of education,
or sex distribution between the HCs and WMHs groups. The
proportion of patients with hypertension was lower in the
HCs groups than in the WMHs group, but there were no
significant differences among the four groups in terms of
diabetes, hyperlipidemia, smoking history, and drinking history.
Demographic information and WMHs marker information
are shown in Table 1. Regarding the severity of WMHs, the
quantitative assessment method we used was in good agreement
with the Fazekas score (P < 0.001, r = 0.499). The distribution
of lacunae and microbleed lesions is shown in Table 2. The
neuropsychological test results of the participants in the four
groups are shown in Table 3. However, a few participants did not
complete the ESWAN sequence scan (HCs group, 5 participants;
mild WMHs group, 13 patients; moderate WMHs group, 7
patients; severe WMHs group, 7 patients).

DC Analysis
The one-way analysis of variance revealed significantly different
DC values within the right inferior frontal orbital gyrus and the
left superior parietal gyrus in the WMHs groups as compared to
those in the HCs group (P < 0.05, cluster; P < 0.001, voxel; GRF)
(Table 4, Figure 1).

Functional Connectivity Analysis
We used the right inferior frontal orbital gyrus and left superior
parietal gyrus as seeds in the functional connectivity analysis
of the whole brain. We found that the functional connectivity
between the right inferior frontal orbital gyrus and left inferior
temporal gyrus while and between the left superior parietal gyrus
and the left parietal inferior gyrus differed significantly between
the WMHs and HCs groups (Table 5; Figures 2, 3).

Correlation Analysis
Correlation analysis revealed a significant correlation between
the DC value in the left superior parietal gyrus and MoCA score
in HCs group (P = 0.033, r =−0.351) (Table 6).

DISCUSSION

In this study, we combine data-driven DC analysis with ROI
based FC. Firstly, we used DC analysis to describe the intrinsic
abnormal functional connectivity of the whole brain functional
network at the voxel level in patients with WMHs, and we found
that patients with WMHs exhibited significant differences in DC
values in the right inferior frontal orbital gyrus and left superior
parietal gyrus compared to those in HCs. Then, we do further
FC analysis, the further results indicated that the functional
connectivity between the right inferior frontal orbital gyrus and
left inferior temporal gyrus, left superior parietal gyrus, and left
parietal inferior gyrus differed in patients with WMHs.

Previous studies have suggested that the right inferior orbital
frontal gyrus is the upper part of the limbic lobe, and evidence
has indicated that it is associated with a variety of brain
functions, including memory-related emotions, self-awareness
(35), cognitive regulation (36), memory, and reward (37). The
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TABLE 2 | Distribution of neuroimaging manifestations in HCs and WMHs [Mean (SD)].

Microbleeds Lacunes

HCs

(n = 32)

Mild WMHs

(n = 26)

Moderate

WMHs

(n = 30)

Severe

WMHs

(n = 21)

HCs

(n = 37)

Mild WMHs

(n = 39)

Moderate

WMHs

(n = 37)

Severe

WMHs

(n = 28)

Infratentorial

Cerebellum 0.03 (0.18) 0.08 (0.27) 0.13 (0.57) 0.33 (0.80) 0.00 (0.00) 0.12 (0.33) 0.13 (0.35) 0.86 (3.50)

Pons 0.09 (0.30) 0.23 (0.71) 0.10 (0.31) 0.33 (0.35) 0.00 (0.00) 0.15 (0.37) 0.33 (0.18) 0.14 (0.48)

Mesencephalon 0.03 (0.18) 0.08 (0.27) 0.07 (0.25) 0.57 (1.36) 0.00 (0.00) 0.15 (0.46) 0.33 (0.18) 0.14 (0.65)

Any 0.03 (0.18) 0.42 (1.17) 0.37 (0.93) 1.25 (3.02) 0.00 (0.00) 0.04 (0.20) 0.33 (0.18) 0.29 (1.10)

Deep

Basal ganglia 0.00 (0.00) 0.04 (0.20) 0.00 (0.00) 0.19 (0.87) 0.00 (0.00) 0.23 (0.51) 0.17 (0.38) 0.68 (1.29)

Thalamus 0.03 (0.18) 0.23 (0.51) 0.17 (0.38) 0.68 (1.29) 0.00 (0.00) 0.08 (0.27) 0.17 (0.46) 0.43 (1.33)

Internal capsule 0.00 (0.00) 0.08 (0.27) 0.17 (0.46) 0.43 (1.33) 0.00 (0.00) 0.46 (0.86) 0.33 (0.92) 0.62 (1.72)

Any deep 0.00 (0.00) 0.46 (0.86) 0.33 (0.92) 0.62 (1.72) 0.00 (0.00) 0.12 (0.33) 0.20 (0.66) 0.24 (0.89)

Subcortical

Frontal 0.03 (0.18) 0.12 (0.33) 0.20 (0.66) 0.24 (0.89) 0.00 (0.00) 0.08 (0.27) 0.13 (0.57) 0.33 (0.80)

Parietal 0.03 (0.18) 0.12 (0.33) 0.13 (0.35) 0.86 (3.50) 0.00 (0.00) 0.23 (0.71) 0.10 (0.31) 0.33 (0.35)

Occiptal 0.00 (0.00) 0.15 (0.37) 0.33 (0.18) 0.14 (0.48) 0.00 (0.00) 0.08 (0.27) 0.07 (0.25) 0.57 (1.36)

Temporal 0.03 (0.18) 0.15 (0.46) 0.33 (0.18) 0.14 (0.65) 0.08 (0.27) 0.42 (1.17) 0.37 (0.93) 1.25 (3.02)

Any subcortical 0.00 (0.00) 0.04 (0.20) 0.33 (0.18) 0.29 (1.10) 0.00 (0.00) 0.04 (0.20) 0.00 (0.00) 0.19 (0.87)

Any 0.31 (0.59) 2.19 (3.58) 1.73 (2.63) 6.33 (14.96) 0.00 (0.00) 2.19 (3.58) 1.73 (2.63) 6.33 (14.96)

SD, standard deviation; WMHs, white matter hyperintensities.

TABLE 3 | Neuropsychological tests of participants in the four groups [Mean (SD)].

HCs

(n = 37)

Mild WMHs

(n = 39)

Moderate WMHs

(n = 37)

Severe WMHs

(n = 28)

F P

MoCA 22.26 (3.00)c 21.16 (4.32)d 20.45 (4.43)e 17.48 (5.06)c,d,e 6.681 <0.001***

GAD-7 2.42 (3.29) 2.61 (4.10) 2.68 (3.34) 4.88 (5.34) 2.765 0.068

PHQ-9 3.61 (4.90) 3.74 (4.56) 5.10 (4.58) 6.75 (5.81) 3.018 0.062

TMT-A 63.05

(23.83)a,b,c
82.20

(37.31)a,d
81.71 (34.36)b,e 107.26

(37.74)c,d,e
7.759 <0.001***

TMT-B 132.61

(43.98)c
156.82

(74.22)d
162.22 (74.47)e 208.21

(81.54)c,d,e
6.285 0.001**

BNT 13.80

(1.74)a,b,c
12.89 (1.54)a 13.08 (1.68)b 12.76 (1.35)c 4.797 0.003**

AVLT-study 8.04 (1.71)c 7.63 (2.24)d 7.31 (1.52) 6.55 (2.00)c,d 3.220 0.025*

AVLT-immediate 7.97 (1.68)c 7.63 (2.24)d 7.18 (1.78)e 6.39 (1.93)c,d,e 4.942 0.003**

AVLT-delay 8.82 (2.61)b,c 7.95 (3.76) 7.14 (2.88)b 5.89 (3.34)c 5.053 0.022*

AVLT-recognition 13.55 (1.43)c 13.53 (3.68)d 12.81 (2.73)e 11.29 (3.41)c,d,e 4.734 0.008*

aHealthy control group vs. mild WMHs group significantly different (P < 0.05), bHealthy control group vs. moderate WMHs group significantly different (P < 0.05), cHealthy control group

vs. severe WMHs group significantly different (P < 0.05), dMild WMHs group vs. severe WMHs group significantly different (P < 0.05), and eModerate WMHs group vs. severe WMHs

group significantly different (P < 0.05).

SD, standard deviation; MoCA, Montreal Cognitive Assessment; PHQ, Patient Health Questionnaire; GAD, Generalized Anxiety Disorder; AVLT, Chinese Auditory Learning Test; TMT,

Trial Making Test; BNT, Boston Naming Test.

***Significant at 0.001 level, **significant at 0.01 level, and *significant at 0.05 level (2-tailed).

right inferior frontal orbital gyrus is one of the core components
of the default mode network (DMN) (38). Resting state activity is
defined as the default mode of brain activity to denote a state in
which an individual is awake and alert, but not actively involved
in an attention-demanding or goal-directed task (39, 40). Since
its discovery, interest has grown in the clinical utility and

implications of the DMN (41, 42), and the clinical significance of
the DMN has been established or implicated in neurological and
neuropsychiatric disorders (40, 43, 44). A previous study showed
that mild cognitive impairment (MCI) in Parkinson’s disease is
related to the disrupted connectivity in networks involved in
cognition, primarily in the DMN (45). It was also reported that
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adolescent depression is associated with inflexibly elevated DMN
connections (46). A previous study showed that the longitudinal
trajectory of default mode network connectivity is associated
with changes in episodic memory and processing speed (47).
Furthermore, another study on children with temporal lobe
epilepsy showed that there was a significant relationship between

TABLE 4 | Brain regions showing differences in the degree centrality between the

HCs group and the WMHs group.

Brain

regions

Peak MNI Number

of voxels

F-value P (GRF)

X Y Z

Right inferior

frontal orbital

gyrus

30 33 −12 25 9.3406 Cluster<0.05,

voxel<0.001

Left superior

parietal

gyrus

−24 −48 69 25 11.8109 Cluster<0.05,

voxel<0.001

MNI, Montreal neurological institute; WMHs, white matter hyperintensities.

executive dysfunction and DMN (48). In recent years, some
studies have pointed out that abnormal structural network
connectivity is related to cognitive impairment in patients with
WMHs (15, 16). Our results showed that the right orbital
inferior frontal gyrus, an important part of DMN, whose DC
value decreased, while the main cognitive impairment of WMHs
are executive function and memory, which is consistent with
previous studies. More recently, A meaningful study suggests
that preferential destruction of cortical connections may lead to
the progression of cognitive impairment in patients with WMHs
(49), highlighting the role of reduced structural connectivity
in the cognitive impairment of patients with WMHs. Previous
studies have found that the left inferior temporal gyrus plays a
critical role in working memory; consequently, impairment of
the left inferior temporal gyrus leads to a decline in memory
(50, 51), which is supported by the present study in some extent.
We also found that the functional connectivity between the
right inferior frontal orbital gyrus and left inferior temporal
gyrus is significantly lower than that in the HCs group. Left
inferior temporal gyrus, located on the lateral and inferior surface
of the temporal neocortex, can be considered as a tertiary

FIGURE 1 | Brain regions showing abnormal DC value in the WMHs compared to the HCs in MNI space. (A) Significant DC value differences were observed in the

right inferior frontal orbital gyrus and the left superior parietal gyrus [−15, −14, −13, −12, −11, 65, 66, 67, 68, 69 in (A) are the coordinates of Z-axis in Montreal

Neurological Institute space, and the unit of coordinate system is millimeter]. (B,C) Mean values of altered DC values in the right inferior frontal orbital gyrus and the left

superior parietal gyrus between the HCs and WMHs groups. ***Significant at 0.001 level, **significant at 0.01 level, and *significant at 0.05 level (2-tailed).
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visual association cortex and the central portion of the language
formulation area region, involving cognitive functions such as
language, visual perception, and memory (52).

Previous studies have shown that in elderly people, executive
function is supported by the left superior parietal (53, 54), and it
has been suggested that the left superior parietal gyrus is engaged
in basic attentional processing in executive function (55, 56).
These suggestions were supported by our findings that patients
with WMHs with lower DC values for the left superior parietal
gyrus had poorer executive function. In addition, a previous
study told us that the left superior parietal gyrus participates
in cognitive control and integration (57). A decreased degree
value indicates a decreased number of direct connections and
reflects the decreased centrality or importance of a specific
voxel in the brain network. In contrast to the right inferior
frontal orbital gyrus, in the present study, we found that the
DC value of the left superior parietal gyrus in the moderate
WMHs group was significantly higher, which is consistent with

TABLE 5 | Brain regions showing the changed functional connectivity in WMHs

group.

Brain

regions

Peak MNI Number

of voxels

F-value P (GRF)

X Y Z

Left inferior

temporal

gyrus

−57, −60, −6 133 11.641 Cluster<0.05,

voxel<0.001

Left parietal

inferior gyrus

−54, −24, 39 131 9.6826 Cluster<0.05,

voxel<0.001

MNI, Montreal neurological institute; WMHs, white matter hyperintensities.

a previous study, which suggested that the left superior parietal
gyrus has a higher cortical thickness in patients with WMHs
group than in HCs (58). In a voxel-based morphometry study,
researchers observed an increase in gray matter density near
thinning regions, indicating there is a compensatory mechanism
in relevant brain regions (59). Furthermore, a regional increase
in DC value might reflect an enhancement of function or
compensatory hypertrophy in response to an acquired brain
injury (i.e., WMHs). For example, changes in plasticity in
individuals with an acquired brain injury most frequently leads
to modifications in functional brain networks, which have been
associated with distinct patterns of sensorimotor, behavioral, and
cognitive impairments, are sparing (60). However, it is interesting
to find an increase of DC values in the left superior parietal
gyrus. Our study also found functional connectivity between the
left superior parietal gyrus and left parietal inferior gyrus in the
moderate WMHs group. If a potential compensatory mechanism
could be confirmed in these regions, it could be used to help
prevent WMHs-related degeneration. In conclusion, we found
abnormal DC values in a variety of brain regions in the WMHs
groups, which might demonstrate the reorganization of the brain
network in response to WMHs.

In the present study, we found a significant negative
correlation between the DC value in the left superior parietal
gyrus and MoCA score in HCs. This indicates that a higher
DC value is not necessarily better; on the contrary, exceeding a
threshold will lead to a decrease in brain function. Human brain
network has the property of small world. Too high may indicate
wrong connectivity or invalid connectivity. The appearance of
invalid connectivity or wrong connectivity will lead to functional
damage. In previous studies, we can find that the left superior
parietal gyrus is closely related to cognitive function. Similarly,
we also found a negative correlation between the DC value of the

FIGURE 2 | The abnormal functional connectivity between the right inferior frontal orbital gyrus and left inferior temporal gyrus of the WMHs in MNI space. (A)

Significant abnormal functional connectivities were observed between the right inferior frontal orbital gyrus and left inferior temporal gyrus [−10, −9, −8, −7, −6, −5

in (A) are the coordinates of Z-axis in Montreal Neurological Institute space, and the unit of coordinate system is millimeter]. (B) Mean values of the abnormal

functional connectivities in these groups. ***Significant at 0.001 level and *significant at 0.05 level (2-tailed).
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FIGURE 3 | The abnormal functional connectivity between the left superior parietal gyrus and the left parietal inferior gyrus of the WMHs in MNI space. (A) Significant

abnormal functional connectivities were observed between the left superior parietal gyrus and the left parietal inferior gyrus [34, 35, 36, 37, 38, 39 in (A) are the

coordinates of Z-axis in Montreal Neurological Institute space, and the unit of coordinate system is millimeter]. (B) Mean values of the abnormal functional

connectivities in these groups. ***Significant at 0.001 level and *significant at 0.05 level (2-tailed).

TABLE 6 | The correlation results between the DC value in the left superior parietal gyrus and the score of MoCA in HCs.

HCs-MoCA WMHs-MoCA HCs-left

superior parietal

WMHs-left

superior parietal

HCs-MoCA Pearson correlation 1 −0.027 −0.351 −0.274

Significant (bilateral) 0.878 0.033* 0.101*

N 37 35 37 37

WMHs-MoCA Pearson correlation −0.027 1 0.378 0.015

Significant (bilateral) 0.878 0.025 0.879

N 35 100 35 100

HCs-left superior parietal Pearson correlation −0.351 0.378 1 0.000

Significant (bilateral) 0.033 0.025 0.998

N 37 35 37 37

WMHs-left superior parietal Pearson correlation −0.274 0.015 0.000 1

Significant (bilateral) 0.101 0.879 0.998

N 37 100 37 104

*P < 0.05, HCs, healthy controls; WMHs, white matter hyperintensities.

left superior parietal gyrus and the overall cognitive MoCA score
in the HCs group, which further tells us that there is a correlation
between the left superior parietal gyrus and cognitive function.
WMHs are mainly manifested as abnormal signals in white
matter, which often indicates that the structural connectivities
of white matter are changed, and the structural connectivities
of white matter are the basis of functional connectivities. We
speculated that WMHs can affect white matter connectivity and
further cause abnormal functional connectivity of cortex and
subcortical nuclei. In the present study, our results suggested that
the DC value of the left superior parietal gyrus in WMHs groups
were significantly changed, meanwhile, their cognitive function
was also significantly different from that in HCs group, however,

the correlation between DC value of left superior parietal gyrus
and cognitive function in HCs group was not found in WMHs
groups, which is consistent with our hypothesis that the white
matter connectivity of patients with WMHs is changed, leading
to changes in their related functional connectivity, leading to
changes in cognitive function.

Since the clinical manifestations of WMHs are complex,
we are unable to determine the mechanisms underlying these
changes. Therefore, strict experimental design is crucial for
future studies.

This study has a number of limitations. First, as a cross-
sectional study, DC can only identify brain regions with
abnormal functional connectivities and is unable to provide
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a clear causal relationship; we examined the functional
connectivity based on defined ROIs. Second, the sample size was
relatively small in the present study, which might have led to
lower statistical power. Third, patients with WMHs were divided
into three groups based on their Fazekas scores, which mainly
emphasizes the average WMHs score but does not account for
the actual brain areas with hyperintensities.

CONCLUSION

In the present study, we used the DC analysis to explore
the abnormal connectivity pattern in whole-brain functional
networks in WMHs. We also correlated DC changes with MoCA
scores. The current results showed decreased connectivity in
the right inferior frontal orbital gyrus and changed connectivity
in the left superior parietal gyrus. The functional connectivity
between the right inferior frontal orbital gyrus and left inferior
temporal gyrus was decreased, and the functional connectivity
between the left superior parietal gyrus and left parietal inferior
gyrus had changed. All in all, these results provide us a new
approach to probe into complex WMHs. Taken together, the
abnormal changes of DC values in brain regions may help
us to better explore the underlying mechanism of cognitive
function changes inWMHs, and this rs-fMRI study advanced our
understanding of WMHs.
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